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Abstract

Let T be the multilinear square operator, respectively with certain smooth kernels and
non-smooth kernels defined in (Xue and Yan in J. Math. Anal. Appl. 422:1342-1362,
2015) and (Hormozi et al. in arXiv preprint, 2015), and let T* be its corresponding
maximal operator. In this paper, we prove the vector-valued weighted norm
boundedness for T and T* and also establish multiple weighted inequalities for their
corresponding iterated commutator generated by the vector-valued multilinear
operator and BMO function.
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1 Introduction

The importance of the multilinear Littlewood-Paley g-function and related multilinear
Littlewood-Paley type estimates was shown in PDE and other fields, one can see the works
by Coifman et al. [3, 4], David and Journe [5], and also by Fabes et al. [6—8]. Moreover,
a class of multilinear square functions was considered in [8], which was used for Kato’s
problem.

Recently, Xue et al. [9] introduced the multilinear-Paley g-function with a convolution-
type kernel in the following way:

o 2dt 1/2
eF)x) = ( /0 7) ,

and obtained the strong L”1 (w;) X - - - X LP"(w,,) to L?(v;) boundedness and the weak type

1 / N I\ ,
— w(—,...,—>| [t -y d
tmn (Rn)ym t t j:lﬁ y] Y

results. Later, Xue and Yan [1] studied a class of multilinear square functions associated

with the following more general non-convolution-type kernels.

Definition 1 (Integral smooth condition of C-Z type I) (see [1]) For any v € (0, 00), let
K,(%,91,...,ym) be a locally integrable function defined away from the diagonal x = y; =
-+ =y, in (R")"*1 and denote y = (y1, ..., ¥,). We say that K, satisfies the integral condi-
tion of C-Z type [, if for some positive constants y, A, and B > 1, the following inequalities
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hold:

l/ZdV A
(/ K, x,y)|) —(ZJ NPT 1.1)

% dv\"? Alz—x|”
I<V(Z’ -») - 1<v(x7 ﬁ) 2_) = ’ (12)
(/0 [Koles 7 (X gyl

whenever |z —x| < maX 1 le = yjl; and

*© . , 2¢1’V)1/2 Alyi -yl
K(,5) = Ky (%910 Vo) = ) < e : 13
( /0 Ko@) = K@y om) | = S ey (1.3)

forany i € {1,...,m}, whenever |y; - y| < %Ix—yil.

We define the multilinear square function T by

00 2 d 1/2
- v
T(f)(x) = ( fo 7) (1.4)

for anyf (fir--sfm) € SR") x --- x S(R") and for all x ¢ ﬂlyzl suppf;.
In order to state their results, we first give the definition of multiple weights A3.

[ &ty Th0)ds
@y i

o L

Definition 2 (Multiple weights) (see [10]) Let 1 < py,...,p, < 00, and zl’ = pil o

For any & = (@i, ..., ,), denote v; = [, . If

1 1p m 1 . 1/p;
sup( / -) l_[<—/a)l1 pl) <00 (1.5)
B] LI1B1 /s

holds, we say that @ satisfies the Aj condition. Specially, when p; =1, ( | B f g® l/p i is
understood as (infg w;)7L.

We will need the easy fact: if each w; € A, then ]_[]":1 Ap, CAp.
In [10], the multilinear maximal operator M was defined by

M(f)(x) = sup Vi) dyis (1.6)
l;[ Ql /

where the supremum is taken over all cubes Q containing x. The easy fact is that M (]7 )(x) <
[T, Mfi(x), where M is the Hardy-Littlewood maximal operator.

Theorem A (see [1]) Let T be the multilinear square operator defined in (1.4) with the

kernel satisfying the integral smooth condition of C-Z type 1. Let 1 < p1,pa, ..., pm < 00 and
1

5= p1 oot ﬁ. If & satisfies the Ay condition, there exists a constant C such that

17O, = CTT W0 (1.7)
i=1
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Theorem B (see [1]) Let T be the operator defined in (1.4) with the kernel satisfying the
integral smooth condition of C-Z type 1. Let 0 < § < 1/m, the following inequality holds:

MT(f)) < CM(F)() (1.8)
for any bounded and compact supported functions f;, i =1,...,m.

