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1 Introduction
Ifp>1, —+ L'-1,a,b,>0, 0<Y 2 ay<ooand 0<) o bl < oo, then we have the
Hardy- Hllbert inequality as follows (cf. [1]):

[l ] 00 1p / o0 1/q
amb, b4
; ; m+n < sin(7r /p) <; aﬁ) (; bz) ’ )

where the constant factor 57— 7 1s the best possible. We also have the following Hardy-
Hilbert-type inequality (cf [2]):

2 /) 2/ o Up /oo Y
m/n)a,,b T
>0 <[sin(n/p)} (Zlaﬁ) (Zﬁ) ’ v

n=1 m=1

where the constant factor [ ]2 is still the best possible. In 2008, by introducing some

pLs
sin( /p)
parameters, Yang gave an extension of inequality (2) (cf [3]): If0 < A, Ao <1, A1 +Ag = A,
ap by > 0,0 < Y% nPI-)71gh < 00, and 0 < 300, n172-1p1 < 00, then the following
inequality holds:

o o In(m/n)anb,
Sy

n=1 m=1

1p / 1/q
—A1)— (1-12)-1
[ksm(nkl/k):l (Z & ) (an bz) ’ ®)

n=1
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where the constant factor [ 12 is the best possible. There are lots of improvements,

sin(rA/0)
generalizations, and apphcatlonsl/of inequality (2) ([3—11]). For more details, Yang gives a
summary of introducing independent parameters ([12, 13]).

In this article, by introducing independent parameters, and applying weight coefficients
and the technique of real analysis, we give a new extension of (2) with a best possible con-
stant factor. Furthermore, the equivalent forms, the operator expressions, and the reverses

are considered.

2 Some lemmas

We agree on the following assumptions in this paper: p #0, st = =1,A>0,0<A; <1
Ull)h+h—khﬂﬁ—hﬂﬂ[gmmﬁLhmmlmdm}1WWWMW%-
quences, U, =Y 7" i Vo= g v, and a,, b, >0 (m,n e N={1,2,...}),

o0 7 p(1-A1)-1 0 1 ,q(l-2p)-1
u, » Vi p
0< g —a,, <00, 0< E —b < OQ.
p-1 m q-1 n
m=1 Mm n=1 Vn

Lemma 1 Define the weight coefficients as follows:

X (U, V,) UL

ko) i= ) e i v mEN, )
n=1 UW’_V” Vl’l >
X n(U,/V,) Vi

w (A, n) = ———————— W, MHEN. (5)
%;%—WUM

We have the following inequalities:

w(ha,m) <k (k1) (mMeN;0<3 <1,4,>0), (6)

ZD'()\l,I’l)<k)L()\1) (HEN;0<)\1 <1,X >0) (7)
Proof Putting () := y, t € m—-1,m] m=12,...),v(t) :=v,, ten-1Lnl (n=1,2,...),
U(x) := /x w(t)dt (x>0), V(y):= /yv(t) dt (y>0).
0 0
Then we have U(m) = U,,, V(n) =V, (m,n € N). U'(x) = u(x) = i,, when x € (m — 1, m];

V'(y) = v(y) = v, when y € (n — 1, n]. Since the function V(y) (y > 0) is strictly increasing
and f(x) = ]“(W’/" (% > 0) is strictly decreasing (cf [4], Example 2.2.1), in view of 1 — A5 > 0,

we have
" In(U,, /V) U
wlha,m Zﬁlw Ve
" In(U,, /V(t)) uy
<Z/1w @ vt O

(

Putting u = 723 in the above integral, and in view of the fact that (cf [2])

o0 1 2
/ ﬂu"_ldu: - il (0<a<l),
o u-1 sin(ar)
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it follows that
1
)\2, Vl u_ 1 du
vl(oo)
1 w, Inu 2 4 1 [ Inu »
= — ur du< — u* du
)\.2 0 u-1 )\.2 0 u-1

b4 2 b4 2 r
B [Asin(nkz/k)] :[Asin(nkl/k)] = k()

Hence we prove that (6) is valid. In the same way, we can prove that (7) is valid too. [

