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Abstract

Using the Davenport-Heilbronn method, we show that if A1, A, ..., Ag are positive
real numbers, at least one of the ratios Ai/A; (1 <i<j <9)isirrational, then the
integer parts of A1x3 + A3 + A3Xj + Aaxj + Asx2 + - - - + Agx3 are prime infinitely often
for natural numbers x1, X3, ..., Xo.
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1 Introduction
In 2010, Briidern et al. [1] proved that if A4,..., A, are positive real numbers, A;/A; is irra-
tional, all Dirichlet L-functions satisfy the Riemann hypothesis s > %k +2, then the integer

parts of
Alx’f + Alez‘ +eet Asx’;

are prime infinitely often for natural numbers x;.
Motivated by [1], using the Davenport-Heilbronn method, we consider the integer part
of a nonlinear form with integer variables and mixed powers 3, 4 and 5, and establish one

result as follows.

Theorem 1.1 Let Ay, Ay, ..., Ao be positive real numbers, at least one of the ratios 1;/1; (1 <
i<j<09)isirrational. Then the integer parts of

3 3 4 4 5 5
A1X] + Aoxy + A3Xs + AaXy + AsXp + - - + Aoxg
are prime infinitely often for natural numbers x1,x,, ..., %s.

It is noted that Theorem 1.1 holds without the Riemann hypothesis.

2 Notation

Throughout, we use p to denote a prime number and x; to denote a natural number. We
denote by § a sufficiently small positive number and by € an arbitrarily small positive num-
ber. Constants, both explicit and implicit, in Landau or Vinogradov symbols may depend
© 2015 Lai. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13660-015-0874-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0874-2&domain=pdf
mailto:k.ching.lai@foxmail.com

Lai Journal of Inequalities and Applications (2015) 2015:357 Page 2 of 9

on Ay, Ay,..., . We write e(x) = exp(2mix). We use [x] to denote the integer part of real
variable x. We take X to be the basic parameter, a large real integer. Since at least one of
the ratios A;/A; (1 <i<j <9) is irrational, without loss of generality we may assume that
A1/ is irrational. For the other cases, the only difference is in the following intermediate
region, and we may deal with the same method in Section 4.

Since A1/, is irrational, then there are infinitely many pairs of integers g, a with [A; /1y —
alql <q72, (a,q) =1,q>0and a #0. We choose g to be large in terms of A1, 5, ..., A9 and

make the following definitions.

Nx=<X, L=logN, [N'"®]=q, t=N,

Q= (Ml + NP, P=N®,  T=N3.

Let v be a positive real number, we define

1<U(a)=u(5imm>2, «#0,  K,(0)=v, @.1)
Tva
Fi(x) = Z e(ax?’), i=1,2,
1
1<x<X3
Fl@)= Y  e(ax'), j=34,
1
1<x<X1
F(a) = Z e(axs), k=5,...,9,
1
1<x<X5
Gle) =) _(logp)elap),
p<N

X3
fi(fx)=/ e(ax®)dx, i=1,2,
1
1
X4
ﬁ(d)=/ e(ax*)dx, j=3,4,
1

1
X5
Sila) =/ e(axS) dx, k=5,...,9,
1

It follows from (2.1) that

K, (a) < min(v, v_1|a|_2), (2.2)
‘/+°° e(ay)K, (o) do = max(O,l -yt |y|). (2.3)

From (2.3) it is clear that
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+o0 9 1
J= / HF()» o)G(— oe)e(——oe)](1 (o) doe
<logN > 1

\Ale +)L2x%+)\3x§+A4xi+k5xg+<<<+kgxg —-p— % |< %
1<x1,9 <X1/3,1<x03,24 <XV 1<5,..,09 <XV/5 p<N

=: (log N)N (X),
thus
N(X) = (logN)™'J.
To estimate J, we split the range of infinite integration into three sections, traditional
named the neighborhood of the origin € = {« € R: |a| < 7}, the intermediate region © =

{o € R: 7 <|a| <P} and the trivial region ¢ = {& € R: || > P}.