In order to extend it to a more general case, we recall a class of integral operators {A;};-0
defined in [11], where the operators A, associated with the kernels a,(x, y) are defined by

Afw = [ atyo)d
Rn
for every function f € LP(R"), 1 < p < 00, and a,(x, y) satisfies the following size condition:

|at(x,y)| <h(x,y):= t‘"“h( x /Sy| ) for a fixed constant s > 0, (1.9)

where / is a positive, bounded, decreasing function satisfying

lim 7" (r*) = 0 (1.10)

r—0

for some 1 > 0. The above conditions indicate that for some C >0 and all 0 < n < 7/, the

kernels a;(x,y) satisfy
|ac(x,y)| < CEMS(L+ 75— y])
Assumption (H1) Assume that for each i = 1,...,m, there exist operators {A?}bo with

kernels a(f) (,y) satisfying conditions (1.9) and (1.10) with constants s and 7 and that for

every i =1,...,m, there exist kernels Kt(fz such that

(T(hs s A for o o))

L

for all Schwartz functions fi, ..., f,, g with (), suppfx N suppg = @.

2 d 1/2
%) g(x)dx (L11)

m
/ K@y, om) [ [0 dy
7y i

There exists a function ¢ € C(R) with supp¢ € [-1,1] and a constant € > 0 so that, for

everyi=1,...,m, we have

( / K, (x,5) - KO(x ,y>|2dv)

lyi — ykl) Arels
e T w— ) i ) (L12)
(Z o |x y]|)mn k;;#l ( tl/s (ijl |x _y],|)mn+e

whenever £ < |x — y;|/2.
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Assumption (H2) Assume that there exist operators {A,};,o with kernels a,(x, y) that sat-
isfy conditions (1.9) and (1.10) with constants s and 7, and there exist kernels I(t(,?,) (%, %)
such that

K (x,5) = / K\(z,y)a,(x,z) dz (113)

)m+1

makes sense for all (x,7) € (R” and ¢ > 0. Assume also that there exists a function

¢ € C(R) and supp ¢ C [-1,1] and a constant € > 0 such that

o) 1/2
(0) N de A
K, (x,9) —) T — (1.14)
(/o K 25 v Qi lx =yl

whenever 2¢ < min; <<, [x — y;| and

00 . . dV 1/2
(/ |f<v<x,y>—1<£,‘3><x’y>|27>
0

| — x| ) Atels
= 7wy 115
B (Z} 1 Ix il Z ¢< tls + (Z]VZI | — ;) (1.15)

k=1,k+i

for some A > 0, whenever 2£'5 < max<j<u [x — yjl.

Assumption (H3) Assume that there exist operators {A;};.o with kernels a,(x, y) that sat-
isfy condition (1.9) and (1.10) with constant s and 7. Also assume that there exist kernels
Kt(,?,) satisfying (1.13) and positive constants A and € such that

€ls
(/ K (x,5) - KLY (+',5) zdv) mAt— (1.16)

(Zj:l o — J’/‘Dmrpré

whenever 2¢* < minj<j<,, [x — y;| and 2|x — x| < £15.

We say that the kernels K, generalized the square function kernels if they satisfy (1.1),
(1.11), and (1.12) with parameters m, A, s, 1, €, and we denote their collection by m —
GSFK(4,s,1,€). We say that T is of class m — GSFO(4, s, n, €) if T has an associated kernel
K, in m — GSFK(4, s, n, €).

Theorem C (see [2]) Let T be a multilinear operator in m — GSFO(A, s, n, €) with a kernel
satisfying Assumptions (H2) and (H3). For 1 < py,...,pm < 00, p > 1 with }7 = pil oot ﬁ,
w € A, the following inequality holds:

1 TP iy < CT T W llri- (1.17)
i=1

Theorem D (see [2]) Let 0 <& <1/m and T be a multilinear operator in m — GSFO(A, s,
n,€) with a kernel satisfying Assumptions (H2) and (H3). Then there exists a constant C
such that

