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Abstract
In this paper, we consider the generic stability of the weakly efficient solution
mapping for set-valued optimization problems. Firstly, we obtain the upper
semicontinuity of the weakly efficient solution mapping for set-valued optimization
problems. Secondly, we show that, in the sense of Baire category, most set-valued
optimization problems are stable. Finally, we give sufficient conditions ensuring the
existence of essential. Our results extend and improve the corresponding results of
Song et al. (J. Optim. Theory Appl. 156:591-599, 2013).
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1 Introduction
Set-valued optimization is a vibrant and expanding branch of applied mathematics that
deals with optimization problems where the objective function is a set-valued map acting
between abstract spaces. Set-valued optimization provides an important generalization
and unification of scalar as well as vector optimization problems. Therefore, this relatively
new discipline has justifiably attracted a great deal of attention in recent years (see [–]).

Stability is very interesting and important in optimization theory and applications. It
may be understood as the solution set having some topological properties such as semi-
continuity, well-posedness, essential stability and so on. Essential stability was firstly in-
troduced by Fort [] for the study of fixed points of a continuous mapping. Since then,
essentiality was applied in many nonlinear problems such as KKM points, vector equilib-
rium problems and Nash equilibrium problems (see [–]). Recently, Xiang and Zhou
[] obtained the essential stability of efficient solution sets for continuous vector op-
timization problems. Very recently, Song et al. [] generalized the results obtained by
Xiang and Zhou [] to a set-valued case. They obtained the essential stability of efficient
solution sets for set-valued optimization problems with the only perturbation of the ob-
jective function in compact metric spaces.

In this paper, we consider the stability of a weakly efficient solution mapping for set-
valued optimization problems with the perturbation of both the objective function and the
constraint set in noncompact Banach spaces. In Section  we recall some basic definitions
and some known results. In Section  we obtain the upper semicontinuity of the weakly
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efficient solution mapping for set-valued optimization problems. Moreover, we show that,
in the sense of Baire category, most set-valued optimization problems are stable. Finally,
we give sufficient conditions ensuring the existence of essential. Our results extend and
improve the corresponding results of Song et al. [].

2 Preliminaries
Let X and Y be two topological vector spaces. Let C ⊂ Y be a closed convex pointed cone
with int C �= ∅, where int C denotes the interior of C. Let A ⊂ Y be a nonempty subset. We
denote by

WMin A :=
{

y ∈ A : (A – y) ∩ – int C = ∅}

the set of weakly efficient elements of A and by

Min A :=
{

y ∈ A : (A – y) ∩ –C = {}}

the set of efficient elements of A.
Let F : X → Y be a set-valued map, K ⊆ X be a nonempty subset. We consider the

following set-valued optimization problem (in short, SOP):

min
C

F(x) subject to x ∈ K .

We denote

F(K) =
⋃

x∈K

F(x).

Definition . A point x ∈ K is said to be a weakly efficient (resp. an efficient) solution of
problem (SOP) iff there exists y ∈ F(x) such that y ∈ WMin F(K) (resp. y ∈ Min F(K)).

Definition . [] Let G : X → Y be a set-valued map. T is said to be
() upper semicontinuous at x ∈ X if, for any open set V containing G(x), there exists

a neighborhood U(x) of x such that G(x) ⊂ V for all x ∈ U(x); G is said to be
upper semicontinuous on X if it is upper semicontinuous at each x ∈ X ;

() lower semicontinuous at x ∈ X if, for any open set V with G(x) ∩ V �= ∅, there
exists a neighborhood U(x) of x such that G(x) ∩ V �= ∅ for all x ∈ U(x); G is said
to be lower semicontinuous on X if it is lower semicontinuous at each x ∈ X ;

() continuous on X if it is both upper semicontinuous and lower semicontinuous on X ;
() closed if Graph(G) := {(x, y) : x ∈ X, y ∈ G(x)} is a closed set in X × Y .

Lemma . [] Let G : X → Y be a set-valued map. If G is upper semicontinuous and for
any x ∈ X, G(x) is a closed set, then G is closed.

