Shi et al. Journal of Inequalities and Applications (2016) 2016:43 ® Journal of Inequalities and Applications

DOI 10.1186/513660-015-0930-y

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Necessary and sufficient conditions for
boundedness of multilinear fractional
integrals with rough kernels on Morrey type

spaces

Yanlong Shi', Zengyan Si?, Xiangxing Tao®” and Yafeng Shi*®

“Correspondence:
xxtao@hotmail.com

3Faculty of Science, Zhejiang
University of Science & Technology,
Hangzhou, Zhejiang 310023, PR.
China

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this article, we study necessary and sufficient conditions on the parameters of the
boundedness on Morrey spaces and modified Morrey spaces for Tqq and Mqy,
which are a multilinear fractional integral and a multilinear fractional maximal
operator with rough kernel, respectively. Our results extend some known results
significantly.
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1 Introduction

Suppose that Q is homogeneous of degree zero on R” and Q € L*(S"!) with 1 < s < o0,
where S"7! denotes the unit sphere of R”. Moreover, m > 1 will denote an integer, 6 (j =
1,...,m) will be fixed, distinct, and nonzero real numbers, and 0 < o < n. We denote f =
(fis---»fm), then the multilinear fractional integral operator on R” is given by the formula

QW)
Touf(x) = i(x — 0;y) dy,
nat) = [ 0 [Tste=ema

and the multilinear fractional maximal operator Mg, is given by

1 m
Moo f(%) = sup - / 10| [ -6)| dy.
r> |yl<r

j=1

If « = 0, then Mg = Mg is the multilinear maximal operator.
When m =1and Q =1, if let 6; = 1, Tq, will be the Riesz potential operator I, [1, 2]
given by

flx—y) dy.

Laf (%) =
rr [yl

© 2016 Shi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13660-015-0930-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0930-y&domain=pdf
mailto:xxtao@hotmail.com

Shi et al. Journal of Inequalities and Applications (2016) 2016:43 Page 2 of 19

Spanne and Adams obtained two remarkable results on Morrey spaces (see Defini-

tion 2.1 in Section 2) for I,,. Their results can be summarized as follows.

Proposition 1.1 [3, 4] (Spanne, but published by Peetre) Let 0 < <n,1<p<n/a, 0 <
rA<n—ap,1/q=1/p—aln,and wl/q = \lp. Then for p > 1, the operator I, is bounded from
LP*(R") to LT*(R") and for p =1, 1, is bounded from L"*(R") to WL¥*(R").

Proposition 1.2 [5,6] LetO<a<nm 1<p<n/a,0 <A<n-ap.
(i) Ifp > 1, then the condition 1/p —1/q = a/(n — 1) is necessary and sufficient for the
boundedness of the operator I, from LP*(R") to L%*(R").
(i) Ifp =1, then the condition1—1/q = a/(n — ) is necessary and sufficient for the
boundedness of the operator I, from L'*(R") to WL (R").

If » = 0, then the statement of Propositions 1.1 and 1.2 reduces to the well-known Hardy-
Littlewood-Sobolev inequality. On the other hand, in 2011, Guliyev et al. [6] found this
inequality in modified Morrey spaces (see Definition 2.2 in Section 2) was also valid and
proved the following.

Proposition 1.3 [6] LetO<a<n 1<p<n/a,0 <A<n-ap.
(i) Ifp > 1, then the condition a/n <1/p —1/q < a/(n — L) is necessary and sufficient for
the boundedness of the operator I, from LP* to L4,
(ii) Ifp =1, then the condition a/n <1-1/q < a/(n— 1) is necessary and sufficient for
the boundedness of the operator I, from L"* to WL%*.

When m > 2 and Q =1, Grafakos [7] studied Lebesgue boundedness of T7,. Recently,
Gunawan [8] extended Grafakos’ result to Morrey spaces and provided a multi-version for
the sufficiency of conclusion (i) in Proposition 1.2.

Proposition 1.4 [8] Let 0 < « < n, p be the harmonic mean of p1,...,pm >1, 1 <p < nla,
0<i<n—ap,l/p—1/q=al(n-L), then the operator Ty, is bounded from LF*(R") x
oo x [P (RM) to LI*(RM).

When m > 2 and Q € L(S*1), Ding and Lu [9] studied the L x - - - x L?" boundedness
for Tq,. After this work above, a natural question is: what properties does the operator
T, have on Morrey and modified Morrey spaces? We give answers as follows.