Lemma 2 Suppose that {,,}o., and {v,};°, are decreasing sequences, and U(co) =
V(00) = 00, then we have the following inequalities:

k(A1) (1 = 61(A2, m)) < @(Ay,m) (M eN;0 <Ay <1,41 >0), (8)

k() (1= 02(h1,m)) < (A1, m)  (MEN;0 <Ay <1,45 > 0), 9)

where 6y(Ay, m) = O(ﬁ) € (0,1) and 05(A1,n) = O(ﬁ) € (0,1). Moreover, we get

o Um 1
=—(1+0:() e— 0%), (10)
; U}n+s 8( 1 ) ( )
it Vy 1
Y i = (v o) (e 0). (11)

i
I

Proof By the decreasing property of {v,}7°;, and in view of 1 — A5 > 0, V/(o0) = oo, we find

oo A
In(U,,,/ V) Ut
C!)()\.z, Wl) = Z 41,[)‘ T Vv _Vl—)~2 Vn+l

n=1
R /”“ In(U,,/V,) Uy Vo de
n=1 7" L[;;—V;‘ Vi_)\z
0 n+l A
” 1/ 12[(5 " L
A2 vw - Y vm u—-1
um

o

1

1 w1

A / i 10821 gy = ko () (1= 6, ),
A 0 u—1

where

V-
~ Inu

1 L!l)L 22 1
O01(Ag, m) = —— N ,1).
o) i= o [ S e 0,
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In virtue of

Y A
Vi /¥ 2 _
fl w551 gy

0 u-1
—)»2/2

lim
X—> 00

2222 (] Ty
= Jim = (;‘l> (m“ﬁ)ﬂ

it is obvious that 0;(A,, m) = O( ,\2/2) Hence (8) is valid. In the same way, we can prove

that (9) is valid too. Moreover, we ' have

ium =i+i '”U/()dt
ot U}’:é‘ /’Li — u1+s
2
U1+€(t)
1 (Y1 1 [ 1
:_e+2/ 1—d”=—s+/ e A
=y Juimeny w w Sy ut

LG )]
= — + — + — - )
& Wi M

m=1 M m=1""
o m+l o m+l /
ui ui
=Z 1(+s)dt>2f 1+£) dt
m=1Y" Um m=1Y" u (t)

o U(m+1) 1 o 1
=Z/ 1+e dbt=/ l+e du
m=1 U(m) u M1 u
1 1
=—[1+ —< 1 .
€ s

Then we have (10). In the same way, we have (11). O

Remark 1 Taking ¢ = a > 0, we write by (10) and (11) that

oo o0

Mm Vn
= 0:1(1), = 0x(1).
; urln+ﬂ n2=1: Viﬁ-a

3 Equivalent forms and operator expressions
Theorem 1 Suppose that p > 1, then we have the following equivalent inequalities:

I_ZZInL[/V) b,

n=1 m=1

2[ 00 7 p(1-21)-1 Upr oo o q(i-ap)-1 1/q
T Uy 1%
< — T ——b| 12
[A sin(nkl/k)j| [; an_l m:| |:Z q-1 n:| (12)
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00 [} p i
vy In(Up! V) ?
]:2 lz Vl—p)»z <Z u}n _ Vy); am) }

n=1 n m=1

- 2/ up(l—kl)—l Up
| ——]/—m—m/m— Zilafﬂ .
Asin(mAi/A) ~ ubr

=1
Proof By Holder’s inequality with weight (cf [14]), we find

> In(U/ V) \
2 Uy,

m=1

m=1

00 U,V lrl—)» /g 1lp ‘,l—k /p 1/ p
- _ ‘lm _
Z Uk ‘/}i\‘ Vr(ll A2)lp  1lg U(l Al)/qv}l/p

1-M P/q 00 (1-22)(g-1)
; Z 1n(U /v ) Uy P, [Z (Ul V;0) Vi

p-1
Him
n_

A A 1-A 1
um - Vn u,, o

1-Ay plqg =M
Vi " W m=1

= (w ()»1, I’l))

p1 v;-m 3 U Vs) Uy

A 1-A / L
v um_ n V ZMP‘I

no om=1

By (7), it follows that

Q=

klp/q }7
< (b)) Z 1n(u /V)L[ v, i’n}

1-Ao  plq
L n=1 m=1 V" Hm

_ 1
1S3 & ln(U V) UL “)(‘”‘”v b
= (/q()\l))‘f ",
1 19(1 -A1)-1 119
= (ki.(r1)) Zw@z’m) :

Combining (8) and (15), we have (13).