3 The neighborhood of the origin
Lemma 3.1 Ifo =alq+ B, where (a,q) =1, then

q Nl/t
Z =q IZe amt/q / e(,Byt) dy + O(q1/2+8(1+N|/3|)).
15x5Nl/t m=1
Proof This is Theorem 4.1 of [2]. O

If |a| € €, by Lemma 3.1, taking a = 0, g = 1, then
Fi(@) =fia) + O(X®), i=1,2,...,9. 3.1)

Lemma 3.2 Let p = B + iy be a typical zero of the Riemann zeta function, C be a positive
constant,

Io)= > > nle(na),  J@)=0((1+|eIN)NELE),

ly|<T,p=% n=N

then
G(a) = gla) - I(e) + J(cx), (3.2)
/j |I(e)]” dae < Nexp(-L3), (3.3)
f J(@)|* do < Nexp(-L3). (3.4)

Proof Equations (3.2), (3.3), (3.4) can be seen from Lemma 5, (29) and (33) given by
Vaughan [3]. O
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Lemma 3.3 We have

% 2 _1 .
M) de < X735, i=12,

2
1
2 2 _1 ,
M de < X72, j=3,4,
-3
1
2 2 _3
[file)| da < X5, k=5,...,9.
-3
Proof These results are from Lemma 5 of [3]. O

Lemma 3.4 We have

J

Proof 1t is obvious that

9 9
[TEGi0G(-e) - [ [ fitrie)gl-00)| Ky (@) dor < X & L.

i=1 i=1

Fiuo) < X3, fiho) < X3, i=12,

1 1
F(Ajo) € X1, Silhjo) €« X%, j=3,4,
FOua) < X5, filwa) € X5, k=5,...,9,

9

9
[1£0.0)G(-a) - [ [ fithia)g(~c)

i=1 i=1

9
= (F(ma) - i) [ [ i) G(-a)

i=2
9

+ (F2(ae) — o)) [ [ Fihie) Gl=at) + - -
i=1
i

8 9
+ (Fo(hoa) = fo(ho) [ [fithic)G(=a) + [ [ filhicr) (G(-) - g(-a)).

i=1 i=1

Then by (3.1), Lemmas 3.2 and 3.3, we have

J
J

9

(Fima) - i) [ [Fihie) G(-a)

i=2

Ky(@)da < NXXON « X6+,

9

[ [0 (G(-) - g(~a))

i=1

<x® ( /Q ) K, (oz)dot) ' ( /¢ (-a) ~ 1)K, (a)da)

K% () da

1
2
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< X% (/ i) da)i</€|](oz)|2da+/j|I(a)|2da)7

&K X6 X6 (Nexp(-L5))

[T

LB
L XeL.
The other cases are similar, and the proof of Lemma 3.4 is completed.

Lemma 3.5 We have

/{x|>N 1+8

Proof 1t follows from Vaughan [2] that for o #0,

Hf (ri)g(-a) K (o) der < Xe-8s,

1 1
filvio) < |73, i=12, fihjo) < la|™%, j=3,4,

filbuwa) < a5, k=5,...,9,  gl-a)< |o|™

Thus

9

f i
lal>N-1+ | )

Silhia)g(—a)

K%(a)dot <</ |a|_% da <<X%_%5.

\0{|>N’1+5

Lemma 3.6 We have

+oo 9
/ Hfi()»ia)g(—a)e<—%a>l<% (@)da > X,
i=1

Proof From (2.3) one has

+oo 9
/ Hﬁ()\ia)g(—a) (_lOK)I(l( ) dot
i=1

X% X% X% X4 Xa X5
- / T A A R (R
1% + AXy + 3x3+ 4%y,
1 1 1

+ A5xg -+ Agxg —x— 5))1(% () dadxdxg - - - dxs dxg dxs dx, dx;

Attt
450000/ / / / X x2 xs Xy X5© - el a Zklx,_x__

1(1( Ydadxdxg - - - dx;

2 2 3 3 _a
450 OOOf / / % %%, x3 x4 RN

1 1
~max(0,§ - Z)\ixi—x 3

i=1

Uil

)dxdx9~~~ dx;

Page 5 of 9
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one may take

9 -1 9 -1
ij<8in) gx,»gx,x(zLin) , j=1...,9,
i=1 i

hence
+o0 9 1 1 2 ’ 79 13
. !:[ﬁ()»,a)g(—oe)e(—ia)l(%(oe)dot > mg)\](ggkl> X6,
This completes the proof of Lemma 3.6. O

4 The intermediate region

Lemma 4.1 We have

/+OO|Fi(,\ia)|81<% (@)da < X335, i=1,2, (4.1)
oo
/ B[ Ky @da <X, -3, (42)
o
/_m |FeOue) Ky (o) da < X515, k=5,...,9, (4.3)
[ +ooyc;(-a)]zz(% () dat < NL. (4.4)

Proof By (2.2) and Hua’s inequality, for i = 1,2, we have

/ +oo\p,-(x,a)rﬂrg (o) dax

(o.¢]

m

+00 m+1
2> / [EGu)| €, () des

1 m+1 8 +00 m+1 8
<) / |Fi(ier)| doc + > "™ / |Fi(hie)|” dax
m=0 m=2 m

m

5
1 5.1
<<X_+_8 X_+_5§ : -2

m=2

< X373E,

The proofs of (4.2)-(4.4) are similar to (4.1). |
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Lemma 4.2 Suppose that (a,q) =1, |a —alq| < g%, ¢(x) = ax’ + onxk ™ + -+ + 1% + g,
then