Theorem 1.1 Let 0 < < n, Q € L5(S" ) with 1 <s < oo, s' = s/(s — 1), p be the harmonic
mean of p1,...,pm >1,0 <A <n—-ap,1 <p<nla and satisfy

T >

:Z—l Jor0<A;j<n. (1.1)
— Dj
j=1

(i) Ifp>s, then the condition 1/p —1/q = a/(n — 1) is necessary and sufficient for the
boundedness of the operator Tq o from LPP*1(R") x - .. x LPm*m(R") to LT*(R").
(ii) Ifp =3¢, then the condition 1/s' —1/q = a/(n — 1) is necessary and sufficient for the
boundedness of the operator Tq, from LPVM(R?) x - .. x [Pm*m(R") to WLI*(R").
Moreover, similar conclusions hold for Mg, .
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Theorem 1.2 Let a, Q, s, pj, Aj, p, and A be as in Theorem 1.1.
(i) Ifp>¢, then the condition a/n <1/p —1/q < a/(n — A) is necessary and sufficient for
the boundedness of the operator Teq from LPP*1(R") x - x [Pmim(R™) to L% (R™).
(ii) Ifp =5, then the condition a/n <1/s' —1/q < a/(n — A) is necessary and sufficient for
the boundedness of the operator Tq from Irit (R") x -+ x Lpmm (R™) to
WL (R").
Moreover, similar estimates hold for Mq .

Remark 1.1 Note that Theorems 1.1 and 1.2 covers Propositions 1.2 and 1.3, respectively.
Also, the case L = A; =--- = X, and Q =1 reduces to Proposition 1.4; the case A = A; =
.-+ = Ay = 0 gives the result of Ding and Lu [9] on Lebesgue spaces.

We observe that, in Theorems 1.1 and 1.2, the boundedness in the limiting case p =
(n — \)/a remains open. In fact, when p = n/a (i.e. A = 0), Ding and Lu [9] found Mg, is
bounded from L#! x --. x L7 to L*°, but this corresponding result for T, in this case
does not hold. Our next goal is to extend Ding and Lu’s result to the case 0 <A <n—«, as
the continuation of Theorems 1.1 and 1.2.

Theorem 1.3 LetO<a<n,0<A<n—a, Qe L(S") with1 <s < oo, p be the harmonic
mean of py,...,pm > 1 and satisfy (1.1).
(i) Ifp=m—-A)la >, then the operator Mg, is bounded from
LPUM(RM) X -« x LPmm(R™) to L°(R™).
(ii) Ifs <(n-2A)la <p <nla, then the operator Mg is bounded from
IPYM(RM) x -+ - x LPmim(RM) to L°(R™).

Finally we shall describe the organization of this paper. In the following section, we will
study the boundedness of maximal operator Mg on Morrey and modified Morrey spaces.
The last section we will devote to the boundedness of T, and Mg, and to showing the
proof of Theorems 1.1, 1.2 and 1.3.

Throughout this paper, we assume the letter C always remains to denote a positive con-
stant that may vary at each occurrence but is independent of the essential variables.

2 Boundedness of maximal operator Mg
In this part, we investigate the boundedness of maximal operator Mg, (see Section 1) on
Morrey and modified Morrey spaces defined by the following definitions.

Definition 2.1 [3-5,10] Let1 < p <00, 0 < A < n. We denote by L* = [»*(R") the Mor-
rey space, and by WIP* = WIP*(R") the weak Morrey space, as the set of locally integrable
functions f(x), x € R”, with the finite norms

1

1 P

If Nl oy = sup <t_)‘/ [f(y)|pdy> )
B(x,t)

x€R",t>0

1

1 ’
W Nl wzrs gny = sup r sup <t7|{3’€3(x’t)ilf(y)|>r}|> ,

r>0  xeR”7,t>0

respectively.
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Definition 2.2 [6] Let1 <p< 00,0 <X <n, [t]; =min{l, ¢}. We denote by p* = ’LVP'X(R”)
the modified Morrey space, and by WLP* = WIP*(R") the weak modified Morrey space,

as the set of locally integrable functions f(x), x € R”, with the finite norms

TP (RN = Tan d 4
W llzps @y = sup ([t]f /B(x,t)V(y” y)

xeR"t>0

If lwiprqny = sup ¥ sup (L}{y € B(x, 1) : V(y)| > r}|)p,

3
>0  xeR”,t>0 [t]l
respectively.

