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1 Introduction
In this paper, we focus on the following bilevel programming (BP):

min f (x, y)

s.t. y ∈ S(x),
()

where f (·, ·) : �n × �m → � is continuously differentiable and S(x) is the optimal solution
set of the following problem:

minψ(x, y)

s.t. A(x)y + b ∈Kp
()

with ψ(·, ·) : �n × �m → � being a continuously differentiable convex mapping, b ∈ �p,
A(·) : �n → �p×m, andKp ⊆ �p being the second-order cone (SOC), also called the Lorentz
cone, defined by

Kp :=
{

z = (z, z) ∈ � × �p– : z ≥ ‖z‖
}

,

where ‖ · ‖ stands for the Euclidean norm. If p = , then Kp is the set of nonnegative reals
�+, in this case, problem () is the bilevel programming studied by [] and []. If the lower
level problem of BP is replaced by its KKT condition, this is a mathematical program with
a second-order cone complementarity problem among the constraints [].
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Since for fixed x ∈ �n, problem () is a convex problem, the solution mapping S(·) in ()
can be rewritten as

S(x) :=
{

y ∈ �m :
〈
F(x, y), y′ – y

〉≥ ,∀y′ ∈ �(x)
}

, ()

where F(x, y) := ∇yψ(x, y) and � : �n ⇒�m is a convex-valued multifunction defined by

�(x) =
{

y ∈ �m : A(x)y + b ∈Kp}. ()

For fixed x, S(x) denotes the solution set of a variational inequality problem, which has
been intensively studied by [–].

To establish the necessary and sufficient local optimality condition for bilevel program-
ming (), a crucial step is to compute generalized differentiation for the solution map-
ping S(·) defined by (). The generalized differentiation in our study is Mordukhovich’s
coderivative [], which plays an important role in characterizations of metric regularity
and openness properties of set-valued mappings; see [] and the references therein.

Mordukhovich and Outrata [] has established upper estimations of the coderivatives
for the solution mapping () with Kp being a closed convex set under appropriate calm-
ness assumptions and constraint qualifications. However, the equality type calculus rules
of the coderivatives of a solution mapping S () are not mentioned. Recently, Zhang et al.
[] has established equality type calculus rules of the coderivatives of a solution mapping
S () under the constraint nondegenerate condition and applied the results obtained to de-
riving necessary and sufficient condition of the Lipschitz-like property [] of the solution
mapping S ().

In this paper, the equality type representation of the coderivative of a solution map-
ping S () is established under conditions weaker than [], Theorem ., and it then is
used to obtain a necessary and sufficient local optimality conditions for the bilevel pro-
gramming (). This is done on the basis of an exact description of the coderivative of the
normal cone operator onto the second-order cone.

This paper is organized as follows: Section  gives preliminaries needed throughout the
paper. In Section , the main results are established, i.e., the equality type calculus rule of
the coderivatives of a solution mapping S () is established and then used to derive the
optimality condition of bilevel programming (). Some examples are provided.

2 Preliminaries
Throughout this paper we use the following notations. For an extended real-valued func-
tion ϕ : �n → � ∪ {±∞}, ∇ϕ(x) denotes its the gradient of ϕ at x. For a continuously dif-
ferentiable mapping φ : �n → �m, J φ(x) denotes the Jacobian of φ at x. We use Bn, ‖ · ‖
and �+ to stand for the closed unit ball in �n, the Euclidean norm and the nonnegative
reals, respectively. [|x|] = {tx : t ∈ �}, S⊥ = {η ∈ �n : 〈η, x〉 = ,∀x ∈ S}, Sp(S) = �+(S – S)
and lin(C) denote the linear space generated by vector x, the orthogonal complement of
the set S ⊆ �n, the linear space generated by S and the linearity subspace of the convex
cone C, respectively.