MT(H)) < CT[Mfw) (118)

j=1

holds for any bounded and compact supported function f;, i =1,2,...,m
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Moreover, the corresponding multilinear maximal square function T* is defined by

o Zd 1/2
T*(f)(x):sup( / —V> . (1.19)
550 \Jo v

Theorem E (see [2]) Let T be a multilinear operator in m — GSFO(A, s, n, €) with a kernel

satisfying Assumptions (H2) and (H3). For 1 < p,...,pm < 00, p > 1 with }7 = pil oot i,

K9 | | fi0)dy
/2?11 lx—y;|2>62 E ™

w € A, the following inequality holds:

1 TP ey = CT T Wilerior- (1.20)

i=1

Theorem F (see [2]) Let T be a multilinear operator in m — GSFO(A, s, n, €) with a kernel
satisfying Assumptions (H2) and (H3). For any n > 0, there is a constant C < 0o depending
on n such that the following inequality holds:

m

T*(f)(x) < c(M,7 T(f)(x) + HMf,»(x)), VxeR” (1.21)

j=1
for allf in any product of L%(R") spaces, with 1 < q; < 0.

2 Main results
In this section, we first list some results about vector-valued multilinear operator T, and
the corresponding vector-valued maximal multilinear operator T; which are defined, re-

spectively, by

00 1/q
T,)@ = | TH )|, = (Z\T(ﬂk,...,fmk)<x)|"> : 21)
k=1
0o 1/q
TP = | T* A @) 0 = <Z|T*<ﬁk,...,fmk)(x>|‘f) : (22)
k=1

where f = (fi,..., fou) with f; = {fx}2,.

Theorem 3 Assume that T is a multilinear square operator defined in (1.4) with the kernel
satisfying the integral condition of C-Z type 1. Let 1 < p1,p2,...,Pm < 00, L < q1,q25 -+ Gm <

ith L =1 ... L 1 _ 1, . 1 1 m
00, and 1/m < p,q < 00 with 5, = o + -+ 4 o=y o= Ltk e I (0] w) €
(Apys..»Ap,,) the following inequality holds:

17Dl oy < € H|| Uil s,y (23)
-

Theorem 4 Assume that T is a multilinear square operator defined in (1.4) with the kernel

satisfying the integral condition of C-Z type 1. Let 1 < p1,pa,...,Pm <00, 1 < q1,G2, .-, qm <

00, and 0<p,g<ocowitht =L 4. .4 L 1_ L ... 1
P n pm’q - @ am
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(@) If1<pi,ps....,pm<ocand w €Ay N---NAp,, there exists a constant C > 0 such
that

m
IZaP) iy = LTI D (24)

j=1

(ii) If atleast one pj =1 and w € Ay, there exists a constant C > 0 such that

176l ey = CT TN o (25)
j=1

Next, we show the results for the multilinear square operator 7" with non-smooth ker-
nels and its corresponding maximal operator T*. Meanwhile, we also establish multi-
ple weighted inequalities for their corresponding iterated commutator generated by the
vector-valued multilinear operator and BMO function. We will state our results as follows.

Theorem 5 Let T be a multilinear operator in m — GSFO(A, s, 1, €) with a kernel satisfying
Assumptions (H2) and (H3). Let 1 < p1,p2,....,pm < 00, 1 < q1,q2,...,qm < 00 and 1/m <

P, q < 00 with }7 = pil Foe ﬁ’ % = q% Foee qim.lf(wfl,...,wﬁqm) € (Ap,,...,Ap,), there
exists a constant C > 0 such that
m
I 7P o) = C]:[H Uil s,y (2.6)
]:

A similar estimate also holds true for the corresponding maximal operator T*.
Theorem 6 Let T be a multilinear operator in m — GSFO(A, s, 1, €) with a kernel satisfying

Assumptions (H2) and (H3). Let 1 < p1,p2,....pm <00, 1<q1,42,...,qm <00 and 0 < p,q <

cowitht=Ly...p L 1oLy .y L
P ' a " @ am

@) If1<pi,p2....pm<ocand w €A, N---NA,p,, the following inequality holds:

m
” Tq(f) ”LP(w) = CH” “ﬁ”eq/’ ”L”i@)' (2.7)
j=1

(ii) If atleast one pj =1 and w € Ay, the following inequality holds:

17eP) e = CTTI 3 L (2:8)
j=1

Similar estimates also hold true for the corresponding maximal operators T*.