It is easy to see that LPO(R") = IPO(R") = LP(R"), WLPO(R") = WIPO(R") = WLP(R"). If
A <0 or A > n, then LP*(R") = LP*(R") = © where O is the set of all functions equivalent

to 0 on R”. In addition, from [6], we know
P(R") ¢ IPY(R") N LP(RY),  max{I[fllpo If e} < 1fllgpo-

Recall the definition of Mg, as a special case when m =1, Q =1 and 6; = 1, Mg, is the
Hardy-Littlewood maximal operator M. In 1994, Nakai [11] obtained the boundedness
of M on Morrey spaces, later Guliyev [6] studied the operator M on modified Morrey

spaces and get a result parallel to Nakai’s result.

Lemma 2.1 [11] Let 1 < p < 0o and 0 < A < n. Then for p > 1, M is bounded from L* to
LP* and for p =1, M is bounded from L' to WL"*.

Lemma 2.2 [6] Let1 <p < oo and 0 < X< n. Then for p >1, M is bounded from IP* to
IP* and for p =1, M is bounded from L to WL,

When m > 2 and Q € L5(S"1), we find Mg also has the same properties by providing

the following multi-version of Lemmas 2.1 and 2.2.

Theorem 2.3 Let Q € L*(S" ) with1<s < 00,0 < A <n, p be the harmonic mean of
P Pm > 1, p > and satisfy (1.1).
(i) Ifp>s, there exists a positive constant C such that

m
1Mafllps < CT TSN 2
j=1

(i) Ifp =5, there exists a positive constant C such that

m
|Maf |l ypps < Cl_[ M”]j’/"*f‘

j=1

Theorem 2.4 Let Q € L5(S") with 1 <s < 00, 0 < A < n, p be the harmonic mean of
P1r--Pm > 1, p > s and satisfy (1.1).
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(i) Ifp>s, there exists a positive constant C such that

m
IMaflizpn < CT [l
j=1

(ii) Ifp =5, there exists a positive constant C such that

m
IMafllyzon < CT Tz
j=1

Here, we give only the proof of Theorem 2.4 and omit the proof of Theorem 2.3 due to
the similarity.

Proof Since Q € L5(S"!) with s > 1, Hélder’s inequality yields

. 120)| [ Tl - 6| dy
yl<r j=1

AL ) (] o)
([ Mot o) ([ jowreaa)’

. (’" /y|<r1_“fx o) dy) :

j=1
i S'pil p/s/p]'
(2 [ o)
lyl<r
m
= cfTmgrmer™,
j=1
which implies a pointwise estimate
m /
Mof(x) < C[[[M (7)) 7. 2.1)
j=1

(i) If p > s/, by (2.1) and the Holder inequality, we get

ﬁ/‘ |MQf(y)iP dy < C / 1_[ M(fsp,/p (y)]p 215 pj dy
1

= CH( / (M) o) dy)ﬂ/p;

L‘]1

forallx € R” and ¢ > 0.
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Taking the pth root of both sides and applying Lemma 2.2 with p/s’ > 1 and the fact
ﬁs’p;/p e Lp/s’,xj’ we get

1 1/p
IMafllzs = sup (7 / yMgf(w\”dy)
(t]7 JB@p

x€R™,t>0 1

m l/pi
Spilp\ (NI 4 )
l—[ ]RV! t>0< t]l /xt)[M(j; )()/)] 4

jo1 %€

m
- c[TImME"I,
j=1

=C l_[|lf””/”||‘3§f’ s

= C[ [ Wl

Jj=1

which is the desired inequality.
(i) f p =5, forany B > 0,leteg = B, &, = 1 and &1, &3, ..., &1 > 0 be arbitrary which will
be chosen later. From the pointwise estimate (2.1), we get

byt [at)] > ) < Uy st LG 00 > |
J= 1 )

Let us now take ¢1,¢9,...,&,-1 > 0 such that

J
&j [I—Ly:1 |[fj”zp/»lj]s 7
—=———=" j=12,...,m.
g1 B filly
i= ilgpiti

Then, applying Lemma 2.2 with p/s’ = 1 and the fact f#/ € L"/, we get

HyeBx, ‘Mgf(ybﬂ}y

m , g1 pj
{yeB(x,t)M(ﬁp/)(y)><W) }‘
-1 [t]l 7 e

J

(A=2j) /p,

<62ﬂ4”3 )
) 512,
S0 (2 it ]

/!

I1 Ilfjllzp,,x,)

j=1

p
1l ) :

_CZ[;:

boli-—‘

/\'_'A

m
i=1

t]’\<

:l
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Hence, we obtain the following inequality:

1

1 ?
|Maf lyips = sup B sup (Wuy € B 1) : [Mof()| > B }|)
1

B>0  xeR™,t>0

< C[ [ Wllsmya,-

j=1
This is the conclusion (ii) of Theorem 2.4. O

3 Boundedness of Tq, and Mg,
The present section consists of two parts which are about the bounded estimates on Mor-
rey and modified spaces for the multilinear fractional integral operator T, and the mul-

tilinear fractional maximal operator Mg o, respectively.