Definition . Let (X, d) be a metric space and let A, B be nonempty subsets of X. The
Hausdorff distance H(·, ·) between A and B is defined by

H(A, B) = max
{

e(A, B), e(B, A)
}

,
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where e(A, B) = supa∈A d(a, B) with d(a, B) = infb∈B ‖a – b‖. Let {An} be a sequence of
nonempty subsets of X. We say that An converges to A in the sense of Hausdorff dis-
tance (denoted by An → A) if H(An, A) → . It is easy to see that e(An, A) →  if and only
if d(an, A) →  for all selection an ∈ An. For more details on this topic, we refer the readers
to [, ].

Lemma . [] Let A and An (n = , , . . .) all be nonempty compact subsets of the Haus-
dorff topological space X with An → A. Then the following statements hold:

(i)
⋃+∞

n= An ∪ A is also a nonempty compact subset of X .
(ii) If xn ∈ An converging to x, then x ∈ A.

A topological space X is said to be a Baire space if the following condition holds: given
any countable collection {An}+∞

n= of the closed subsets of X each of which has empty inte-
rior in X, their union ∪An also has empty interior in X. A subset G of X is called residual
if it contains a countable intersection of open dense subsets of X.

Lemma . (Baire category theorem) If X is a compact Hausdorff space or a complete
metric space, then X is a Baire space.

Lemma . ([], Theorem ) Let X be a Baire space, Y be a metric space and G : X → Y

be upper semicontinuous with compact values. Then there exists a dense residual subset Q
of X such that G is lower semicontinuous at each x ∈ Q.

For convenience in the later presentation, denote by K(X) and K(Y ) all nonempty com-
pact subsets of X and Y , respectively.

Lemma . [] Let (X, d) be a metric space and H be Hausdorff distance on X. Then
(K(X), H) is complete if and only if (X, d) is complete.

The next lemma is a special case of Lemma . in [].

Lemma . Let K be a nonempty compact subset of X and G : K → Y be a set-valued
map with nonempty compact values. Then G is continuous if and only if for any x ∈ K ,
x → x implies G(x) → G(x).

Lemma . [] Let Fn → F , n = , , . . . , where Fn, F : X → Y are continuous on X and
have nonempty compact values. If yn ∈ Fn(xn), xn → x∗ and yn → y∗, then y∗ ∈ F(x∗).

Lemma . Let Fn → F , n = , , . . . , where Fn, F : X → Y are continuous on X and have
nonempty compact values. Then, for any x ∈ X, y ∈ F(x), xn → x, there exists yn ∈ Fn(xn)
such that yn → y.

Proof Since Fn → F , H(Fn(x), F(x)) →  for any x ∈ X. Note that

H
(
Fn(xn), F(x)

) ≤ H
(
Fn(xn), F(xn)

)
+ H

(
F(xn), F(x)

)
.

By the continuity of F and Lemma ., H(Fn(xn), F(x)) → . Therefore, for any y ∈ F(x),
there exists yn ∈ Fn(xn) such that yn → y. The proof is complete. �
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3 Main results
Throughout this section, let X and Y be two real Banach spaces, K be a nonempty subset
of X, C ⊂ Y be a closed convex pointed cone with int C �= ∅.

The space M of the problem (SOP) is defined by

M :=

{

u = (F , K) :
F : K → Y is continuous and has nonempty compact values,
K is a nonempty compact subset of X.

}

.

For any u = (F, K), u = (F, K) ∈ M, we define the metric ρ as follows:

ρ(u, u) := sup
x∈K

HF
(
F(x), F(x)

)
+ HK (K, K),

where HF , HK are two Hausdorff distances on Y and X, respectively.

Lemma . (M,ρ) is a complete metric space.

Proof Clearly, (M,ρ) is a metric space. We only need to show that (M,ρ) is complete. Let
{un} be a Cauchy sequence of M, where un = (Fn, Kn). Then, for any ε > , there exists a
positive integer N such that

ρ(un, um) <
ε


for all m, n ≥ N.