Using Holder’s inequality again, we have

1_
=t v v
1= Z ,_12 Z u*» — v Am 1/p “1
n=1 m n

m=1 Vn

Vql A2)-1
<J ZTbZ )

n=1 Vn

N

Page 5 of 12

(14)

(15)

(16)

and then we have (12) by using (13). On the other hand, assuming that (12) is valid, setting

m=1

v 2\ In(U,,/ V) v
bn = Vyll—}?)\z |:Z u}n — V':L am:| , ne N,
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then we find J = [} oo, qu]“}’ By (15), it follows that J < co. If ] = 0, then (13) is

trivially valid. If 0 < J < oo, then we have

n=1 Vn
a ;
up 14 Vq q
</(A()\1)[Z = aﬁ{| [Z ——bi| <oo,
m=1 m n=1 n

% y/a-2)-1 Up 00 p-r)-1 7
J= [Z WTbZ:| <kx(kl)[z mTﬂ’fn} '

n=1 n m=1 m

Hence (13) is valid, which is equivalent to (12). O

Theorem2 Supposethatp > 1, {im)oe, and {v,}32, are decreasing positive sequences, and
U(oc0) = V(00) = 00, then the constant factor k) (A1) = [W] is the best possible in (12)

and (13).

Proof For 0 < & < pAy, we set & = Ay — 5 (€(0,1)), ha = Ao+ 5 (>0),a, = U™ty B =
Ve By (10), (11), and (9), in view of Remark 1, we find

00 (1-21)-1 [’}
u, ~ W 1
— g, = == (1+0(1)),
; wht " ; U,
oo (1-29)-1 00
1%} ~ v, 1
— b1 = =—(1+05(1)),
; vzfl n ; V}}*'S P ( )
o0 o0
~ In(U,,,/ V) . ~
I:= ZZ . —V» 4mOn
n=1 m=1 m
_i iln(u Wl V) Vi,
- | uA 1 X Vs+1
o0 [e e}
=Y ol 7)Y (1-6001,m) vm
n=1 n=1

:k)\(’xl)|:z V8+1 ZO( f +S+)\.1 1>:|

1 4
e [m} [1+05(1) —£0(1)].

If there exists a positive number K < k; (A1), such that (12) is still valid when replacing
k(A1) by K, then, in particular, we have

SI—SZZIHU /V)~ 3

n=1 m=1

o 1p-in1 % 0o i)l 3
n
R — q
<eK § T > e B
m= v}’l

WI
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We obtain from the above results

|: T
A sin(n%/k)

-Qh—t

2 1
} [1+02(1) —e0(1)] < K(1+01(1))? (1 +02(1)) %,

and then it follows that k; (A;) < K (for ¢ — 0%). Hence K = k; (11) is the best value of (12).
We conform that the constant factor k; (A1) in (13) is the best possible. Otherwise we
can get a contradiction by (16): that the constant factor in (12) is not the best value. O

For p > 1, setting

up VZ(I A2)-1
o(m): PR Y(n) = ps, (n,m € N),
Mm Vn

then it follows that [ (n)]'? = ﬁ, and we define the real weighted normed function
spaces as follows: §

o -t 7
b= {a = {am)pyy lallpy = Z laml? { <oof,
m=

m
<OO},

o 1
p
Vy
Lyyis = {c = (el Nl g0 = { > |cn|f’} < oo}.

n=1 "n

R

00 (1 ra)-1
Igy {b {buke 1,||b||q,v,=<2 |y |‘f}

-1 n

For a = {a,}%, € l,,, putting 1, := Y o, lnL(IL{m/VVf am> b = {h,}32,, then it follows by (13)
that ||h||p,]/j1—p <ky(A)lallpe, and ke lp'wl—p.

