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1 Introduction

The Hankel transform (HT) is a well-known integral transform which uses the vth order
Bessel function of the first kind, J,, as a kernel. Since the HT is equivalent to the two-
dimensional Fourier transform (FT) of a circularly symmetric function, it plays an impor-
tant role in a number of applications including optical data processing, digital filtering,
etc. [1-3].

The conventional HT is extended to the fractional Hankel transform (FrHT) by Kerr [4]
and Namias [5]. Its properties are discussed in detail by several authors [6—9] and its appli-
cations in many areas (such as optics, signal processing, quantum mechanics) are given in
[10-12]. Using the theory of Hankel translation, Pathak and Dixit defined continuous and
discrete Bessel wavelet transforms (BWT) and studied their properties [13]. The fractional
Hankel transformation and the continuous fractional Bessel wavelet transformation, some
of their basic properties and applications are studied in [14]. In [15], the relation between
the Bessel wavelet transformation and the Hankel-Hausdorff operator is discussed.

In this paper, we first of all introduce the FrHT, the BWT, and almost periodic func-
tions and some of their properties in brief. A generalized frame decomposition for almost
periodic functions is constructed by using an orthogonal basis with Laguerre functions
relating to the FrHT. We also give various relations using the HT, FrHT, BWT, and strong

limit power signals.

1.1 Hankel and fractional Hankel transforms
We define the Fourier transform of an integrable function f as

70 = (FH@) = \/% / : Fle = ds.
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The general HT is given as

H 1)) = /0 IO O)dy,  Relw) > D)

and the inverse is given by

10)= /0 " M@ ) di

where J, is the vth order Bessel function of the first kind [16].
The HT of order zero is an integral transform equivalent to a two-dimensional FT with

a symmetric integral kernel,

Holf () - /0 " olarf () dr

oo 1 2 ) )
= — e acos d9>r (r)dr
|G /
1 o0 2m—¢ )
- / / 5 £ (1) dly
T Jo —¢

1 00 2T .
=5 / / e ir1¢o50-9) £ (1) dr dO
0 0

= % / / S, y)e” ) dx dy
= f(u,v), (1.2)

where r = /x? + y? and g = vVu? + v2. This is also known as the Fourier-Bessel transform.
Also Parseval’s theorem holds for the HT:

/0 M (10 Mo [g) () it = / W0)eW) dy.

Namias [5] introduced the concept of Fourier transform and Hankel transform of frac-
tional order (FrFT and FrHT), opening the new period of fractional transforms. FrFT with
angle « of a signal f(x) is given as

ei(% -3) o y

%2 +y2 .
Fa(y) — e*LT COtO(+lxyCSCO(f(x) dx (1‘3)

V2w sina Jo
and the inverse is

e‘i(%_%)

V2w sina Jo

,x2+y2
)

f(x) — cota—ixycscaFa (y) dy (14)

The Parseval relation for FrFT is given as

/0 f ()| dx = /0 |E.()| dy. (15)
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The FrHT is defined by
HAI0) = [ FOIK ), 1.6)
0
where

Ky(5,y) = A gae 3@ #7)cot %Jv( o )

3 o
Nt D)

with

The inverse is given by

o0
) = / He 10V K y) dy, (17)
0
where
—i(v+1)(E-%) X
Ky (x,9) = #xeﬁ(ﬂw)cot%h( .xya>
Sin 2 sin 2

as in [17].

1.2 Orthogonal basis with Laguerre functions
Let L) be the generalized Laguerre polynomials defined by means of the Rodrigues for-

mula
1, _ _
Li(x) = —e'x"D"[e7*x""], neNy=NU{0},x>0
n!

which gives

L@ =Y (D
k=0

(m+v)! k
1=K + KT

in power series form. The Laguerre functions are defined as
I (x) = 1jg00) (x)e™™2x" L (x)

and they form an orthogonal basis for the space L,(0,00). Let us set FS;(x) = [}(x) and

take (@), =a(a+1)(a+2)...(a + n-1). It was shown that

_r(g+1)(1+v)ni(—mk(gu)k( 1 )“5“
L X

$nl®) = n! Kl(v + 1)

k=0 2

and the S, are orthogonal on the real line [18].
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The functions S, can be written as a linear combination of Paul’s wavelets,

a+l
Val) = (i> ,
X+1

such that

5,5(;) =CY iy @),
k=0

(1.8)
where the constants C and the coefficients ¢, defined as

c- L3 +1D)A+v),
n!
and
v k(5 + Dk
= (2 k+7+1 2
o = (20 K+ 1)z

v
Sn;a,b

(x) = 29/25" (2%x — b) is the natural discretization of S (x) for every a,b € Z
If another complete orthogonal basis {1/} }°,, given by

V) (x) = Ao L) (x%),

is chosen, we get

2
H,[y'e 7 L2(y)]@) = e”’”x"e’éL,‘; (#*), meNy,x>0,

using equation 7.421(4) in [19]. Then the integral representation

HE)(x) = Ay / ye%'(xZ*f)wt%fv( o >f(y)dy, (1.9)
0 Slni

with

ei(u+1)(
Au,a = - )

7-%)
o
sin &

which is known as the FrHT is obtained [5].