It follows that for any x ∈ K ,

HF
(
Fn(x), Fm(x)

)
<

ε


and HK (Kn, Km) <

ε


. ()

This implies that {Fn(x)} is a Cauchy sequence in K(Y ) and {Kn} is a Cauchy sequence
in K(X). By the assumption and Lemma ., (K(Y ), HF ) and (K(X), HK ) are complete. It
follows that there exist F(x) ∈ K(Y ) and K ∈ K(X) such that

Fn(x) → F(x) and Kn → K . ()

For fixed n ≥ N and any x ∈ K , let m → +∞ in (), we have

HF
(
Fn(x), F(x)

)
<

ε


and HK (Kn, K) <

ε


. ()

We now show that F is continuous. In fact, by the continuity of Fn and Lemma ., there
exist a neighborhood U(x) of x and a positive integer N such that

HF
(
Fn(x), Fn(x)

)
<

ε


for all x ∈ U(x) ∩ K , for any n ≥ N. ()

Let N = max{N, N}. Combining with (), () and () yields

HF
(
F(x), F(x)

) ≤ HF
(
F(x), Fn(x)

)
+ HF

(
Fn(x), Fn(x)

)
+ HF

(
Fn(x), F(x)

)
< ε
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for all x ∈ U(x)∩K and for any n ≥ N . By Lemma ., F is continuous on K . Set u = (F , K)
and so u ∈ M. It follows that

ρ(un, u) = sup
x∈K

HF
(
Fn(x), F(x)

)
+ HK (Kn, K) < ε,

which implies un
ρ−→ u. Therefore, (M,ρ) is a complete metric space. The proof is com-

plete. �

For any u = (F , K) ∈ M, we denote by S(u) and Sw(u) the efficient solution set and the
weakly efficient solution set of problem (SOP), respectively. Then S and Sw define two
set-valued maps from M to X. By the compactness of K and the continuity of F , the
set Min(F(X)) is nonempty, and so S(u) is nonempty for any u ∈ M. Moreover, Sw(u) is
nonempty since S(u) ⊂ Sw(u).

Theorem . The set-valued map Sw : M → X is upper semicontinuous with compact
values.

Proof For any u = (F , K) ∈ M, we prove that the set

Sw(u) =
{

x ∈ K :
(
F(K) – y

) ∩ – int C = ∅,∃y ∈ F(x)
}

is compact. In fact, let {xn} ⊆ Sw(u) with xn → x. Then xn ∈ K and there exists yn ∈ F(xn)
such that

(
F(K) – yn

) ∩ – int C = ∅. ()

Note that K is a compact set. It follows that x ∈ K . Since F(K) ⊃ F(xn) is compact, there
exists a subsequence of {yn} which converges to y. Without loss of generality, we may
assume that yn → y. By the continuity of F , y ∈ F(x). This fact together with () yields
x ∈ Sw(u). It follows that Sw(u) is closed. Therefore, Sw(u) is compact since K is compact.

Next, we prove that Sw is upper semicontinuous on M. Suppose by contradiction that
there exists u = (F , K) ∈ M such that Sw is not upper semicontinuous at u. Then there exists
an open neighborhood U in X with U ⊃ Sw(u) such that, for each n = , , . . . and each open
neighborhood Vn := {u′ = (F ′, K ′) ∈ M : ρ(u′, u) < 

n } of u, there exist un = (Fn, Kn) ∈ Vn and
xn ∈ Sw(un) but xn /∈ U .

From un = (Fn, Kn) ∈ Vn for each n = , , . . . , we have ρ(un, u) < 
n → . This implies

Fn → F and Kn → K .

As xn ∈ Sw(un), we have xn ∈ Kn and there exists yn ∈ Fn(xn) such that

(
Fn(Kn) – yn

) ∩ – int C = ∅.