Given a closed set � ⊂ �n and a point x̄ ∈ �, the Mordukhovich limiting normal cone to
� at x̄ is defined by

N�(x̄) := lim sup
x �→x̄

N̂�(x),
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see for instance [] and [], where the cone

N̂�(x̄) :=
{

x∗ ∈ �n
∣∣∣ lim sup

x �→x̄

〈x∗, x – x̄〉
‖x – x̄‖ ≤ 

}

is called the regular normal cone to � at x̄ with ‘lim sup’ being the outer limit of a set-
valued mapping or the upper limit of a real-valued function; see []. It follows from the
definition that N̂�(x̄) ⊆ N�(x̄). If the above inclusion becomes equality, we say that � is
normally regular at x̄ (or Clarke regular by []). According to [], Theorem ., each
convex set is normally regular at all its points.

For set-valued maps, the definition of the coderivative was introduced by Mordukhovich
in [] based on the Mordukhovich limiting normal cone.

Definition . Consider a mapping S : �n ⇒ �m and a point x̄ ∈ dom S. The coderivative
of S at x̄ for any ū ∈ S(x̄) is the mapping D∗S(x̄, ū) : �m ⇒�n defined by

D∗S(x̄, ū)(y) =
{

v : (v, –y) ∈ Ngph S(x̄, ū)
}

.

The notation D∗S(x̄, ū) is simplified to D∗S(x̄) when S is single-valued at x̄, S(x̄) = {ū}.
Similarly, and with the same provision for simplified notation, the regular coderivative
D̂∗S(x̄, ū) : �m ⇒�n is defined by

D̂∗S(x̄, ū)(y) =
{

v : (v, –y) ∈ N̂gph S(x̄, ū)
}

.

Next we give the following proposition to show the description of the coderivative of
some special set-valued mappings.

Proposition . ([], Proposition .) For any (x̄, ȳ) ∈ gph NKp , let z̄ = x̄ + ȳ.
() In the case when x̄ �= , ȳ �= , we have

D̂∗NKp (x̄, ȳ)
(
y∗) = D∗NKp (x̄, ȳ)

(
y∗) =

⎧
⎪⎨

⎪⎩

[|η|] + z̄–‖z̄‖
z̄+‖z̄‖

( z̄T
 y∗‖z̄‖
–y∗



)
, ηT y∗ = ,

∅, otherwise,

where η = (, – z̄T


‖z̄‖ )T .
() In the case when z̄ ∈ int(Kp)–, we have

D̂∗NKp (x̄, ȳ)
(
y∗) = D∗NKp (x̄, ȳ)

(
y∗) =

{
�p, y∗ = ,
∅, y∗ �= .

() In the case when z̄ ∈ intKp, we have

D̂∗NKp (x̄, ȳ)
(
y∗) = D∗NKp (x̄, ȳ)

(
y∗) = {}p

for any y∗ ∈ �p.

We need the following stability notations; see [].
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Definition . Consider the multifunction F : �m ⇒�n.
(a) (Lipschitz-like property) We say F has Lipschitz-like property at (ȳ, x̄) ∈ gph F , if

there exist some κ >  and some neighborhoods U of x̄ and V of ȳ such that

F
(
y′)∩ U ⊂ F(y) + κ

∥∥y′ – y
∥∥Bn for all y, y′ ∈ V .

(b) (Calmness) We say F is calm at (ȳ, x̄) ∈ gph F if there exist some k >  and some
neighborhoods U of x̄ and V of ȳ such that

d
(
x, F(ȳ)

)≤ k‖y – ȳ‖ for all y ∈ V , x ∈ F(y) ∩ U .

We know from the definition that the calmness property is weaker than the Lipschitz-like
property. As shown in [], Theorem ., F has Lipschitz-like property at (ȳ, x̄) ∈ gph F if
and only if the coderivative condition

D∗F(ȳ, x̄)() = {}, ()

see [], Proposition .. This condition is the famous Mordukhovich criterion [], The-
orem ..

Under the calmness condition, when the constraint set is structured, the normal cones
can be estimated or calculated.

