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Abstract
In this paper, we present the best possible parameters p,q ∈R such that the double
inequalityMp(a,b) < T [A(a,b),Q(a,b)] <Mq(a,b) holds for all a,b > 0 with a �= b, and we
get sharp bounds for the complete elliptic integral E (t) =

∫ π /2
0 (1 – t2 sin2 θ )1/2 dθ of

the second kind on the interval (0,
√
2/2), where

T (a,b) = 2
π

∫ π /2
0

√
a2 cos2 θ + b2 sin2 θ dθ , A(a,b) = (a + b)/2, Q(a,b) =

√
(a2 + b2)/2,

Mr(a,b) = [(ar + br)/2]1/r (r �= 0), andM0(a,b) =
√
ab are the Toader, arithmetic,

quadratic, and rth power means of a and b, respectively.
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1 Introduction
For r ∈ R and a, b > , the Toader mean T(a, b) (see []) and rth power mean Mr(a, b) are
defined by

T(a, b) =

π

∫ π/



√
acos θ + bsin θ dθ (.)

and

Mr(a, b) =

⎧
⎨

⎩

( ar+br

 )/r , r �= ,√
ab, r = ,

(.)

respectively.
It is well known that Mr(a, b) is continuous and strictly increasing with respect to r ∈R

for fixed a, b >  with a �= b. Many classical bivariate means are a special case of the power
mean, for example, H(a, b) = ab/(a+b) = M–(a, b) is the harmonic mean, G(a, b) =

√
ab =

M(a, b) is the geometric mean,

A(a, b) = (a + b)/ = M(a, b) (.)

is the arithmetic mean, and

Q(a, b) =
√(

a + b
)
/ = M(a, b) (.)
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is the quadratic mean. The main properties of the power mean are given in []. The Toader
mean T(a, b) has been well known in the mathematical literature for many years, it satisfies

T(a, b) = RE
(
a, b),

where

RE(a, b) =

π

∫ ∞



[a(t + b) + b(t + a)]t
(t + a)/(t + b)/ dt

stands for the symmetric complete elliptic integral of the second kind (see [–]), therefore
it cannot be expressed in terms of the elementary transcendental functions.

Let r ∈ (, ), K(r) =
∫ π/

 ( – r sin θ )–/ dθ , and E(r) =
∫ π/

 ( – r sin θ )/ dθ be,
respectively, the complete elliptic integrals of the first and second kind. Then K(+) =
E(+) = π/, the Toader mean T(a, b) given in (.) can be expressed as

T(a, b) =

⎧
⎨

⎩

a
π
E(

√
 – ( b

a )), a > b,
b
π
E(

√
 – ( a

b )), a < b,
(.)

and K(r) and E(r) satisfy the derivatives formulas (see [], Appendix E, p. -)

dK(r)
dr

=
E(r) – ( – r)K(r)

r( – r)
,

dE(r)
dr

=
E(r) – K(r)

r
,

d(K(r) – E(r))
dr

=
rE(r)
 – r .

Numerical computations show that

E
(√




)

= . . . . , K
(




)

= . . . . , E
(




)

= . . . . ,

K
(




)

= . . . . , E
(




)

= . . . . .

Recently, the power mean Mr(a, b) and Toader mean T(a, b) have been the subject of in-
tensive research. In particular, many remarkable inequalities for both means can be found
in the literature [–].

Vuorinen [] conjectured that the inequality

M/(a, b) < T(a, b)

holds for all a, b >  with a �= b. This conjecture was proved by Qiu and Shen [], and
Barnard et al. [], respectively.

Alzer and Qiu [] presented a best possible upper power mean bound for the Toader
mean as follows:

T(a, b) < Mlog /(logπ–log )(a, b)

for all a, b >  with a �= b.
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Neuman [], and Kazi and Neuman [] proved that the inequalities

(a + b)
√

ab – ab
AGM(a, b)

< T(a, b) <
(a + b)

√
ab + (a – b)

AGM(a, b)
,

T(a, b) <



(√
( +

√
)a + ( –

√
)b +

√
( +

√
)b + ( –

√
)a

)

hold for all a, b >  with a �= b, where AGM(a, b) is the arithmetic-geometric mean of a
and b.