1.3 Continuous Bessel wavelet transform
Let

2y+1

X

and

1
j) = C x>V, px), C, = 2V‘”2F<y + 5>, (1.11)
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where y is a positive real number and J,_/2(x) is the Bessel function of the first kind of

order y — % Define

D(x,y,2) = fo " o)t do o)

2
= 23V‘5/2[F (V + %)] [P y2) 2 [ Ay 2)] 7,

where A(x,y,z) denotes the area of a triangle with sides %, y, z if such a triangle exists and
is zero otherwise. A(x,y,z) is nonnegative and symmetric in x, ¥, z.

I5(0,00),1 < p < 0o is the space of measurable functions ¢ on (0, c0), such that

oo 1/p
I$llpe = [/0 !d)(x)!pdo(x)} <00, l<p<oo,

@ lloc,s = esssup|ep(x)| < co.
0<x<00

Let ¢ € I5(0,00), 1 < p < oo be given. The Bessel wavelet is given by

Vpalx) :=a 271 /OOD(b/a,x/a, 2V (2)do(z), (1.12)
0

where a >0 and b > 0. If ¥ € L2(0,00), it satisfies the admissibility condition (see [15])

°° 1
Cuy = / 22 H Y)W dr < oo, pz -5 (113)
0
where H,[¥](x) is the Hankel transform of v (¢).
Using the Bessel wavelet, Pathak and Dixit [13] introduced the continuous Bessel wavelet
transform (BWT) as

(Buf )by a) = [f Yina(8)) = /0 FOTa@ do(©)
- g /0 b /0 ~ f(t)WD(S, éz) do(2)do(2).

Also Pathak et al. [20] stated the equality

b
B~ 0(7). ax0 (114)
using the convolution operator.

1.4 Almost periodic functions

The space AP of almost periodic functions is the closure of quasi-periodic functions in

p

the space L _ of f, where ||f||? is locally Lebesgue integrable on R for p > 1. This space is

defined as the closed subspace of L*°(RR) given as the closed linear span of all functions e/*!

where A € R (see [21, 22]). Equivalently, it is the completion of the space of trigonometric
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polynomials on R whose elements can be written as Y ;_, axe”*’, where n € N, a; € C, and
Ak € R. All AP functions are uniformly continuous and bounded, and we have

1 (T 2
2 _ .
Wi = fim 57 | Jof ae
Let Q(R) consist of functions ¢ in the form

7t t>0,
q(t) = me o 0s (115)
=D M=%, t<0,

wherem=1,2,..., 0, eR,[1=1,2,...,m,and a; >ay > --- > o, > 0. A function of the form
n
P(t) = Zakeiqk(t)
k=1

is called a generalized trigonometric polynomial on R, where a; € C, gx(t) € Q(R), and
k=1,2,...,n. Denote by Gtrig(R) the set of all such polynomials.

A function f on R is said to have a strong limit power if for every ¢ > 0 there exists a
P, € Gtrig(R), such that

IIf = Pell = sup{ V(t) - Ps(t)| (te ]R} <e. (1.16)

Denote by SLP(R) the set of all such functions. It is obvious that AP(R) C SLP(R). The
inner product of the SLP(R) space is defined by

R S
9= Jim 5 [ e ar
(see [23, 24]).

2 Main results
Proposition1 Letf € AP. Then

1

T 2 (o)
lim = / f f A HolF @) dqde dt = 1 I 260y v 2.1)
T—oo 2T _tJo 0

Proof Using the equality (1.2) and the Parseval theorem for the two-dimensional Fourier
transform, we get

/ozn /Oooq|7'lo[f](61)|2dqd¢:/::/_:lf(u,v)|2dudV:/_: /_:[f(x,y)|2dxdy

and the result follows. O

Lemma 1 Let Fy(y) be in L1(0,00) for v > —1. Then

HE [ F@]=C [ g0 O 22)

0
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where
elv(F-9)+ -]
| sin % |”*2 2
and

o\
g = (1+21ycsc —) (<1+zycsc —) + v(1+2iycsc 5) )
J
3

. (| sin 5 |(1 + iycsc 5)(1 + 2iycsc § )% ) '
Moreover, if g(y) € L™, then the FrHT satisfies
[H2 [ @] < 1Ca Pl oo f - (2.3)
Proof Using the definition of the FrHT (1.6) and the inverse FrFT (1.4), we get

al ,—x _ x —x —iZ 2 cot xy
Hyle f(x)]—Au,a/O xe e T o (Sm_)

00 o=ilF-7)
- o e
/21 sin 5

Changing the order of integration and using Theorem 2.1 in [25],

,x2+y2

i cot § —ixycsc %
2 2TV Fe (y) dy dx.