Definition 1 Define a Hardy-Hilbert-type operator T : 1,, — [, ,1-» as follows: For
am >0, a = {amu},,_; € lp,, there exists a unique representation 7a = h € [, 1. We de-

fine the following formal inner product of 7Tz and b = {b,};2, € I,y (b, > 0) as follows:
In(Ll,, V
(Ta, b) := Z Z n( / by, (17)
n=1 m=1

Hence (12) and (13) may be rewritten in terms of the following operator expressions:

(Ta, b) < k(A1) llall e 1Dl gp» (18)

I 7all,y1-» < k(A1) |l pp- (19)
It follows that the operator T is bounded with

I Tl , 1
IT) := — 2V < k(M)

a)ely, Nallpg
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Since the constant factor k; (A1) in (19) is the best possible, we have

2
1Tl = k(A1) = [m] . (20)

4 Some reverses
- UPU-M)-I ~ q(l Ap)-1
We set ¢(m) := (1 — O1(Ay, m)) “2o7—, Y (n) := (1 - O2(Ay, m )) e (n,m € N). For 0 <

p.
p<lorp<0,we still use the formal symbol of the norm in this part for convenience.

Theorem 3 Suppose that 0 < p <1, {{tm}on and {v,}52, are decreasing positive sequences,

and U(oo) = V(o0) = 0o, then we have the following equivalent inequalities:

0o 00 2
I- ;;Mu /XA) m{W] lallp 16l (21)
00 00 p p%
55  (5s,  |
n=1 ) mz—l
> [m} ||ll||p,$ (22)

where the constant factor | 2 is the best possible.

A sin(Z)q/k)]
Proof By the reverse Holder inequality with weight (cf’ [14]) and (7), we obtain the reverse
forms of (14) and (15). It follows that (22) is valid by (8). Using the reverse Holder inequality
(cf. [14]), we find

W E UV [V
I= Z WZ @ v || oo | = Wbl (23)

m=1

Hence (21) is valid by using (22). Setting

-1
P >\ In(U,/ V) g N
n - anfp)‘z ; u}n _ V};\ am ’ n E ’

Zig)-1
then we have J = [} 2, V"’Iqiij]”” . Assume that (21) is valid. By the reverse of (15), it

follows that J > 0. If ] = 0o, then (22) is trivially valid. If 0 < J < oo, then we find

00 V(1A2)1
Z

n=

0 y/a 1-2)-1 1p
J- [Z "Tbi} > k(M) llallpg.

n=1 n

o k-1
ARV 1>kA(K1)||ﬂ||p¢|:ZTbZ:|

n=1 Vn

Hence (22) is valid, which is equivalent to (21).
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For 0 < € < pA;, we set o= — ;; (€ (0,1)), Ay = Ay + ;—7 (> 0), T = Up i, by =
vy, By (10), (11), and (7), in view of Remark 1, we find

0 p(1-A1)-1
m ~
Z 1 91 )\,2, Tﬂfn
m=1 Hm
oo
1 Hm
-S(1-0f —
2 (-0 )
-3 g3 of bt ) - 1o -0w),
m= m=1
00 (1-22)-1 00
14 ~ v, 1
— b= =—(1+02(1)),
2 gt

~ Up/Vy) e ~ | o= In(U,,/ V) V,?zum v,
1= 451,,,19” = =
2; Uy =V Z;LX; U=V Vi

oo _ v, > v,
= Zw()»l,n)m < kp (A1) Z Verl
n=1 n n=1 "

1 b4 2
Te [A sin(n’)tl/)\):| (1 * 02(1))'

If there exists a positive number K > k; (A1), such that (21) is still valid when replacing
k(A1) by K, then in particular, we have

81—SZZIHU/V bn

n=1 m=1
et Up(l—)bl)—l 11_7 Sl ‘/q(l_)LZ)—l"V %
> eK Z(l—gl(kz,m))mTZiﬁq Z nTbZ .
m=1 Wim n=1 Vn