Proposition . ([], Theorem .) Assume the multifunction M : �n ⇒ �n , defined by

M(q) :=
{

z ∈ Z : G(z) + q ∈ K
}

for closed sets Z ⊆ �n and K ⊆ �n and a C mapping G : �n → �n , is calm at (, z̄) ∈
gph M. Then one has

NM()(z̄) ⊆ J G(z̄)T NK
(
G(z̄)

)
+ NZ(z̄). ()

We know from [], Theorem . that

N̂M()(z̄) ⊇ J G(z̄)T N̂K
(
G(z̄)

)
+ N̂Z(z̄).

Thus if, in addition, Z is normally regular at z̄ and K is normally regular at G(z̄), then C is
normally regular at z̄ and inclusion in () becomes equality.

We know from [], Theorem . that M defined in Proposition . is Lipschitz-like
around (, z̄) ∈ gph M if the following constraint qualification holds:

 ∈ J G(z̄)Tη + NZ(z̄),
η ∈ NK (G(z̄))

}

⇒ η = . ()

3 Main results
In this section, we provide conditions ensuring the equality type calculus rule of the
coderivatives of a solution mapping S (), which is an improvement of [], Theorem ..
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The result obtained is used to derive a necessary and sufficient condition for the bilevel
programming ().

We know from the definition of normal cone in convex analysis that the solution map-
ping S () can be rewritten as

S(x) =
{

y ∈ �m :  ∈ F(x, y) + N�(x)(y)
}

,

where N�(x)(y) denotes the normal cone of �(x) at y. For a parameter x̄ ∈ �n, if the follow-
ing Slater constraint qualification (SCQ) is satisfied at x̄:

∃ȳ ∈ �m such that A(x̄)ȳ + b ∈ intKp, ()

then, by [], Theorem ., we can compute the normal cone N�(x̄)(y) at y ∈ �(x̄) and
obtain

N�(x̄)(y) = A(x̄)T NKp
(
A(x̄)y + b

)
. ()

We need the following conditions, which are popularly used conditions in SOCP.

Definition . Let x̄ ∈ �n, ȳ ∈ �(x̄) and v̄ ∈ N�(x̄)(ȳ).
(a) We say that the constraint nondegenerate condition (CNC) holds true at ȳ for x̄, if

A(x̄)�m + lin
(
TKp

(
A(x̄)ȳ + b

))
= �p. ()

(b) We say the strict complementarity (SC) condition holds at (x̄, ȳ, v̄), if

λ ∈ ri NKp
(
A(x̄)ȳ + b

)

for all λ satisfying λ ∈ NKp (A(x̄)ȳ + b) and A(x̄)Tλ = v̄.

We introduce the Lagrangian mapping L : �n × �m × �p → �m defined by

L(x, y,λ) := F(x, y) + A(x)Tλ ()

and the Lagrangian multiplier mapping 
 : �n × �m ⇒�p defined by


(x, y) :=
{
λ ∈ �p |L(x, y,λ) = 

}
.

In [], Theorem ., an equality type representation of the coderivative of a solution
mapping S () has been established under some constraint qualifications, we cite it as a
lemma.

Lemma . Assume the SCQ () holds for x̄ and the multifunction P : �m × �p ⇒ �n ×
�m × �p defined by

P(γ , q) :=
{

(x, y,λ) ∈ �n × �m × �p |L(x, y,λ) + γ = 
}∩ M(q) ()
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is calm at the points (, , x̄, ȳ, λ̄) with λ̄ ∈ 
(x̄, ȳ)∩NKp (A(x̄)ȳ + b), where the multifunction
M : �p ⇒�n+m+p is defined by

M(q) :=

{

(x, y,λ) ∈ �n × �m × �p
∣∣∣∣ q +

(
A(x)y + b

λ

)

∈ gph NKp

}

. ()

Then:
(a) In the case when z̄ > ‖z̄‖, where z̄ := A(x̄)ȳ + b, we have for any

λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b),

D∗S(x̄, ȳ)
(
y∗) =

{(
JxL(x̄, ȳ, λ̄)

)T u +
(
Jx
(
A(x̄)ȳ

))T w |
 ∈ y∗ +

(
JyL(x̄, ȳ, λ̄)

)T u + A(x̄)T w,

w ∈ D∗NKp
(
A(x̄)ȳ + b, λ̄

)(
A(x̄)u

)}
()

holds for all y∗ ∈ �m.
(b) In the case when z̄ = ‖z̄‖, if the mapping M(·) () is calm at (, x̄, ȳ, λ̄) for any

λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b), CNC () holds at ȳ for x̄ and SC condition holds at
(x̄, ȳ, –F(x̄, ȳ)). Then the equality () holds for any λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b).