Hie ()]

e—i(%—%) 00 00
o S [t (2 ) any
27rsm% 0 2 0 s1n2
U 3
e—l(z—z) o a\ 2
=A,——— Fqo 1+ 2iycsc —
" 2asinE Jo 2@)( ) 2)

1+iycsc = 1+ 2iycsc o :
. +IyCSC— | +V + Z1YCSC —
Vs Vs

( y )Ud
: Y
|sin 5[(1 +dycsc 5)(1 + 2iycsc 5)

3
2

D=

elv(F-5)+5-31 oo
- [ ewEm
[sin $[""2v/27 Jo

Therefore,
e @ < 16P [Pl

<IGPIE T [ 15 dy
0
< 1Calllg* oo llf 112

by using the Parseval relation (1.5). O
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Theorem 1 Letf be an almost periodic function and let a be an angle where cot 5 > 0 and

o
a # km, kis an integer. Then the FrHT of f is a strong limit power function in y if 0 < x <

Proof Let f(x) = > ;_, axe™** be a trigonometric polynomial where 0 < x

l

o0

-3) oo N
_ = / xe—2x+y )eot § § :ake’ kx]U -
2 0

2)»/(
cot §

)

) o (-1 v+2n
_ ak/ xe—%(x2+y2)cot G +irgx Z ( ) (ZSm 3 )
=y
— 0 = nl(v + n).
n o N, v+20 .
A S Z D%
’ — = n!(v +n)!(2sin £ )“*2”

e} .
. / xv+2n+le—%x2 cot § +irgx dx
0

n

( 1)” V+2n

2
—iy2eot 4l *
2V 2t2

oo
=Aua Ak Z I(
n!

k=1 n=0
00 2
3 £ cot g (x— k)
. / xv+2n+le coty " e
0

Using the substitution u = x —

t”‘ , We write
o0 —icotg(x—)h—k)2
f xv+2n+le 2 2 cot "‘7 dx
0
/oo< )\k )u+2n+1 2
= U+ e 2% 2% dy
0 cot
/°° > <v+2n+1) 1< Ak
= Z u
0 o0 !

(v +n)!(2sin §)v+2n

cot &

(2.4)
cot 5
and we have
/Ooxv+2n+1e 2 cot 2(x cm% )2 dx

0

[ed] v+2n+1-1
v+2n+1 A o i o
= Z < > (—ka) / ule 25w gy (2.5)

—0 [ cot 2 0

By [26], we know that

o0 i o 2
/ ule"?cmf" du =
0

1I’(l*l)/( cot¥ )%1

@m-1)! 2
( a) lCOt

om+l
m!/2(% cot $)"+1,

[>-1,
[ = 2m, m integer,

[ =2m + 1, m integer,



Unalmis Uzun Journal of Inequalities and Applications (2015) 2015:388 Page 9 of 12

since cot 5 > 0, we find a constant C,,, ,(«, A«) as the solution of (2.4). So

£l v+1)( -9) (-1)"

7
2V(sin §)"*! MZO: n!(v + n)!(2sin )

V+2n

HI10) =

12
M

n P2 e
-3y cotyty @
. E aka,n(a;)\k)e C‘Z,
k=1

which shows that it is a generalized trigonometric polynomial in y.

If f is a general almost periodic function, then there exists a sequence (f,) of trigono-
metric polynomials where f, — f uniformly. Since H¢ ,(y) € Gtrig(R), we get HS(y) €
SLPR).

Thus it is sufficient to verify that, if ||f, — fllc — 0, then |HS ,(¥) = H$ 0|00y — O.

Using the definition of the FrHT, it is easy to see that

H5 )] sf If @) llxII],, | dx
0
and

1) - He )| < / 1,6) = F @)1, | dx — 0

20k
s
cot 3

when 0 < x < Since

[#2,0) = HE D)) = sup|HE, 0) - HIO)| — 0,
the result follows. g

Theorem 2 Let f be an almost periodic function and S, ,(x) = 29128"(2%x — b) be an or-
thogonal basis. Then there exist constants A, B > 0, such that

1 N
A”.f”ip = ZA}I_I;I;O 2N +1 Z |<f’SZ;Il,b>|2 = B”-f”ifp (26)
acl b=-N

Proof We have
n 00 -
[ Shas) = 22C Y [ Sy o Tx B
k=0 -
C n
= —sz(fﬂﬁk Viailb)
\/§ pa +y5a+