3.1 Boundedness on Morrey spaces
In this part, we will prove Theorem 1.1. Let us begin with a requisite Hedberg’s type esti-

mates, which plays a key role in proving Theorem 1.1.

Lemma 3.1 Let 0 < a < n, Q € L5(S"™) with 1 < s < oo, p be the harmonic mean of
P1--bm>1, 0 <A<n-—ap, s <p<nla and satisfy (1.1), then there exists a positive
constant C such that

|TQaf(x)| < C[Mgf( )] L-pel(n=h) 1_[ ”f”pa/n 3

2%
j=1

Proof For any é > 0, we split the integral into two parts:

Q0) 1
Taatls </|y<8 ./y>5> fo Oy) dy =: A(x,8) + S(x,9).

[yl

For A(x,8), we have

46 = [ CON 150 dy

y|<8 |J’|" « j=1

3 120)] (-
< 12O anld
i '/;‘i‘lsﬁlykz-is |yl wa )| dy

52 2—1’—18 a—n/ . ’Q(y)|nw(x—9jy)]dy
i=0 yl<27'8 j=1

(27718)* " (2778) " Mof(x)

Mz

i=0

o0
<278 Mof(x) Y 27
i=0

< C§*Mqaf(x).
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Recalling the conditions of Lemma 3.1, we can see s’ < p < (n — 1)/a, which implies
a<(m—A)p <(n-2r)/s, then we get

n—as’>n—m-A)s/p>n-(n-»1)=Ax
In order to estimate S(x, §), we choose a real number o such that
n—as'>o>n—(n-As/p> A
One can then see from the choice of o that
n-(n-a-ols)s<0 (3.1)
and
(n-0)ls —(n-A)Ip<0. (3.2)

Then, using the Holder inequality, we obtain

1S(x,8)] < /| 12011 ]_[Lf(x 6| dy

51> |y|n [T |y|a/s

1Q0)I s 1 o\
= 4/d / . ‘(X—G‘ )s d

=:E;(8) x F,(x,6).

For E, (8), by the fact (3.1), we obtain

1/s
E (8) = </ /S . 5 - (n-a—o/s')s— ldé dr) _ Csuf(nia)/s/‘

For F,(x,8), we have

%) 1/s'
Fo(x8) < / (-6 d
(; 2i5<|y|<2i+1s |J’|‘7 l_“f ly 4

00 /s
Z 2 8 —ols (/ nlf X — 9]_)/)’ dy) .
i=0 Iyl<2’*15

If p > ¢, applying Holder’s inequality and the fact (3.2), we have

G Js' 1/s'-1/p m 1/p
Fa(xy 8) < 2(218)—” s ([ ’ dy) (/ ‘ Hvli(x_ ejy)|17 dy)
i=0 \y\<2“15 M<2H15 i1

00 m 1p
< CZ(zis)(n—J)/s -nlp / Hw(x_ejy”l’dy
i=0 <218 iy
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00 m 1/p
io\(n—0)/s'—(n-1)Ip 1 YN 2
= CZ(Z ) ((25+15)x /y<2i+15 E[lﬂ(x )| dy)

i=0
<c i(Zi(S)("_G)/S/_(H_W ﬁ (41 / - 6)]” dy> l/pj
ey j=1 (2518)Y Jiyieaints ! '

CZ(Z 8) n—o)/s'—(n— )L/pl—[”f”Lp] ’

i=0 j=1

m
—0)Is'~(n=1)/
< 8V Tl -
j=1

If p = ¢/, using the Holder inequality and the fact A < o, we get

1/s'
Fa(x,6)< (2/8) " (/lywlsnlfx 2l dy)

i= 0

00 " s
io\—0/s'+Als 1 s
<C) (2%) <—(2i+1 5 /y oy L[[ﬂ(x - 69)| dy>

i=0

Coozaxa/s 1 ol p;
< Ty
- ;:( ) H((ZM(S)M /|y|<2i+15lﬁ(x 7)) y)

o0 m
<Y @) [Tl s,
i=0 j=1

m
< Cs* P TT Il ooy

j=1

m
= C§lo)ls~n=Rlp 1_[ Hﬁ”LP/'*/'

j=1
Hence, for every p > s', we have
m
S, 8)| < 8P TT I oy -
j=1
Thus
m
|TQ,af(x)| < C(S“Mgf(x) + 80{—(7!—)»)/19 l_[ ”ﬁ”]j’j')‘j)' §>0.
j=1
Now take

pl(n-21)