Under conditions weaker than the ones in (b) of Theorem . in [], we obtain the same
equality type coderivative rule as follows.

Theorem . Assume:
(a) SCQ () holds for x̄ and P(γ , q) () is calm at the points (, , x̄, ȳ, λ̄) with

λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b).
(b) CNC () holds at ȳ for x̄ and SC condition holds at (x̄, ȳ, –F(x̄, ȳ)).

Then in the case when z̄ = ‖z̄‖, the equality () holds for any λ̄ ∈ 
(x̄, ȳ)∩NKp (A(x̄)ȳ + b).

Proof According to Lemma .(b), we need to show under conditions (a) and (b) that the
mapping M(·) () is calm at (, x̄, ȳ, λ̄) for any λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b). We know
from Definition . that the calmness of M(·) at (, x̄, ȳ, λ̄) is ensured by the Lipschitz-like
property of M(·) at (, x̄, ȳ, λ̄), which holds under the condition

 = J (A(x)y)T |(x,y)=(x̄,ȳ)η,
η ∈ D∗NKp (A(x̄)ȳ + b, λ̄)()

}

⇒ η = . ()

Indeed, notice that, by the Mordukhovich criterion (), we only need to verify

D∗M(, x̄, ȳ, λ̄)() = {} ()

under condition (). Let y∗ ∈ D∗M(, x̄, ȳ, λ̄)(), by Definition ., we have

(
y∗



)

∈ Ngph M

⎛

⎜⎜⎜
⎝


x̄
ȳ
λ̄

⎞

⎟⎟⎟
⎠

. ()
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Since

gph M =

{

(q, x, y,λ) ∈ �p × �n × �m × �p
∣∣∣∣ q +

(
A(x)y + b

λ

)

∈ gph NKp

}

,

we know from Proposition . that if the condition

 = J(q,x,y,λ)
[
q +

(A(x)y+b
λ

)]T |(q,x,y,λ)=(,x̄,ȳ,λ̄)ξ ,

ξ ∈ Ngph NKp
(A(x̄)ȳ+b

λ̄

)

}

⇒ ξ =  ()

holds, then

Ngph M

⎛

⎜⎜⎜
⎝


x̄
ȳ
λ̄

⎞

⎟⎟⎟
⎠

⊆ J(q,x,y,λ)

[

q +

(
A(x)y + b

λ

)]T ∣∣∣∣∣
(q,x,y,λ)=(,x̄,ȳ,λ̄)

Ngph NKp

(
A(x̄)ȳ + b

λ̄

)

. ()

Notice that

J(q,x,y,λ)

[

q +

(
A(x)y + b

λ

)]T

(q,x,y,λ)=(,x̄,ȳ,λ̄)

=

(
Ip  J (A(x)y)|(x,y)=(x̄,ȳ) 
 Ip  Ip

)

,

we have (), then () holds and hence by (), we have

(
y∗



)

∈
(

Ip  J (A(x)y)|(x,y)=(x̄,ȳ) 
 Ip  Ip

)T

Ngph NKp

(
A(x̄)ȳ + b

λ̄

)

,

which, by () and Definition ., means that y∗ = . Therefore () holds.
Next we show CNC condition implies (). In the case when z̄ = ‖z̄‖ = , CNC condi-

tion means that A(x̄)�m = �p, which is equivalent to

 = A(x̄)Tη ⇒ η = 

and hence condition () holds. In the case when z̄ = ‖z̄‖ �= , we proceed in the proof in
two main steps.