C n
= ﬁ E Ek(W"//k+%f)(b!a + 1)1
k=0

where (W, f)(b,a) = (f,V¥,5) shows the wavelet transform of f. Since f is an almost
periodic function, Wy, ,f is an almost periodic function in b as well [27]. Therefore
*3
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{2 S)ap) i _oo 1s @ sequence of almost periodic functions. If f is a trigonometric poly-

nomial f(x) = Y5, ae™*, we get

n K o
(f Snu b =2°C Z Ck Z aI/ Viss (2a+1x _ b)ewx dx
k=0 =1 —00

irgb
030 Y ae i (1)

k=0 =1

Therefore,

1 L ,
]\}gnoo 2N +1 Z Z }(f’slljl;ﬂ,b>

b=—N a=—00

n K
=C* |:Z |Ck|2 |:Z |a£|2hk()¥l) + Z/amﬁijk(ke;)»m)}
k=0 =1
+ Z Z Cle |:Z |ﬂg| hlk()\'[) + Z ﬂmﬂUlk()\l’ m):|:| (27)

i=0 k=0,k#i

oo

where the sum ) ' is taken over those ¢, m such that A,, — A, is a (nonzero) multiple of
() = Y 27

# with
NG
‘/}k <2a+1>
a=—00

= A A
, = 2 ¢ 0
]k(AZ,)Lm) = Z 2 (u+2)wk+% (2a+1>wk+% (2;:ll>’

)= 3 202 (2 g (2
L’,k( ()— Z I/IH% F 1/’k+% F ’

a=—00

’

and

ji,k()\éi )"m)

I

2
~
/S
T
»
<>
—
)

>
BAE
~
>
~

¥

¥
—
R >
te\
~

In this case,

‘Z/ﬂmﬁejk()‘-b)\m)‘
(XX s 32 (5 )0
A ”2‘”2 ke g Za+1 k+y 2a+1 b
LeR seZ\{0}
5 5 1/2
TS
< 2 (Z i () [ (%))
se€Z\{0} \a=-00 AeR

Wk+2 (2u+1)

1/2
A 27TS
lﬂk+2 2a+1 b

(Z D14, we |

00 AeR
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1/2
~ A 2ms
Vier s Jarl + B
1/2
A A
vfk+% W

< T (L X

se€Z\{0} \a=—00 AeR

A A
Wk+% <%>
x (Z Dl

A A 27s
e\ et =)
a=-00 LeR

< lwl* Y (Mi)ri(-s)"?,

reR seZ\{0}
where I'i(s) = SUp, cg Y 4ez |zﬁk+2 (2ﬂ+1 )||1pk+ (2a+1 + 2’”)| and let us take

N A
wk+% %

2

- Y (M=) >0

Al = inf E
reR
ac’Z

seZ\{0}
A 2 1/2
B; = supZ 1/fk+2 <2a+1> + Z (FI(S)FI(_S))
AR ez s€Z\ {0}

Similarly, we get the inequality

‘Z A s dom ‘ <> lal? Y (Pa)ra(-5)",

reR seZ\{O}

where ['y(s) = sup, e > ez Wi s G| Wiy (57 + 22| and we take

() G- 5, oo

seZ\{0}
A
w” 2 2a+1

Ay =i
reR

By =sup Z

reR el

seZ)\{0}

’lﬁk+% (%)‘ + Z (Fz(s)Fz(_S))l/z < 00.

Page 11 of 12

Using (2.7) and the constants A;, By, A;, By, we get the inequality (2.6) for the trigono-
metric polynomials. Then we find the result for almost periodic functions by a standard

approximation.

O

Theorem 3 Let f be an almost periodic function and let a be an angle where cot 3 > 0.

Then the BWT of f is a strong limit power function in y.

Proof Letf(t) = Y ;_, axe™ be a trigonometric polynomial. Then

e ) Qy + ¥
B 6.0 = [ SO0 - [ Zake“ Oty s %

2y + 1 2y Mt (F)
2y+1/21"(y + Z / € wb”(t) dt

n

2 1 R,
( )/ +1) Za e*”‘k"/ u— V)2yelkku¢.b,a(u —V)du

y+1/21"(y +

@y +1) Xn: - A,
2y+1/21-(), 43 aie Bb,a\Vs Mk

2k1
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where W;, . is the wave packet transform [28] with respect to the Bessel wavelet. Hence
(Byf)(b,a) is a trigonometric polynomial in v.

For a general almost periodic function f we take a sequence of trigonometric polynomi-
als (f,,) such that ||f, —fllooc = 0, and it will be sufficient to verify that || By,f, — By.f 1) —
0. Using the solutions in [20], we have

1Byfur = Byf llLoo(v)

|| (ﬁf _f)ﬂ(b “LOC(V)

fo (o= ) = F (1= 1)) Vrpa Gt = ) o (1)
o = Flloo Vs

= esssup
14

IA

which gives the desired result. O
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