8= [Mgf(x) l"[ufan, } ,

and then we get the conclusion of Lemma 3.1. O
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 First of all, we will devote our efforts to the proof of (i).
Sufficiency. By Lemma 3.1 and the conclusion (i) of Theorem 2.3, we have

1 / g 1/q m - 1 ) "
- Touf(y) d) <C| WA nE —/ Mof(y))’ d
(t)” B(x,t)| b | 4 E[ Us 7%\ g B(x,t)( (,)/) y

m m
1-plq plq
< : )
<clTw e TTse,
j=1 j=1

<CI WAz

Jj=1

Taking the supremum for x € R” and ¢ > 0, we will get the desired conclusion.
Necessity. Suppose that Tq, is bounded from L1 x - .. x [Pm*m to [9*, Define f. (x) =
(fi(ex),...,fiu(ex)) for € > 0. Then it is easy to show that

Touf(y) = € *Tquf(ey). (3.3)
Thus
1 1/q
I Toufellzor =€ sup (7 f | Touf(ey)|” dy)
xeR”,t>0 L B(x,t)

1 1/q
— anlq sup (7/ }Tglaf(y)‘qdy>
xeR™,t>0 L B(ex,et)

1 1/q
_ é—a—n/q+k/q sup <_A/ |T9,af()/)|q dy)
x€R™,t>0 (Gt) Blex,et)

= e Y T £ g0

Since Tq, is bounded from LP1*1 x ... x [Pm*m to [9* we have

-\
I Toufll an = €2 T £ |l a0

< CetinDla l—[ M(E') ”ij,xj
j=1

m 1 ) 1/pj
= Ce*i-Pla l_[ sup (T / fien)|” dy)
17 JBx,t)

j=1 x€R™,t>0

. 1 ’ 1/p;
_ Ceovr(n—)»)/q l_[ 6—”/1’/' sup <— lﬁ(.)/) |P1 dy)
)

A’,
j=1 xeR 0 \ £ Blex,et

‘ 1/pj
ol dy)

m
_ C6a+(n—k)/q l_[E(k/—n)/p/ sup

A‘.
=1 xe]R”,t>O<(ft) 7 J Bex,et

m
— C6a+(n—k)/q—(n—k)/p| | ”ﬁ” ik
L’

Jj=1

where C is independent of €.
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If 1/p <1/q + a/(n — 1), then for all f € IP1*1 x ...

€ — 0.

If 1/p > 1/q + a/(n — 1), then for all f € LP1* x ...

€ — Q.

Therefore we get 1/p =1/q + a/(n - 1).

Page 11 of 19

x LPm*m we have || Toofllqr = 0 as

x [Pm*m we have || Tqofllqr = 0 as

We proceed to prove (ii). Sufficiency. For any 8 > 0, applying Lemma 3.1 and the con-

clusion (ii) of Theorem 2.3, we get

{yeB(x,t) (CMof(y)) ”"1‘[uf||“/q ﬂ}

1/q

127

S————"

qls'

I TQ,af” WL
1 1/q
=supf sup (7}{yeB(x,t):|TQf(y)|>,BH)
B>0  xeR",t>0 t
1
=supf sup |
B>0  xeR”,t>0 t
1
<supB sup [—A {yeBx, : Mof(y) > (
B>0  xeR”,t>0 t

1
<supB sup |:

B>0  xeR"™,t>0

B>0

e
ECsupIB|:l—L 1 [f Py A 1—[ |f|S/‘-I)\-:|

>0 7%

m
<[ 1A,z

j=1

Thus, we complete the sufficiency of (ii).

Necessity Let Tq, be bounded from L7141 x ...

(3.3) for f.(x) = (fi(ex),

1
ot =sopr sw (5 @)
r>0  xeR",t>0 t (yeBt):| Ta,ufe 0)[>r}

c ,uvnl ol

qls
y € Bx,t): M f(y)>< — )
{ ¢ Cn,livn ia

[T I s ¥ia
< Csup ﬂ[(#) l_[”ﬁHmei
j=1

]l/q

195

o=
X
TS

x LPm*m to WLT*, Because we have

.., fm(€x)) with € > 0, then we obtain

1
q

1 q
=supr sup <7 / dy)
r>0  xeR”,t>0 L {yeB(x,t):| Tq o f(ey)|>re®}

| (l / d )q
€ "sup r sup - ly
r>0  xeR™t>0 z {yeB(ex,et):|Tqof(y)|>re®}

=€—a—n/q+qusup re® sup (
r>0 xeR”t>0 (

Sl VW { I

1
q
) {yeBlex,et):| Tq o f(y)|>re*}

€t
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Since Tq, is bounded from LP1M x ... x [Pm*m tg WLT* we have
Lo

m
I Toufllwrar = € Toufellyzan < Ce T [f)] 11,
j=1

m
~A)lg—(n-1)/,
< Cer R T Ay,
j=1

where C is independent of €.