Let λ,μ,α,β ∈ (/, ). Then Chu et al. [], and Hua and Qi [] proved that the double
inequalities

C
[
λa + ( – λ)b,λb + ( – λ)a

]
< T(a, b) < C

[
μa + ( – μ)b,μb + ( – μ)a

]
,

C
[
αa + ( – α)b,αb + ( – α)a

]
< T(a, b) < C

[
βa + ( – β)b,βb + ( – β)a

]

hold for all a, b >  with a �= b if and only if λ ≤ /, μ ≥ / +
√

π ( – π )/(π ), α ≤ / +√
/, and β ≥ / +

√
/π – /, where C(a, b) = (a + b)/(a + b) and C(a, b) = (a +

ab + b)/[(a + b)] are, respectively, the contraharmonic and centroidal means of a and b.
In [–], the authors proved that the double inequalities

αQ(a, b) + ( – α)A(a, b) < T(a, b) < βQ(a, b) + ( – β)A(a, b),

Qα (a, b)A(–α)(a, b) < T(a, b) < Qβ (a, b)A(–β)(a, b),

αC(a, b) + ( – α)A(a, b) < T(a, b) < βC(a, b) + ( – β)A(a, b),

α

A(a, b)
+

 – α

C(a, b)
<


T(a, b)

<
β

A(a, b)
+

 – β

C(a, b)
,

αC(a, b) + ( – α)H(a, b) < T(a, b) < βC(a, b) + ( – β)H(a, b),

α
[
C(a, b) – H(a, b)

]
+ A(a, b) < T(a, b) < β

[
C(a, b) – H(a, b)

]
+ A(a, b),

αC(a, b) + ( – α)A(a, b) < T(a, b) < βC(a, b) + ( – β)A(a, b),

α

A(a, b)
+

 – α

C(a, b)
<


T(a, b)

<
β

A(a, b)
+

 – β

C(a, b)
,

αQ(a, b) + ( – α)H(a, b) < T(a, b) < βQ(a, b) + ( – β)H(a, b),

α

H(a, b)
+

 – α

Q(a, b)
<


T(a, b)

<
β

H(a, b)
+

 – β

Q(a, b)

hold for all a, b >  with a �= b if and only if α ≤ /, β ≥ ( – π )/[(
√

 – )π ], α ≤ /,
β ≥  –  logπ/ log , α ≤ /, β ≥ /π – , α ≤ π/ – , β ≥ /, α ≤ /, β ≥ /π ,
α ≤ /, β ≥ /π – /, α ≤ /, β ≥ /π – , α ≤ π – , β ≥ /, α ≤ /, β ≥

√

/π , α ≤ , and β ≥ /.
The main purpose of this paper is to present the best possible parameters p, q ∈R such

that the double inequality

Mp(a, b) < T
[
A(a, b), Q(a, b)

]
< Mq(a, b)

holds for all a, b >  with a �= b.
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2 Lemmas
In order to prove our main results, we need several lemmas which we present in this sec-
tion.

Lemma . (See [], Theorem .) The inequality E[Mp(x, y)] > Mq[E(x),E(y)] holds for
all x, y ∈ (, ) if and only if

p ≤ C(q) := inf
r∈(,)

{
rE(r)

( – r)[K(r) – E(r)]
+

( – q)[K(r) – E(r)]
E(r)

}

,

where q → C(q) is a continuous function which satisfies C(q) =  for all q ≤ / and C(q) <
 for all q > /.

Lemma . The double inequality

( – t)/ + 
( – t)/ + 

<  –
t


<

[
(
√

 – t + t)/ + (
√

 – t – t)/



]/

(.)

holds for all t ∈ (,
√

/).