- 1 1 1 K21k

> e(p@) <M (g7 + M7+ gM )

x=1
Proof This is Lemma 2.4 (Weyl’s inequality) of Vaughan [2]. O

Lemma 4.3 For every real number o € D, let W () = min(|Fy (M), |Fa(roex)|), then
W) < X340%3¢,

Proof For o € ® and i = 1,2, we choose a;, ¢; such that
Mot —ailqi| < q;7' Q™ (4.5)

with (a;,g;) =1and1 < ¢, < Q.
Firstly, we note that aya; # 0. Secondly, if q1,g2 < P, then

A

1
a1 — —a
2q1 * 192

arlq
)\20[

/
< Dl Q192 | Mo — o +
Ao q

We recall that g was chosen as the denominator of a convergent to the continued frac-
/A
*o
all integers a’, ¢ with 1 < ¢’ < g, thus |a,q1] > g = [N'"®]. However, from (4.5) we have

lasq1| < q1goP << N, this is a contradiction. We have thus established that for at least
one i, P < g; < Q. Hence Lemma 4.2 gives the desired inequality for W (). a

a 1
Q92 (kza - —2>‘ «PQ'<—.
73 2q

tion for A1/A;. Thus, by Legendre’s law of best approximation, we have |¢'3L — a'| > Zl_q for
Lemma 4.4 We have
9
1 B_Lsie
/ HF;‘(MO!)G(—O!)6<—§O£)K% (@) do < X6 "16°%F,

D g

Proof By Lemmas 4.1, 4.3 and Hoélder’s inequality, we have

9
/ [ [IFihi)G(-0) K (o) dex
Ss ’

< Lréa%(‘W(a)’% ((/Oo |F1(A1a)|8)8 (/Oo |F2()»20l)|8)32
+ (/ ‘F]()\.l(X)P)ﬁ(/‘ ’F2()\‘2a)‘8)§)

4 +00 % 9 +00
.(1‘[ / |Ei(3j0)[° K1 (a)da) (]‘[ / |Fe() K () da>
j=3 Y7 ’ k=57 ’

. ( / Tl6w)’K, (a)da)i

|~

3

el
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1

& (X%—%M%s) % (X%+%e) 32 (X3+18)% (X%+%s)

5
3

7 (NL)?

5 The trivial region
Lemma 5.1 (Lemma 2 of [4]) Let V(a) =Y elaf (x1,...,%,)), where f is any real function
and the summation is over any finite set of values of x1,..., %,,. Then, for any A > 4, we have

/| A|V(a)|21<\,(oz)doz < 176/00|V(a)|21(v(oe)da.

Lemma 5.2 We have
: 1 13
‘/HFi()\ia)G(—a)e(—E(x)](% () do < X 6769+,
€ =1

Proof By Lemmas 5.1, 4.1 and Schwarz’s inequality, we have

9
F;(Aa)G(-a)e —105 Ki(x)da
: 2%)7

i=1

<f

9

[ [E(@)G(-a)

i=1

K% (o) do

9

HE‘(M“)G(—O!)
i-1

en st (( [ o) ([ Teuar)’)

4 +00 % 9 +00
.(]‘[ / ]E(A,a)]mlﬁ(a)da) (]‘[ / |Fk(xka)]321<1(a)da)
j=3 = ’ ko5 -0 ’

. ( / 6wk, (a)da)i

Ny ki ek} oo B!

K% (o) dex

|~

3

IS

< X%—&Hs’ 0

6 The proof of Theorem 1.1
From Lemmas 3.4, 3.5 and 3.6 we conclude that J(€) > X % . From Lemma 4.4 it follows
that /(D) = o(X% ). From Lemma 5.2 we have J(c) = O(X% ). Thus

I> X%, NX)»>XeL,

namely, under conditions of Theorem 1.1,

1 1
MXS + AoXy + A3xs + AaXg + AsXz + -+ + hoXg — P — 71<3 (6.1)
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has infinitely many solutions in positive integers x;,%s,...,%9 and prime p. It is evident
from (6.1) that

p<A1xf+k2x3+A3x§+A4xi+A5x§ +~-~+A9x3<p+1,
and hence
[M1x] + Aox + A3xg + AaXy + AsxZ + -+ + Aoy | = p.

The proof of Theorem 1.1 is complete.
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