If1/p < 1/q + a/(n — 1), then for all f € LPL* x ... x [P*, we have | Tquf|lwiar = 0 as
€ —> 0.

If 1/p > 1/q + a/(n - 1), then for all f € LP1* x ... x [Pm* we have || Tquf| e = 0 as
€ — oo.

Consequently, we get 1/p =1/q + a/(n — 1).

Next, we prove conclusions (i) and (ii) hold for Mg . By the same arguments as above
we get the necessity part and the sufficiency part follows from the conclusion of Tq, and
the following lemma.

Lemma 3.2 [9] Suppose that 0 <a <n, Q € L*(S") with 1 <s < co. Then
MQ,oz(f)(x) = Ca,n T\Q\,a(|f|)(x);

where |f| = (|fil, ..., [ful)-

Then the proof of Theorem 1.1 is completed. d

As an application of Theorem 1.1, we get Spanne type estimates, which can be seen a
multi-version of Proposition 1.1.

Corollary 3.1 Leta, 2,5, pj, Aj, p, and A be as in Theorem 1.1,1/q =1/p—a/n, ulq = Alp.
() If p>s, then Tq, is bounded from LPY M (R™) x - - x LPmAm(R™) to L9 (R").
(i) Ifp =5, then Toy is bounded from LP*1(R") x --- x LPm*m(R") to WLPH(IR").

Moreover, similar estimates hold for Mg .

Proof From Lemma 3.2, we only need to show the boundedness of Tq .
First, we choose ¢ to satisfy (n — u)/q = (n — A)/¢, then we get

Vt=m-w)lgn-12)=1p-al(n-1)<1l/p-a/n=1/q.

Then Hélder’s inequality implies L&*(R") € L#*(R") and WL**(R") ¢ WLZ*(R"). In fact,
there exists a constant C > 0 such that

ITeufllLan < Cll Toufll e
and

I Toefllwien < CllTo,ufllwytn.
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Then, by Theorem 1.1, we have

m
IToafllan < CllToufllen < CI [l sy forp>s

j=1
and
m
I Toaflwian < CllTaaflwzen < C[ [ Il sy forp=s.
j=1
Thus, the proof of Corollary 3.1 is completed. O

As an another application, by Holder’s inequality, we obtain an Olsen’s inequality as in
the following corollary, which is a multi-version of the results in considered by Olsen in
[12] in the study of the Schrodinger equation with perturbed potentials W.

Corollary 3.2 Let o, Q, s, pj, Aj, p, and  be as in Theorem 1.1 and let W e L""=/**_[f
p>s and1/p—1/q = a/(n— X), then there exists a positive constant C such that

m
IW - Toafllpagn < CIW e o [ [Vl gony
j=1

Moreover, similar estimates hold for Mq .

3.2 Boundedness on modified Morrey spaces

This part we will devote to the boundedness on modified Morrey spaces and show the
proof Theorem 1.2 and 1.3. With the same arguments on Morrey spaces, we also begin
with a requisite Hedberg’s type estimates on modified Morrey spaces.

Lemma 3.3 Let 0 < < n, Q € L(S"™) with 1 <s < 0o, p be the harmonic mean of
Pir--oPm>1L, 0<A<n—oap, s <p<nla and satisfy (1.1), then there exists a positive
constant C such that

| Touf()]| < C(Maf@)" TT 15154

it
j=1

Proof For any é > 0, we do the same decomoposition of Tq, as in the proof of Lemma 3.1,
then we only need to estimate F, (x,5). We also choose the same o during the proof of
Lemma 3.1, then we get

(n—o)ls —nlp<(m-o)ls—(n-1)/p<0. (3.4)