Proof Let u = ( – t)/. Then u ∈ (/ √, ), t =  – u, and the first inequality of (.) is
equivalent to

u + 
u + 

<
u + 


(.)

for all u ∈ (/ √, ).
We clearly see that (.) follows from

(u + )
(
u + 

)
– 

(
u + 

)
= (u + )

(
u + 

)
( – u)[(u – ) + u + u + u] > 

for all u ∈ (/ √, ).
For the second inequality of (.), let v =

√
 – t ∈ (

√
/, ), then it suffices to prove that

ρ(v) :=
[(v +

√
 – v)/ + (v –

√
 – v)/]


–

(v + )



=



[

v – v +
(
v – 

)/ –
(v + )



]

>  (.)

for all v ∈ (
√

/, ).
We claim that

(
v – 

)/ >  – v + v + v (.)

for all v ∈ (
√

/, ).
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Indeed, if v ∈ (
√

/, (
√

 – )/], then we clearly see that the function  – v + v + v

is strictly increasing on (
√

/, (
√

 – )/], and (.) follows from

 – v + v + v ≤  –  ×
√

 – 


+  ×
(√

 – 


)

+  ×
(√

 – 


)

=
 – 

√



< .

If v ∈ ((
√

 – )/, ), then (.) follows easily from

(
v – 

) –
(
 – v + v + v) =

(
 – v)(– + v + v)

>
(
 – v)

[

– +  ×
√

 – 


+ 
(√

 – 


)]

= .

Therefore, inequality (.) follows from (.) and

v – v +
(
v – 

)/ –
(v + )


> v – v +

(
 – v + v + v) –

(v + )



=
( – v)( + v + v + v)


> 

for all v ∈ (
√

/, ). �

Lemma . The inequality

E(t) >
π



(

 –
t



)

holds for all t ∈ (, /).

Proof Let

f (t) = E(t) –
π



(

 –
t



)

. (.)

Then simple computations lead to

f
(
+)

= , f
(




)

= . . . . > , (.)

f ′(t) = tf(t), (.)

where

f(t) =
E(t) – K(t)

t +
π


,

f
(
+)

=
π


> , f

(



)

= –. . . . < , (.)

f ′
 (t) =

f(t)
t( – t)

, (.)
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where

f(t) = 
(
 – t)K(t) –

(
 – t)E(t),

f
(
+)

= , (.)

f ′
(t) = –t

[
K(t) – E(t)

]
<  (.)

for t ∈ (, /).
From (.)-(.) we clearly see that f(t) is strictly decreasing on (, /). Then (.) and

(.) lead to the conclusion that there exists t ∈ (, /) such that f (t) is strictly increasing
on (, t] and strictly decreasing on [t, /).

Therefore, Lemma . follows easily from (.) and (.) together with the piecewise
monotonicity of f (t). �

Lemma . The inequality

(
 + t


√

 + t

)/

>  +
t



holds for all t ∈ (, /).

Proof It suffices to prove that the inequalities

 + t


√

 + t
>  +

t


(.)

and

(

 +
t



)/

>  +
t


(.)

hold for all t ∈ (, /).
Indeed, inequalities (.) and (.) follow easily from the identities

(
 + t) – 

(
 + t)( + t) = t( – t)( + t)

and

(

 +
t



)

–
(

 +
t



)

= t
(




+
t


+

,t

,
+

,t

,,
+

t

,
+

t

,,

)

. �

Lemma . Let λ =  log /[ logπ – log  –  logE(
√

/)] = . . . . and

g(t) =

π

√
 + tE

(
t√

 + t

)

–
[

( + t)λ + ( – t)λ



]/λ

.

Then g(t) >  for all t ∈ (, /).
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Proof It follows from t/
√

 + t ∈ (, /), λ < /, Lemma ., Lemma . and the mono-
tonicity of Mr( + t,  – t) with respect to r ∈ R that

g(t) >

π

√
 + t × π



[

 –
t

( + t)

]

–
[

( + t)/ + ( – t)/



]/

=
 + t


√

 + t
–

[
( + t)/ + ( – t)/



]/

>
(

 +
t



)/

–
[

( + t)/ + ( – t)/



]/

(.)

for t ∈ (, /). Let

g(t) = 
(

 +
t



)

–
[
( + t)/ + ( – t)/]. (.)