The commutator associated with 7 is given by
T (@) = [b1,[bas . [be-r b6 TN,y -, 1, D@

£ m
_ /(Rn)m T1(6 - BG)K 1,30 [ 10 .
i=1

Jj=1

wherel < /¢ <m.
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For simplicity of notation, for the sequence {ﬂ},‘ﬁl = {fiks - - - Sk )35, Of vector functions,
the commutator associated with a vector-valued T} can be defined by

1/q
Ty D@ = | TrsH@)| 1 = c] @) >. (2.9)

Theorem 7 Assume that T is a multilinear operator in m—GSFO(A, s, n, €) with kernel sat-

isfying Assumptions (H2) and (H3). Let 1/m < p < oo, }7 = pil oot Iﬁ with1<pi,...,Ppm <
00, 1/m < q < 00, and %1 = qil oot qu with 1< qu,...,qm < 00. Suppose that & € Ay and
b € (BMO)".

(i) There exists a constant C > 0 such that
4 m
” b, q(f)”Ll’(vw) = H 1551l B0 l_[” ”f”q/ ”Lpf(ij)' (2.10)

Jj=1 Jj=1

(ii) Ifw; € Ap;s there exists a constant C > 0 such that

14 m
| T4 1r, < T TG00 [ THIF g | 1, (2.11)
j=1 j=1

3 The proof of Theorem 3
Since a)} € Ap,, by the previous statement, []7, wf’ € Ap. Writing v; = [ (o, Piylei =
]_[] 1 @;» Theorem A implies that

17Oty = CT TN (- (3.
j=1
We will apply the following lemma to get the desirable result.

Lemma 8 (see [12]) Let T be an m-linear operator, and let1<sy,...,s,, <ocoand1l/m<s<
00 be fixed indices such that 2== + -+ i For (of,...,0m) € (A, ..., As,,), the following
estimate holds:

m
- 5
7O T ) 62
j=
Then, for all indices, 1 < p1,...,pm < 00 and 1/m < p < 00 satisfy 11,

1
e+
2 Pm
1<q1,,..,qm<oo,and1/m<q<oosuchthat%:E+ +—,omdall(wp L) e

(Aps...Ap,,). Then the following inequality holds:
17PNy oy < € n””f”eq/ I, (33)
j=1

4 The proof of Theorem 5
We first state the following Fefferman-Stein inequality.

Page 7 of 17
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Lemma 9 (see [13]) Let 0 < p,8 < 00 and w be any Mockenhaupt A, weight. Then there
exists a constant C independent of f such that the inequality

| tswyemas=c [ (Mirw)owds (@)
holds for any function f for which the left-hand side is finite.

Lemma 10 (see [12]) For (wi,...,wn) € (Aps..., Ap,,) With1 < p1,...,py < 00 and for 0 <

01,...,0, <lsuchthat6, +---+06,, =1, we have wf‘ wf‘ € Amaxipy,..pm}-

Note that (o}',..., ") € (Ap,,...,Ap,), and Lemma 10 indicates that ]_[;Zl wf’ =
]_[1 l(w ])p/p/ € Amax(py,..pm) C Aoo

Exploiting Lemma 3.3 in [2] and the standard argument, we obtain || M; T(f) Il T of) <
00. Together with Theorem D, we have

17Ol oy = IMTO iy, op

= C||M§ T(f) ”Lp(n;glwp)

m

[14

j=1

<C

([T f)

< CH 15,2

j=1
m

< Cl—[ ”ﬁ”ij(wf])
j=1

By Lemma 8, we finish the proof of Theorem 5.
The estimate for T* will follow from Lemma 8, Theorem F, and the following argument:

||T*(?)”Lp(nr"1w’.’)5C<||MWT()?)“LP<W”1J)+ HMﬁ )
j=1%j j=1%j i1 L”(ﬂ,v"llwf)
1 m
(||M|T<f>| T )
Ln( j=1 %) j=1 Lp(l—[jrzl w;?)
1 m
<c(llrpry T )
L :1 ’j j=1 Lp(]'[jmzlwll_’)
( Pl + 100 )
=t Al o)

<C 4.2)

[
j=1

(12 o)

5 The proofs of Theorem 4 and Theorem 6
In order to prove these theorems, first we introduce the following lemmas.
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Let F denote a family of ordered pairs of non-negative, measurable functions (f,g), if
we say that for some p, 0 < p < 00, and w € A,

f@fox)dx<C / gwYw(x)dx, (5.1)
R" R"

and we denote it by (f,g) € F.