If p > s/, by the Holder inequality and the fact (3.4), we obtain

oo m 1/s'
Fy(x,8) = Z(zi(s)_a/s (/|y|<2i+15 HV/(’C ) 91‘)’)|S dy)
j=1

i=0

[e¢]

m 1/p
i (n—0)/s' -nl,
<3 ([ [e-ora)

i=0
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oo

i=0

oo

m
<C Z(zia)(n—a)/s -nlp [2i+18]i¥/17 1‘[(

i=0

oo

<C Z(Zia)(n—c)/S’—ﬂ/p [2i+15]1\/P (

Page 14 of 19

1
[2i+1 5]%

m 1/p
/ . HU;(x—e/y)|”dy)
M<21+15 i-1

. 1/pj
[ -t )
lyl<2i*1s

1
. Aj
[2”18]11

j=1

< C Z(zia)(n_a)/sl_”/P [2i+18]i‘/p 1_[ ”f}‘ ”Zp,’:)»/'

i=0

m
=CT [ Wl
j=1

<CI Wy

j=1

<C[ Wl

j=1

<C[ Wl

j=1

m
< Cs(n—a)/s/—n/p[za]iulp 1_[ ”ﬁ”

j=1

oo

Z(zig)(n—o)/S’—n/p [2i+13]i/17

i=0

Zoo (zi(S)(n—o)/s’—n/p
i=0 )
Z[log2 %] (zia)(n—a)/s’—(n—}»)/p
i=0
+ Z?:[logz 217]+1 (21’5)(”_‘7)/5 _"/17, if0<d<1/2

if§ >1/2,

§ln=olls'=nip, if§ >1/2,

S(n—o)/s’—(n—)u)/p + S(Vt—o)/s’—n/p, if0<§<1/2

S(n—o)/s’—n/p, if s >1/2,

ol =n=Rlp £ 0 < § <1/2

ij,kj .
j=1

If p = ¢/, using the Holder inequality and the fact 0 < A < o, we get

F,(x8)< Y (28)"

i=0

oo

<Y (2s) " 2]

i=0

oo

< (2's) 28]

i=0

<CI Wz

j=1

<C[ Wl

Jj=1

< C[ Wl

Jj=1

< C[ Wl

j-1

m 1/s'
(/.. T )
|y|<2”18 -1

1

m 1/s
. x—0y)[ dy
[21+13]{» A|<2i+16!:[w J. | )

(

ﬁ < 1 /. w(x _ Qly) |pj dy) l/pi
i1 [2i+15]i”i ly|<2i+18

(@) e

i=0

Y (208) ", ifs>1/2,

[log 1/ (r—0)/s’
Tl P (2) )
o0 i\ —O/S .
Doy 110 (28) 7, if0 <8 <1/2

5015 if§ >1/2,
§G-0)ls 4 5701 if0 <8 <1/2
s, if§>1/2,

8A . if0 <8 <1/2
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m
< C ¥ 1261 T Wil
j=1

m
< Cs(n—a)/s/—n/p[za]iulp 1_[ ”ﬁ”
j=1

ij,kj .
Then, combining with the estimates E, (§) < C8% ") s, we have

|S(x,8)| < Cs7p| 26]1/”1_[ fllzns,  foreveryp>s.
j=1

Thus

|TQ,af(x)| < C((SaMQf(x) + 8P 25]1/p 1_[ ”f”Lp, ,)

< Cmin:S“MQf(x) + 8 TT Wil
j=1

8 Mof(x) + 82~ (=»p l—[ i ll 2. }

j=1

Minimizing with respect to §, at

m pln
- |:(MQf(x))_1 l_[ |lfj||zpjr*/i|

j=1
and
pl(n-21)
8= [ (Mof(x)) H 1l }
we have
pa po
. Mof(x) \"7 Mof(x) \'7m 7] &
Toufx)| < Cmm{ (mi N=r— i+
| | l_[j:1 |[fj||zp,ukj 1_[,':1 ”]5‘”310/,1,‘ g e
plq —p/q
< C(Mof(x)) H (17
j=1
This is the conclusion of Lemma 3.3. O

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Similarly to the proof of sufficiency in Theorem 1.1, by the bound-
edness of Mg in Theorem 2.4, we will get the sufficiency. Now, we give only the proof of

necessity.
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Let [€];,, = max{1, €}, by (3.3), for £, (x) with € > 0, we get

1 1/q
[ Toufellzer = €™ sup ( / ITQ,af(ey)lqdy)
[t]l B(x,t)

x€R”,t>0

1 1/q
=@ sup (—A/ |T9,af(y)’qdy>
xeR™,t>0 [t]l B(ex,et)
i
_ -l sup( [6t]1>
0 \ [th

1 1/q
X sup (—/\‘/ |TQ,af(y)|qdy)
xeR™,t>0 [Gt]l Blex,et)