Then simple computations lead to

g() = , g

(



)

= . . . . > , (.)

g ′
(t) =




[
t – ( + t)/ + ( – t)/],

g ′
() = , g ′



(



)

= –. . . . < , (.)

g ′′
 (t) =




[

 –


( + t)/ –


( – t)/

]

,

g ′′
 () =




> , g ′′


(



)

= –. . . . < , (.)

g ′′′
 (t) =




[


( + t)/ –


( – t)/

]

<  (.)

for t ∈ (, /).
From (.) and (.) we know that there exists t ∈ (, /) such that g ′

(t) is strictly
increasing on (, t] and strictly decreasing on [t, /). Then (.) leads to the conclu-
sion that there exists t ∈ (, /) such that g(t) is strictly increasing on (, t] and strictly
decreasing on [t, /).

Therefore, Lemma . follows from (.)-(.) and the piecewise monotonicity of
g(t). �

Lemma . Let λ =  log /[ logπ – log  –  logE(
√

/)] = . . . . . Then the function
t–Eλ–(t)[E(t) – K(t)] is strictly decreasing on (, ).

Proof From Lemma . we clearly see that the inequality

E
(
Mλ(x, y)

)
> Mλ

(
E(x),E(y)

)
=

(Eλ(x) + Eλ(y)


)/λ

(.)

holds for all x, y ∈ (, ) with x �= y.
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It follows from the monotonicity of the function E(t) and the power mean Mp(x, y) with
respect to p ∈R together with λ >  that

E
(

x + y


)

= E
(
M(x, y)

)
> E

(
Mλ(x, y)

)
(.)

for all x, y ∈ (, ) with x �= y.
Inequalities (.) and (.) lead to

Eλ

(
x + y



)

>
Eλ(x) + Eλ(y)



for all x, y ∈ (, ) with x �= y, which implies that the function Eλ(t) is strictly concave on
(, ).

Note that

t–Eλ–(t)
[
E(t) – K(t)

]
=


λ

dEλ(t)
dt

. (.)
�

Therefore, Lemma . follows easily from (.) and the concavity of Eλ(t) on (, ).

Lemma . Let λ =  log /[ logπ – log  –  logE(
√

/)] = . . . .

h(t) =
+λ

πλ
Eλ(t) –

( + t)λ + ( – t)λ

λ

and

h(t) =
+λ

πλ
Eλ(t) – (

√
 – t)λ – λ/.

Then h(t) >  for t ∈ [/, /) and h(t) >  for t ∈ [/,
√

/).

Proof Simple computations lead to

h

(



)

= . . . . > , h

(√




)

= , (.)

h′
(t) =

λ

λ

[
λ+

πλ
t–Eλ–(t)

(
E(t) – K(t)

)
+ ( – t)λ– – ( + t)λ–

]

, (.)

h′
(t) = λ

[(

π

)λ

t–Eλ–(t)
(
E(t) – K(t)

)
+ (

√
 – t)λ–

]

, (.)

h′


(



)

= –. . . . < , h′


(



)

= –. . . . < . (.)

From (.) and (.) together with Lemma . we clearly see that both h′
(t) and h′

(t)
are strictly decreasing on (,

√
/). Then (.) leads to the conclusion that h(t) is strictly

decreasing on [/, /] and h(t) is strictly decreasing on [/,
√

/).
Therefore, Lemma . follows from (.) and the monotonicity of h(t) on [/, /]

and h(t) on [/,
√

/). �
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Lemma . (See [], Corollary .) The inequality


π
E(t) <

( – t)/ + 
( – t)/ + 

(.)

holds for all t ∈ (, ).

3 Main results
Theorem . Let λ =  log /[ logπ – log  –  logE(

√
/)] = . . . . . Then the double

inequality

Mp(a, b) < T
[
A(a, b), Q(a, b)

]
< Mq(a, b)

holds for all a, b >  with a �= b if and only if p ≤ λ and q ≥ /.

Proof Since the arithmetic mean A(a, b), quadratic mean Q(a, b), Toader mean T(a, b),
and rth power mean Mr(a, b) are symmetric and homogeneous of degree , without loss
of generality, we assume that a > b. Let t = (a – b)/

√
(a + b). Then t ∈ (,

√
/) and

equations (.)-(.) lead to

Mr(a, b) =
A(a, b)√

 – t

[
(
√

 – t + t)r + (
√

 – t – t)r



]/r

, (.)

T
[
A(a, b), Q(a, b)

]
=

A(a, b)E(t)
π

√
 – t

. (.)