By the compactness of K and Kn and Lemma .(i),
⋃+∞

n= Kn ∪ K is compact. Note that
{xn} ⊆ ⋃+∞

n= Kn ∪ K . Then {xn} has a convergent subsequence. Without loss of generality,
we may assume that {xn} is convergent. By Lemma .(ii) and the uniqueness of the limit
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of {xn}, xn → x∗ ∈ K . Since xn /∈ U and U is open, x∗ /∈ U . From Sw(u) ⊂ U , we have x∗ /∈
Sw(u). It follows that

(
F(K) – y

) ∩ – int C �= ∅, ∀y ∈ F
(
x∗). ()

On the other hand, since yn ∈ Fn(xn) and Fn(xn) is compact for any n, there exists y

such that yn → y. By Lemma ., y ∈ F(x∗). Note that Kn → K . Then, for any z ∈ K ,
there exists a sequence {zn} such that zn ∈ Kn and zn → z. By Lemma ., for any w ∈ F(z),
there exists wn ∈ Fn(zn) such that wn → w. Since (Fn(Kn) – yn) ∩ – int C = ∅, one has

wn – yn /∈ – int C.

It follows that

w – y /∈ – int C.

This contradicts (). Therefore, Sw is upper semicontinuous on M. The proof is com-
plete. �

From the proof of Theorem ., we obtain that for any u ∈ M, the weakly efficient solu-
tion set Sw(u) is closed. By Lemma ., we have the following corollary.

Corollary . The set-valued map Sw : M → X is closed.

Remark . Corollary . generalizes and improves the corresponding result of Song et
al. [], Theorem ., in the following four aspects:

() the assumption that the metric space is compact is removed;
() the setting of Euclidean spaces is generalized to Banach spaces;
() the order cone R

n
+ is generalized to any closed convex pointed cone;

() we not only consider the perturbation of the set-valued map, but also consider the
perturbation of the feasible set; while Song et al. [] only considered the former.

Definition . Let u ∈ M. The weakly efficient solution set Sw(u) is called stable if the
set-valued map Sw is continuous at u.

Remark . The following example shows that there exists u ∈ M such that Sw(u) is not
stable.

Example . Let X = R, Y = R
, C = R


+, K = [, ] and Kn = [ 

n , ]. Define set-valued map-
pings F , Fn : X → R

 such that for any x ∈ X,

F(x) = [, ] × [x, ] and Fn(x) =
[

x
n

, 
]

× [x, ].

Then Fn → F and Kn → K when n → +∞. By a simple computation,

Sw(u) = [, ], u = (F , K),
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Sw(un) =

n

, un = (Fn, Kn).

It is easy to see that Sw is upper semicontinuous at u. However, Sw is not lower semicontin-
uous at u. In fact, let x =  ∈ Sw(u), one can easily find that for small enough neighborhood
U(x) of x and large enough n, Sw(un) ∩ U(x) = ∅. Therefore, Sw is not stable at u.

Definition . For u ∈ M, a point x ∈ Sw(u) is said to be essential if, for any open neighbor-
hood U of x in X, there exists an open neighborhood V of u in M such that Sw(u′) ∩ U �= ∅
for all u′ ∈ V . u is said to be essential if every x ∈ Sw(u) is essential.

From Definition ., it is easy to see that the following lemma holds, so we omit its proof.

Lemma . The set-valued map Sw is lower semicontinuous at u ∈ M if and only if u is
essential.

We now give a generic stability result for set-valued optimization problems.

Theorem . There exists a dense residual subset Q of M such that, for every u ∈ Q, u is
essential.

Proof By Lemmas . and ., M is a Baire space. By Theorem ., the set-valued map Sw :
M → X is upper semicontinuous with compact values. By Lemma ., there exists a dense
residual subset Q of M such that Sw is lower semicontinuous at each u ∈ Q. Therefore, the
conclusion holds by Lemma .. �

Remark . Example . shows that there exists u ∈ M such that u is not essential.

The following theorem gives a sufficient condition that u ∈ M is essential.

Theorem . If u ∈ M and Sw(u) is a singleton set, then u is essential.

Proof Suppose that Sw(u) = {x}. Let U be any open set in X such that Sw(u)∩U �= ∅. Then
x ∈ U and Sw(u) ⊂ U . By Theorem ., Sw is upper semicontinuous at u ∈ M. It follows
that there exists an open neighborhood V of u in M such that Sw(u′) ⊂ U for each u′ ∈ V .
This implies that Sw(u′) ∩ U �= ∅ for each u′ ∈ V . Thus, Sw is lower semicontinuous at u.
By Lemma ., u is essential. �
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