We obtain from the above results that

2 . L
[m} (1+02(1) >K(1+01(1) —£0(1))” (1 + 02(1)) 7,

and then k; (A1) > K (for ¢ — 0%). Hence K = k; (A1) is the best value of (21).
We conform that the constant factor k; (1) in (22) is the best possible. Otherwise we
can get a contradiction by (23): that the constant factor in (21) is not the best value. [

Theorem 4 Suppose that p < 0, {iim)o, and {v,}52, are decreasing positive sequences,

and U(oo) = V(o0) = 0o, then we have the following equivalent inequalities:

In( L[ /V T 2
I= ., - o 24
ZZ by > [Asm(nkl/k)] 1l 151145 24

n=1 m=1
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m=1

T 2
) Yt )

where the constant factor [WP is the best possible.

o) 00 p :
(1 - 92()\1: n))lip‘)n ln(um/vn) ?
A =l
n=1 n m n

Proof Using the same way of obtaining (14) and (15), by the reverse Holder inequality with

weight and (9), we have

(1 A1)-1 P
> (ki () @ [Zw(xz,m } : (26)

then we obtain (25) by (6). Using the reverse Holder inequality, we have

2\ @ =6,(ry, 1) qv,,p > In(U,, /V)
[:Z|: ,_)\2 Z U — v+ Am
m=1 m n

n=1 Vn
15,
1P
X [(1 —05(A1,m)) 7 l—/pbn:|
Uy
> Jil1bll, - (27)

Hence (24) is valid by (25). Assuming that (24) is valid, setting

p-1
1= 02(h1, W) PV, | o= In(Uy/ Vi)
bn = Vlfpkz Z Uzhn — V’:\ Ay » ne N,

m=1

we find

0 yaa-a)-1 VP
]1 = [Z(l—@z(kl,n))nTbZ} .

n=1 Vn

It follows that /; > 0 by (26). If J; = 0o, then (25) is trivially valid. If 0 < J; < 0o, then we find

00 q(1-12)-1
D (=60 m) bl =) =1
n=1 Vn

> VZ(l—xz)—l a
> k(M) llallp,e [Z(l —05(A1,m)) Tbg} )

n=1 n

oo q(-ip)-1 P
h= |:Z(1 - 92()\1;1’1))%194 > k() llallpp-

n=1 Vn

Hence (25) is valid, which is equivalent to (24).
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Al e—-1 7
Hm» by

For0<e<qkz,wesetkl—kl+— (> 0), )»2—)»2—- (€ (0,1), 4, = U},
V,fz . By (10), (11), and (6), in view of Remark 1, we have

oo Up(l—)q)—IN oo m 1

; YLT‘#Z« = 2:: url’:fg = g(l +01(1)),
0 q(1-22)-1

Y (1= 0, m) b1

n=1 v”

ool

= %(1 +02(1) — 80(1)),

YZiian 'l Vin)

n=1 m=

5“

n

p"qg

ln(U /V)U V| Mm
V)‘ Vl_)q uyly:rg

m=1

= Z w(kz,m) L[1+s <k (k1) Z Ui

_ é[#ir(l+ol(l)).

Asin(mAi/A)

If there exists a positive number K > k; (A1), such that (24) is still valid as we replace

k(A1) by K, then, in particular, we have

DRI 2

From the above results, we have

-QI»—A

2 1
[m} (1+0,1)) > K(1+0,1))7 (1 + 05(1) — £0(1)) 7.

It follows that k; (A1) > K (for ¢ — 0%). Hence K = k; (A1) is the best value of (24). We
conform that the constant factor k; (A1) in (25) is the best possible. Otherwise we can get

a contradiction by (27): that the constant factor in (24) is not the best value. O

Remark2 Forpu;=v;=1(i=1,2,...),(12) reduces to (3); for A =1, A; =
by (12) that

In(U,, /V) r P 1 Wroe 4 %
ZZ ””b“[sin(n/p)] [Zﬁ”f”] Lot e

n=1 m=1 m=1 n=1 "N

13, =1 itfollows
q p
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fora=1,1 = 117 0= %1, (12) reduces to the dual form of (28) as follows:

2 < In(U,,/ V) ) UpTr oo a2 /g
amb m P n bq . 29
;; u —v, Amby < |:s1n(71/p):| mX: ot D n2=1: N (29)
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