Lemma 11 (see [14]) Given a family F, suppose that for some pg, 0 < po < 00, and for every
weight w € A, (f,g) € F. Then we have, for all 0 < p,q < 00 and o € A,

1/q l/q
H (Z(fm) < cH (Z@kv) . gl C 7. 52)
& LP(w) k LP(w)
Forall0<p,q<00,0<s<00,andwée€ A,
1/q 1/q
H (Z(fk)q) =C H (Z(gk)q) g} cF (5.3)
X 175(w) X 175(w)

Lemma 12 (see [15])
(i) Letl<g<ooandl<p<oo,thereisa constant C,p such that

l/q 1/q
H <Z|Mfk(x)’q) < Cyp (Z Lfk(x)|q> (5.4)
k LP(w) & LP (w)
ifand only if w € A,
(ii) Letl<g<ooandl<p < oo, thereisa constant C,, such that
l/q 1/q
H (Z|Mfk(x)|q) =Cyp (Zlfk(x)|q> (5.5)
k LP (0) k LP(w)

ifand only if w € Ap,.

By Theorem B, Theorem D, and Theorem F, together with the argument from Section 3
and (4.2), we have

m

[T

Jj=1

|7y =€ (5.6)

LP (w)

Here 7 can be replaced by T and T* which are from Theorem 4 and Theorem 6.
We apply Lemma 11 to (T(f), ]_[]’:1 Mf;) € F, and by Lemma 12 we get the desirable re-
sults.

6 The proof of Theorem 7
In order to prove Theorem 7, first we will list some notations and lemmas:

S S|
M(IFlle) @) ::ié‘é’g@ fQ 1569, (6.1)
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Mugogry (IFler) ) = sup T TIN5 | og 100 (6.2)
X!

€Q j=1

M (If lea) ()

- 1 1
=sop > 2 [T [ onlatn I 1 iz [, Wi Lo 63)
jer'

%€Q oo jep
where p = {j1,...,je} C{1,...,m},1<€<mand p' = {1,...,m}\p.

Lemma 13 (see [10]) Let1<p1,...,pm<oo,1% =pi1+~~~+i,13=(pl,...,pm),cBeA;,,and

o= njey CHL...,m}, 1 < € <m. Then M, Myog1), M, are bounded from L¥' (w;) x
oo X LP(wy,) to LP(v,,).

Lemma 14 Let T be a multilinear operator in m — GSFO(A, s, 1, €) with kernel satisfying

Assumptions (H2) and (H3). Assume that1 < <m, p = {j1,...,je}, and 1/m < g < 00,1 <

q1>---»qm < 00 With é = é +oet qi. Then there exists a constant C > 0 such that

MET,(H@) < C(M(IFllea) ) + M, (IF llea) (). (6.4)

Proof For a point x and a cube Q > x, to obtain (6.4), it suffices to prove for 0 <8 < 1/m,

1/8
(ﬁ /Q 1 7¢)@) |, dz) < C(M(Ifllea) @) + M,y (I1f 1) () (6.5)

for some constant ¢ to be determined later.