A
~a-nlq 14 -
=e el | Touflzar

and

1
q
{yeB,t):| TQufe () |>r}
1
q
{yeBx,t):| Tq o f(ey)|>re®}

/ 1 7
= "supr sup |— dy
>0  xeR",t>0 [t]l {yeBlex,et):| Tq o f(y)[>re®}

Agq
_ _—a-nlq kt]l)
=€ su
"3 ( o

x supre* sup (ﬁ\{y € B(ex, €t) : \Tg,af(y)| > re"‘}|)q
1

r>0 x€R”,t>0

| Taaf llwgas = sup r sup (

r>0  xeR",t>0

=sup r sup (

r>0  xeR”,t>0

—_
- »—->’

A
= e el | Toofll wie-

(i) Assume that Tq, is bounded from P41 x .. x LPmm to L%, we get
P
I Toufllzar = €™ (€]} ! | Toofe lI7ar

A m
<C a+n/q l_[ ) HZI’M;‘

+~§>’

a+n/q

¥ m»

xeR”, t>0

m 1/pj
l_[ sup (E [ﬁ(ey)|p’dy)

1/pj

/ e / 1 pj
a+nq lfne nlpj . lﬂ'()’)|ld}’
j=1 xeR” t>0

[t] 1/ Blex,et)

L m Ajlpj
a+n/q q l—[e n/p, [Gt] Y
- €l ]1

1 b 1/p
X sup , / 1021 d)
xe]R",t>0<[€ t1% B(ex,et)lﬁ(y "y

5
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Lom
< Ce a+nl/qg- n/p[6 q [6 lp+ l_[ ”];”ZP/"A}
j=1

\ >

A m
< Ceam/q—nlp[g {7+ q 1_[ ”ﬁ”zpj'"”/”
j=1

where C is independent of €.

When 1/p < 1/q + a/n, then for all f € IP1* x ... x [Pm*m ) we have || Toufllie: =0 as
e — 0.

When 1/p > 1/q + a/(n — 1), then for all f € TP x ... x LPm*m, we have || Toqf|74: = 0
as € — 00.

Therefore we get o/n <1/p-1/qg < a/(n-2A).

(i) Assume that Tq is bounded from IP1*1 x - x LPm*m to WL, we have

A M
I Toufllwzon = € Lel%, | Toufe lwian < Ce*™ el T T T |72
j=1

Q\>‘

A_
< C60¢+n/q—n/p[6 117

m
[ Tl
j=1

where C is independent of €.

When 1/p < 1/q + a/n, then for all f € I71* x .. x LPm*, we have I Taefllwier = 0 as
€ — 0.

When 1/p > 1/q + a/(n — 1), then for all f € LP'* x - .. x LPm*, we have || Toof|| 7o = 0
as € — oo.

Consequently, we geta/n <1/p-1/qg <a/(n-1).

Next, we prove conclusions (i) and (ii) hold for Mg . By the same arguments as above
we get the necessity part and the sufficiency part follows from the conclusion of T, and
Lemma [9].

This completes the proof of Theorem 1.2. d

Finally we show the proof of Theorem 1.3.

Proof of Theorem 1.3 By the Holder inequality, we have

lyl<r

Up
1
< Csup—— (/ Q)| dy) (/ ]_[Lf(x o) dy)
r>0 lyl<r y<r
1 1/p’ m ‘ l/pi
<csw—([ Jeof' &) TI([ le-onp'a)
r> lyl<r lyl<r

j=1

1 1/s m ) 1/pj
< Csupr®™ ”/”( /I Q)| d)’) H( " lfitx = 6" dy)
y|<r yi<r

r>0 j=1

1 m
Maaf() = sup —— 12| [ [ - 09)| dy
r> i=1

) 1/p;
< Csupr®” ”/pl_[</ [ﬁ(x—@,»y)|p’ dy) .
lyl<r

r>0 j=1
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(i) If p=(n—A)/a = &, by the fact (1.1), we obtain

o
r>0 r

m 1 ) 1/p]'
Mg of(x) < Csupr@~=2p H( / [fi(x - 6,9) |p’ dy)
j=1 lyl<r

= CT 1AM,

j-1

(ii) If (n — A)/a < p < n/a, using the fact (1.1), we get

m 1 ‘ 1pj
Mof(x) < Csupr* 2 [ ] <— / [fix— )| dy)
[yl<r

)\.'
r>0 -1 [r] 1/

m
nlpp
< Csupr PP [Tl

r>0 j=1
i A
_h=A
< Cl—[ IVfill 277 max{ sup " 7, sup ”a_n/p]
j=1 O<r<1 r>1
m
= C[ [ Wfllsya,-
j=1
Therefore, we complete the proof of Theorem 1.3. d

Finally, we would like to remark that our theorems generalize the relevant results in
[13-15].
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