We divide the proof into three cases.
Case  r ≥ /. Then it follows from (.) and (.) together with the monotonicity of

Mr(a, b) with respect to r that

T
[
A(a, b), Q(a, b)

]
– Mr(a, b)

≤ T
[
A(a, b), Q(a, b)

]
– M/(a, b)

=
A(a, b)√

 – t

[

π
E(t) –

( – t)/ + 
( – t)/ + 

]

+
A(a, b)√

 – t

[
( – t)/ + 
( – t)/ + 

–
(

(
√

 – t + t)/ + (
√

 – t – t)/



)/]

. (.)

Therefore,

T
[
A(a, b), Q(a, b)

]
< Mr(a, b)

for all a, b >  with a �= b follows from Lemmas . and . together with (.).
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Case  r ≤ λ. Then equations (.) and (.) together with the monotonicity of Mr(a, b)
with respect to r lead to

T
[
A(a, b), Q(a, b)

]
– Mr(a, b)

≥ T
[
A(a, b), Q(a, b)

]
– Mλ(a, b)

=
A(a, b)√

 – t

[

π
E(t) –

(
(
√

 – t + t)λ + (
√

 – t – t)λ



)/λ]

. (.)

We divide the proof into two subcases.
Subcase . t ∈ (, /). Let u = t/

√
 – t. Then u ∈ (, /) and (.) leads to

T
[
A(a, b), Q(a, b)

]
– Mr(a, b)

> A(a, b)
[


π

√
 + uE

(
u√

 + u

)

–
(

( + u)λ + ( – u)λ



)/λ]

. (.)

Therefore,

T
[
A(a, b), Q(a, b)

]
> Mr(a, b)

for  < |a – b|/√(a + b) < / with a �= b follows from Lemma . and (.).
Subcase . t ∈ [/,

√
/). Let

h(t) =
+λ

πλ
Eλ(t) –

(√
 – t + t

)λ –
(√

 – t – t
)λ. (.)

It is easy to verify that

√
 – t ≤  – t


and

√
 – t <

√
 – t (.)

for all t ∈ (,
√

/).
Equation (.) and inequality (.) lead to

h(t) >
+λ

πλ
Eλ(t) –

( + t)λ + ( – t)λ

λ
(.)

and

h(t) >
+λ

πλ
Eλ(t) – (

√
 – t)λ – λ/. (.)

Therefore,

T
[
A(a, b), Q(a, b)

]
> Mr(a, b)

for / ≤ |a – b|/√(a + b) with a �= b follows from Lemma ., (.), (.), (.), and
(.).
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Case  λ < r < /. On the one hand, equations (.) and (.) lead to

lim
x→+

[
log T

[
A(, x), Q(, x)

]
– log Mr(, x)

]

= log

[√
E(

√


 )
π

]

+
log 

r

= –
(r – λ) log 

λr
< . (.)

Inequality (.) implies that there exists δ >  such that

T
[
A(a, b), Q(a, b)

]
< Mr(a, b)

for all a, b >  with a/b ∈ (, δ).
On the other hand, by the Taylor expansion and let x >  and x → , then equations (.)

and (.) lead to

T
[
A(,  – x), Q(,  – x)

]
– Mr(,  – x)

=

π

√

 – x +
x


E
(

x


√

 – x + x


)

–
[

 + ( – x)r



]/r

=  –
x


+
x


–

[

 –
x


+
(




–
 – r



)

x
]

+ o
(
x)

=
 – r


x + o

(
x). (.)

Equation (.) implies there exists δ ∈ (, ) such that

T
[
A(a, b), Q(a, b)

]
> Mr(a, b)

for all a, b >  with a/b ∈ ( – δ, ). �

From Theorem . we get Corollary . immediately.

Corollary . Let λ =  log /[ logπ – log – logE(
√

/)] = . . . . . Then the double
inequality

π



[
(
√

 – t + t)p + (
√

 – t – t)p



]/p

< E(t) <
π



[
(
√

 – t + t)q + (
√

 – t – t)q



]/q

holds for all t ∈ (,
√

/) if and only if p ≤ λ and q ≥ /.
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