Write fi = £ +£2°, where {f2122, = {f0 x0 132, = {fikXa® - o fmk X0+ } and Q* = (8/n+4)Q.
Letc=),  u, T(f*)(x)andin the sum each o; = 0 or 0o and in each term there is at least
one o = 00. Then

1/8
(5 [ Iri0-clisaz)

i - s 1/8
: C<|Q| fam(f el dz)
1 R R s 1/8
< ¥ (g [Jreve-r¢)eli )

where in each term of the last sum there is at least one o; = co.
Kolmogorov’s inequality and Theorem 6 implies that

I E CH Tq(/?o) ”Ll/m,oo(Q"dﬁz‘)

o1
cIl— [ If@]
= o |Q|A|m(z)||ll z

< CM(Iflles)- (6.6)
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We proceed to the estimate for Il,,, 4, Here we choose ¢ = [2/nl(Q)I*. If oy = - - oy, =

,,,,,

00, we have

C N N
M= i /Q |7(7)@) - T(*) )], dz

=1 Q<Z’T(fk) —T(ﬁ“)(x)lqudz

C 2\ [
S@Q@/o

applying Minkowski’s inequality, we get
o0
J

5 L(Z o ([(me-Kea ) Tl
< — I(v(zy )_[(v(x,) - ik )d
a Q(% - K (2,5 Dl !;[ﬁ/(y, y

2

q/2\ l/q
dv
— dz,
12

q/2\ 1/q

) dz
q\ l/q

) dz
q\ l/q
) dz

[ e -kei) 1o b
(RM\Q* )™ j=1

al(x B

k=1

K K, (x, )dy
[ 6 K ka(y, 5

12 m

(o o oo N 0),_ - 2dv> N
I<V ) _I(v , —_— : d
=1 Q<k§=1 /(W\Q*)m(fo |Kilz.5) - Key @)~ }|=1|ﬁk(y,) 5

+ C/ i/ (/ K9 z,5) - KO )|2dv>
T A v\Z,) V XY
QI Jo \'F |/ @y ‘ ’
m q\ 1l/q
xl‘[ﬁkm)d&) dz
j=1
m q\ l/q
C/w/ (/“’ ©), = _pav)'? -
+ — K. (x,y) - K,(x,5)| — () d dz
ol Q(kXﬂ: N AL Dl E[ﬁ )y
g SN / NS /(S

Because of z € Q and y; € R"\(8,/1 + 4)Q, we obtain |y; — z| > (4y/n + 1)€(Q) > 2£' for
allj=1,...,m. Assumption (H2) gives

I f/ dyd
09,...,00 — |Q| R\ Q4 (Z} 1|Z y |)mn+e H‘VO’/ ||({‘11 yaz

o0 1 m
3 g Hgwmig fung W00l

k=1 j=1

< CM(|Iflles) ).

IA

Since x,z € Q, |z — x| < /n€(Q) < 1/2£"5. Noting that |y; - z| > (4/n + 1)£(Q) > 2¢'* for
allj=1,...,m, applying Assumption (H3) and a similar argument to II*, we have I, <
CM(||fl¢a)(x). Similarly, we also get 3, < CMIf ) ).

,,,,,
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Now let us consider the typical case of Il,, 4,,, thatis, o =--- =y =ocoand oty = - - -

.....

(/ K2, ) - K9 (= ,y)|2dv)
Ry

q\ l/q

) dz

o,=0,1<h<m,

C o0
Ha o < —/
*=1Ql Q<;

h m
<[ 1 T1Aedy

j=1 j=h+1

el

|1<tv<z, ) 1<tv(x,y>|2d”)

Rrym

1/q

Xka kady ) dz

j=1 j=h+1

C 2dV
+— ’I(tv x,5) — Ky ( x,y)’

1l Jo kl (Rn

h m q\ l/q
T T ) @

j=1 j=h+l

For I}, ,, by Assumption (H2), we have

.....

mno << f (f AP TTL WGl dy
0 = 1Ql Jo\Jwmary e, 12 =yl
ATTL Wil dy
+/ 7 R lmn) Hf Hf”ﬂ/dy/dz
R\ Q*)" (Z/e{l h) 1z - yl)

ffff j=h+1

S A|Q*|e/n
= (Z (2k|Q*|1/n)mn+e / l_[ ”flléq/ dy]

= A
+ ; (2/<|Q*|1/n)mn [ZkQ h l_[ ”f"eq/ dy/) f ”f”gq, dy]

j=h+1

= CZH ke 2k+l|Q*|l/n)n / k1 g ”ﬁ”ﬂi dy}'

k=0 j=1

- 1 41
+C E Py —— | | ____t/“ Wfill o dy;
Tn(m—h) L Uille® @05
P /:h+1|Q*| Q

h

1
[ s dy;
x g (2k+1|Q*|1/rz)n '/;k+1Q* ”ﬁ”lﬁ y/
< CM(If lea) %) + M, (IIF llea) ()

By a similar argument, we deduce that II3,

%, o < CM(|[fllea) ).