Step . Taking the orthogonal complements on both sides of (), the CNC condition
can be rewritten as

(
A(x̄)�m)⊥ ∩ lin

(
TKp

(
A(x̄)ȳ + b

))⊥ = {}. ()

We know from [], Proposition . that

lin
(
TKp

(
A(x̄)ȳ + b

))⊥ = Sp
{

NKp
(
A(x̄)ȳ + b

)}
,

which, by (), means that the CNC condition is equivalent to

Sp
{

NKp
(
A(x̄)ȳ + b

)}∩ Ker A(x̄)T = {}. ()
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Step . We next show

Sp
{

NKp
(
A(x̄)ȳ + b

)}
= D∗NKp

(
A(x̄)ȳ + b, λ̄

)
(). ()

Since λ̄ ∈ NKp (A(x̄)ȳ + b), we have λ̄ = k(–z̄, z̄) with k ∈ �+, where z̄ = A(x̄)ȳ + b. Then we
know from Proposition . that

D∗NKp
(
A(x̄)ȳ + b, λ̄

)
() =

[∣∣∣∣

(
–,

(z̄ + λ̄)T


‖(z̄ + λ̄)‖
)T ∣∣∣∣

]

=
[∣∣∣∣

(
–,

(k + )z̄T


‖(k + )z̄‖
)T ∣∣∣∣

]
=
[∣∣∣∣

(
–,

z̄T


‖z̄‖
)T ∣∣∣∣

]
,

which, by ‖z̄‖ = z̄, means that () holds. Combining with () and (), the CNC con-
dition is equivalent to

 = A(x̄)Tη,
η ∈ D∗NKp (A(x̄)ȳ + b, λ̄)()

}

⇒ η = ,

which implies (). We complete the proof. �

Remark . We know from the proof of Theorem . that the calmness of M(·) at
(, x̄, ȳ, λ̄) is ensured by the CNC condition, which means the condition in Theorem .
is weaker than the conditions in [], Theorem ..

In the following, we apply the results obtained to derive a necessary and sufficient opti-
mality condition for the bilevel programming ().

Theorem . Suppose the function f in BP () is convex, ∇yψ(x, y) is a linear function and
the conditions in Theorem . hold at (x̄, ȳ) with the involved function F(x, y) := ∇yψ(x, y).
Then (x̄, ȳ) is a locally optimal solution of BP () if and only if there exists (w, u) ∈ �p × �m

satisfying w ∈ D∗NKp (A(x̄)ȳ + b, λ̄)(A(x̄)u) for some λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b) such that

 = ∇f (x̄, ȳ) +
(
Jx,yL(x̄, ȳ, λ̄)

)T u +
(
J G(x̄, ȳ)

)T w, ()

where G(x, y) := A(x)y + b, L(x, y,λ) = ∇yψ(x, y) + A(x)Tλ and 
(x, y) = {λ : L(x, y,λ) = }.

Proof Since S(x) is the optimal solution set of the parametric problem () and for any
x ∈ �n, () is a convex optimization problem, S(x) can be written as

S(x) =
{

y :  ∈ ∇yψ(x, y) + Q(x, y)
}

, ()

where �(x) = {y : A(x, y) + b ∈ Kp} and Q(x, y) = N�(x)(y). As a result, the bilevel problem
can be reformulated as

min f (x, y)

s.t. (x, y) ∈ gph S,
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where

gph S =

⎧
⎪⎨

⎪⎩
(x, y) ∈ �n × �m

∣∣∣∣∣

⎡

⎢
⎣

x
y

–∇yψ(x, y)

⎤

⎥
⎦ ∈ gph Q

⎫
⎪⎬

⎪⎭
.

We next show that gph Q is normally regular at (x̄, ȳ, –∇ψ(x̄, ȳ)). We know from the proof
of [], Theorem . that, under conditions (a) and (b) in Theorem .,

D∗Q(x̄, ȳ, v̄)(u) =
(
Jx,y

(
A(x̄)Tλ

))T u + D∗(NKp ◦ G)(x̄, ȳ,λ)
(
A(x̄)u

)

holds for any λ ∈ 
(x̄, ȳ), which, by Definition ., means that

[
w

–u

]

∈ Ngph Q(x̄, ȳ, v̄)

⇐⇒ w ∈ D∗Q(x̄, ȳ, v̄)(u)

⇐⇒ w ∈ (Jx,y
(
A(x̄)Tλ

))T u + D∗(NKp ◦ G)(x̄, ȳ,λ)
(
A(x̄)u

)

⇐⇒
[

w – (Jx,y(A(x̄)Tλ))T u
–A(x̄)u

]

∈ Ngph NKp ◦G(x̄, ȳ,λ)

⇐⇒
[

In+m (Jx,y(A(x̄)Tλ))T

 A(x̄)

][
w

–u

]

∈ Ngph NKp ◦G(x̄, ȳ,λ) ()

holds for any λ ∈ 
(x̄, ȳ). Under conditions (a) and (b) in Theorem ., we know from the
proof of [], Lemma . that

D̂∗Q(x̄, ȳ, v̄)(u) =
(
Jx,y

(
A(x̄)Tλ

))T u + D̂∗(NKp ◦ G)(x̄, ȳ,λ)
(
A(x̄)u

)
. ()

Under the SC condition, by Proposition ., we have

Ngph NKp ◦G(x̄, ȳ,λ) = N̂gph NKp ◦G(x̄, ȳ,λ). ()

Consequently, combining with (), (), and (), we see that gph Q is normally regular
at (x̄, ȳ, –∇ψ(x̄, ȳ)). We know from the proof of [], Theorem . that if the set-valued
mapping P () is calm at the points (, , x̄, ȳ, λ̄) with λ̄ ∈ 
(x̄, ȳ) ∩ NKp (A(x̄)ȳ + b), then
the set-valued mapping  : �n × �m × �m ⇒ �n × �m defined by

(ζ ) :=

⎧
⎪⎨

⎪⎩
(x, y) ∈ �n × �m

∣∣∣∣∣

⎡

⎢
⎣

x
y

–∇yψ(x, y)

⎤

⎥
⎦ + ζ ∈ gph Q

⎫
⎪⎬

⎪⎭

is calm at (, x̄, ȳ), which, by Proposition ., implies that

Ngph S(x̄, ȳ) ⊆
[

In  –Jx(∇yψ(x̄, ȳ))T

 Im –Jy(∇yψ(x̄, ȳ))T

]

◦ Ngph Q
(
x̄, ȳ, –∇yψ(x̄, ȳ)

)
. ()
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On the other hand, we know from [], Theorem . that

N̂gph S(x̄, ȳ) ⊇
[

In  –Jx(∇yψ(x̄, ȳ))T

 Im –Jy(∇yψ(x̄, ȳ))T

]

◦ N̂gph Q
(
x̄, ȳ, –∇yψ(x̄, ȳ)

)
. ()

Notice that

N̂gph S(x̄, ȳ) ⊆ Ngph S(x̄, ȳ).

Then combining () and (), the normal regularity of gph S at (x̄, ȳ) is directly from the
normal regularity of gph Q at (x̄, ȳ, –∇ψ(x̄, ȳ)). Therefore, (x̄, ȳ) is a locally optimal solution
if and only if (x̄, ȳ) satisfying  ∈ ∇f (x, y) + Ngph S(x̄, ȳ), i.e.,

 ∈ ∇xf (x̄, ȳ) + D∗S(x̄, ȳ)
(∇yf (x̄, ȳ)

)
. ()

Under the conditions in Theorem ., we have

D∗S(x̄, ȳ)
(
y∗) =

{(
JxL(x̄, ȳ, λ̄)

)T u +
(
Jx
(
A(x̄)ȳ

))T w |
 ∈ y∗ +

(
JyL(x̄, ȳ, λ̄)

)T u + A(x̄)T w,

w ∈ D∗NKp
(
A(x̄)ȳ + b, λ̄

)(
A(x̄)u

)}
. ()

Consequently, the conclusion is directly from () and (). �

In [], Theorem ., a necessary and sufficient global optimality condition for the bilevel
programming () has been derived under some strong condition such as G(x, y) + λ ∈
(intKp) ∪ (int(Kp)–). In the case when one of the conditions in [], Theorem . is not
satisfied at a point, we do not know whether the point is a global optimal solution. How-
ever, by Theorem ., we may verify that the point is a local optimal solution for the bilevel
programming (). We next give an example to show this.