,,,,,

.....

Page 12 of 17

o < CMfllea)®) + M,([Fllea)(x) and
O
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Given any positive integer m, V1 <j < m, let C[" denote the family of all finite subset
o ={o(1),...,0(j)} ofj different elements. Forany o € C/" we associate the complementary
sequence o’ given by o’ = {1,2,...,m}\o.

Lemma 15 Let0<8<e<1/m,1/m<q<oo,and%:%+~~+quwith1<q1,...,qm<oo.

Suppose that be (BMO)*. Then there exists a constant C > 0 depending only on § and €
such that

4
Mi(Tr50)@) < CT T B30 (Mo IFllea () + Me (T, (F)) ()

Jj=1

+ CZ Y G [115lsmoM(Try,, )@) (6.7)

i=1 aeCl/ jeo
Sfor any smooth vector function {f; )22, for any x € R”.

Proof For simplicity of notation, we replace [, fi(;) by F(y) and let A; = ﬁ frobil2)dz,
forj=1,...,¢. Let x € R” and Q be a cube centered at x. We have

1/2
TnZ(f)(x) = (/ dv)
00 V4
B (/0 /( oy [T((B® =) = (510) — 1)) Ko, HEG) dy
j=1
14
<> 2 ot -

i=0 gect jeo

( Vwmnb@,) ) Ko (%, 5)E ) dy

/nml_[b(x - bj(9)) K, (x,5)F () dy

2 1/2
dv
v

dv) 12

12

14
= [TlBi - 2| THH@) + T(]_[(b;(~;) - ?»;)f) ()
j=1

j-1

-1
£ 2 [1IBw -]

i=1 gect jeo

)1/2

< V [ [(B:6) - %) K(x,y)F(y)dy

;ea

Noting that b;(y;) — A; = (bj(y;) — bj(x)) + (bj(x) — X)), we get

4 4
%%ﬁwzﬂmw—un®w+n01@w—maw

j=1 j=1

o1
+ Z Z Cie H|bi(z) - )‘/|Tnza/’j(z)’

i=1 O‘ECE jeo

Here C;; depends only on i and ¢.
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Let co = [lcllea = (X poy lck|9)Y4. Since 0 < § < 1/m < 1, we have

1/8
(i LT f @l - eof|az)
1/8
(g [ Imstre) -elly )
) ¢ B 18
c(— bix) - M| T())| d
(s -]
-1 1/8
+CY N ,@<|Q|/]_[ 1i(2) = 4| Ty, f @) dz)

=l gect Qjeo
B s
dz)
04

+c<|Q|/ (fl[ )z)—c

=1+11+1II.
Now exploiting the standard Holder inequality for finitely many functions with 1< p <
€/8, it follows that

| /\

IA

4
1= CJ T IBllsroMc(Tef)(),

j=1

-1
n=Cy Y G| [1lsmoM (T f)@).

il gect  jeo

Next let us address part II1. Setf fo +f°°, wherefo fXQ* Letf"’ =f - f%m and
= (84/n+4)Q Takingco =3, o, IT((B1(1) = A1)+ (Be(-e) = AA™ - ()l a, We

.....

have

j=1

T(H(b/c»—x/)f) (2) -c

1

4
T, (l‘[(b;<~j>—xj)*°)<z>

j=1
4 L
T<1‘[(b,(-;) - A,)f“) (2) - T(l‘[(b,(-,) - xj)f‘*) )

j=1 j=1

+CZ

A5

’

Wz

where in the last sum each a; = 0 or oo and in each term there is at least one o = 00

Ifo; =+ =, =0, Kolmogorov’s inequality and Theorem 6 imply

) ¢ 8\ 1/8
(@ Tq(H(bi('i) -M)f”o)(z) )
j=1

14
Tq<1_[ (bi(-) = %)) )
j=1 Ll/m,oo(Q,ﬂ)

Q
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<C1_[||b||BMO||”f||ﬂ1 ”LlogL 2Q l_[ |Q| / "f”ﬂ/ dz

j=t+1

¢
< Cl_[ 1671l sa0 M rqog 1) (151197 ) (%)

j=1

Ifa; =+ = ay = 00, applying Holder’s inequality and Minkowski’s inequality, then we

(] )
S

¢
X l_[ b()/}) )& flk()/l) fmk(ym)dy
j=1

Sz

14
X l_[ b()/]) )\ flk()’l) fmk()/m)dj;
j=1

(ﬁ )(z) (ﬁ(b,(y,) - Aj)]”“)oc)

=1 j=1

/ K, (2,5) - K, (x,5)]
(RM\Q*)™
2 q/2\ 1/q
d
v
o ) dv\ 2
/ (/ |I<v(zyy) _I(V(x)y)|2_)
(RW\Q*)WI 0 v
q\ 1/q
) dz
c 0o o 1/2
< — I<V(ny) K? (Z:y) _>
QI Q(,Z:l: /(R"\Q*)’"(fo | )
q\ l/q
) dz
o 1/2
/ (/ KD (2,5) - KD, (%, 5 |—)
(RM\Q*)" \JO
q\ lq
) dz
1/2
/ (/ KD, (%,9) - K, (%,9)] —)
Rn\Q*m
q\ l/q
) dz

First we consider /II;. Taking ¢ = [2./n£(Q)]*, by Assumption (H2) we have

X l_[ b ()/] flk()/l fmk(ym)dj;

< Q(i

k=1

¢
< [T = 2)ik6n) -+ fon ) dy
j=1

s

4
< [1(B07) = 1)k 0n) - fonke i) A5
j=1

=111 + 111, + III.

Ate's ¢
fh = // ~i e | 11800 = M| Allea - - il eam dy dz
1= |Q| (RM\Q*)m (Z} 1 |Z yl mn+e !:1“ /(y] ]| lﬂ YZi\ lf 04 y

© g ¢
C,(X:lzzeng*l |Q*|/k1 |b(3’1) A“[flleq,dyl
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m
1
<1z | Wlady
j:l+12(k+1)n|Q*| okl Qe JWe =)

oo 1 4
Z T 1_[ |b||BMO|| ”ﬁ”eq/ ||L(logL),2k+1Q*
k=1 j=1

m

1

1| seomon Wil dy;
en 2k+m|Q*| Jox 1+ ¢

< CML(]ogL)(”f”N)(x)'

Similarly, we have III, < CML(lngL)(ImIM)(x) and 115 < C./\/lL(logL)(I[fllgq)(x). Now it re-
mains to consider the typical case of /1],

(@

¢
T(H(b/(‘i) L)/ TR/ z‘iln.-,fﬁ) (2)

j-1
s\ 1/8
ZQ)

£
- T(l’[(b;(m I S o ..,f,:i) )
14
[ 0 - Kot [1:00-)
- £ Hfﬂ(b;‘()’;‘) = W)IEO) dy;

j=1
q/2\ 1/q
d
V) ) dz
- </(R"\Q*>f (Zf=1 |z — yj|)mme

C o [ roo
<@ Lz
T1E2Bi0) — ADIEO) by,
+/(RM\Q*)e ¢ )H/ oD o dy;

XA SR O Oen) - S ) dY
(Zj:l |Z _y],|)mn j=C+1

4
< C T 1sllsrmoMegoery (I ller) @).

j=1 -

Lemma 16 Let0<p<oo,1/m<q<oo,and$ = q—ll et qu withl<qi,...,qm < 00 and
let w € Ao Suppose that be (BMO). Then there exists a constant C > 0 such that

/ |Tl‘[bqf| w(x)dx < CHHb ”BMO/ (Mugoery (IIFllea) )7 w0(x) dx. (6.8)

The proof is similar to [16], so we omit it here.
Based on the above lemmas, the proof of Theorem 1.3 in [16] provides the main ideas
for the proof of Theorem 7.
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