Example . Consider

min f (x, x, y, y) := ex + x + y
 – y + y

 – y

s.t. y ∈ S(x),
()

where S(x) is the optimal solution set of the following problem:

minψ(x, x, y, y) := y
 – y + ex + x

s.t. G(x, y) :=

(
x +  

 x + 

)(
y

y

)

∈K,

where x, x, y, y ∈ �. Consider a point (x̄, ȳ) = (, , , )T ∈ �. By simple computing,
we have the multiplier set 
(x̄, ȳ) = {λ̄} = {(–, )T }. Then we have G(x̄, ȳ) + λ̄ = (–, )T /∈
(intK) ∪ (int(K)–), which means that one of the conditions in [], Theorem . is not
satisfied at (x̄, ȳ) and hence we do not know whether it is a global solution to problem
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(). Next by Theorem ., we verify that (x̄, ȳ) = (, , , )T is a locally optimal solution
of problem (). (i) Since there exists ŷ = (, )T such that A(x̄)ŷ = ŷ ∈ intK, the SCQ ()
holds for x̄. (ii) Since A(x̄) = I, the CNC () holds at (x̄, ȳ). (iii) The multifunction P(·)
defined by () is calm at the points (, , x̄, ȳ, λ̄). In fact, by a simple computation, we
obtain

(
Jx,yL(x̄, ȳ, λ̄)

)T u +
(
Jx,y

(
A(x̄)ȳ

))T w

=

(
–   
   

)T

u +

(
   
   

)

w,

which means that

 ∈ (Jx,yL(x̄, ȳ,λ))T u + (Jx,y(A(x̄)ȳ))T w,
w ∈ D∗NKp (G(x̄, ȳ),λ)(A(x̄)u)

}

⇒ w = , u = .

This, by the Mordukhovich criterion (), is a condition ensuring the Lipschitz-like prop-
erty of P at (, , x̄, ȳ,λ), which ensures the calmness of P at (, , x̄, ȳ,λ). (iv) By simple
computing, the SC condition holds. (v) Next we show there exists (w, u) ∈ � × � sat-
isfying w ∈ D∗NKp (A(x̄)ȳ + b, λ̄)(A(x̄)u) such that () holds. If the equality () holds for
(x̄, ȳ, λ̄) and (w, u), then we have

 =

⎛

⎜⎜⎜
⎝




–


⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜⎜
⎝

– 
 
 
 

⎞

⎟⎟⎟
⎠

(
u

u

)

+

⎛

⎜⎜⎜
⎝

 
 
 
 

⎞

⎟⎟⎟
⎠

(
w

w

)

. ()

We know from Proposition . that w ∈ D∗NKp (A(x̄)ȳ + b, λ̄)(A(x̄)u) means that

(
w

w

)

∈ [|u|]⊥ +

(
–u

u

)

. ()

Then, combining () and (), we have w = (, –)T and u = (/, )T satisfying w ∈
D∗NKp (A(x̄)ȳ + b, λ̄)(A(x̄)u) such that () holds. Therefore, by Theorem ., (x̄, ȳ) is a
locally optimal solution of problem ().

Remark . By a similar computation, we can infer the point (x̄, ȳ) = (, , , )T is a locally
optimal solution of problem () with f (x, y) := x

 + x
 + (y – ) + (y – ) and it is not a

locally optimal solution of problem () with f (x, y) := ex + x
 – x + y + /y

 – y.

4 Conclusion
In this paper, an equality type representation of the coderivative of the solution mapping
S () is obtained, which is an improvement of [], Theorem .. The result obtained is
then used to develop a necessary and sufficient local optimality condition for a bilevel
programming with SOC as its lower level problem.
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