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1 Introduction and main results
The setting for this paper is Euclidean n-space R

n. Let Sn
o denote the set of star bodies

containing the origin in their interiors in R
n. Let Sn– denote the unit sphere in R

n, and
let V (K) denote the n-dimensional volume of body K . For the standard unit ball B in R

n,
we use ωn = V (B) to denote its volume.

In , Lutwak (see []) gave the notion of dual mixed volumes as follows: For
K, K, . . . , Kn ∈ Sn

o , the dual mixed volume, ˜V (K, K, . . . , Kn), of K, K, . . . , Kn is defined
by

˜V (K, . . . , Kn) =

n

∫

Sn–
ρ(K, u) · · ·ρ(Kn, u) dS(u). (.)

Taking K = · · · = Kn–i = K , Kn–i+ = · · · = Kn = L in (.), we write ˜Vi(K , L) = ˜V (K , n –
i; L, i), where K appears n – i times and L appears i times. Then

˜Vi(K , L) =

n

∫

Sn–
ρ(K , u)n–iρ(L, u)i dS(u). (.)

Let L = B in (.) and notice ρ(B, ·) = , and allow i is any real, then the dual quermassin-
tegrals can be defined as follows: For K ∈ Sn

o and i is any real, the dual quermassintegrals,
˜Wi(K), of K are given by (see [])

˜Wi(K) =

n

∫

Sn–
ρ(K , u)n–i dS(u). (.)

Associated with dual quermassintegrals, Zhao (see []) defined the dual quermassinte-
gral quotient functions of a star body K by

Q
˜Wi,j(K ) =

˜Wi(K)
˜Wj(K)

(i, j ∈R). (.)
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Further, in [] the Brunn-Minkowski type inequalities for the dual quermassintegral
quotient functions of star bodies were established as follows.

Theorem A If K , L ∈ Sn
o and reals i, j satisfy i ≤ n –  ≤ j ≤ n, then

Q


j–i
˜Wi,j(K +̃ L) ≤ Q


j–i
˜Wi,j(K ) + Q


j–i
˜Wi,j(L).

Here +̃ is the radial Minkowski sum.

Theorem B If K , L ∈ Sn
o and reals i, j satisfy i ≤  ≤ j ≤ n, then

Q
n–
j–i
˜Wi,j(K +̆ L) ≤ Q

n–
j–i
˜Wi,j(K ) + Q

n–
j–i
˜Wi,j(L).

Here +̆ is the radial Blaschke sum.

Theorem C If K , L ∈ Sn
o and reals i, j satisfy i ≤ – ≤ j ≤ n, then

Q
n+
j–i
˜Wi,j(K +̂ L)

V (K +̂L)
≤

Q
n+
j–i
˜Wi,j(K )

V (K)
+

Q
n+
j–i
˜Wi,j(L)

V (L)
.

Here +̂ is the harmonic Blaschke sum.

Motivated by the work of Zhao, we give the following definition of dual mixed quer-
massintegral quotient function.

Let K = · · · = Kn–i– = K , Kn–i = · · · = Kn– = B, Kn = L in (.), then we write ˜Wi(K , L) =
˜V (K , n – i – ; B, i; L, ), where K appears n – i –  times, B appears i times and L appears
 time. Here, we allow i to be any real and define as follows: For K , L ∈ Sn

o and i any real,
the dual mixed quermassintegrals, ˜Wi(K , L), of K and L are given by

˜Wi(K , L) =

n

∫

Sn–
ρ(K , u)n–i–ρ(L, u) dS(u). (.)

Obviously, from (.) and (.), we have ˜Wi(K , K) = ˜Wi(K). According to (.), we define
the following.

Definition . Let K , L ∈ Sn
o and i, j ∈R, the dual mixed quermassintegral quotient func-

tion, Q
˜Wi,j(K ,L), of K and L can be defined by

Q
˜Wi,j(K ,L) =

˜Wi(K , L)
˜Wj(K , L)

. (.)

Obviously, if L = K , then (.) is just (.).
The aim of this paper is to establish the following Brunn-Minkowski type inequalities

for dual mixed quermassintegral quotient functions of star bodies.

Theorem . For K , K ′, L ∈ Sn
o , if i ≤ n –  ≤ j < n – , then

Q


j–i
˜Wi,j(K +̃ K ′ ,L) ≤ Q


j–i
˜Wi,j(K ,L) + Q


j–i
˜Wi,j(K ′ ,L); (.)
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if n –  ≤ i < n –  < j, then

Q


j–i
˜Wi,j(K +̃ K ′ ,L) ≥ Q


j–i
˜Wi,j(K ,L) + Q


j–i
˜Wi,j(K ′ ,L). (.)

In each case, equality holds if and only if K and K ′ are dilates. Here +̃ is the radial
Minkowski sum.

Theorem . For K , K ′, L ∈ Sn
o , if i ≤  ≤ j < n – , then

Q
n–
j–i
˜Wi,j(K +̆ K ′ ,L) ≤ Q

n–
j–i
˜Wi,j(K ,L) + Q

n–
j–i
˜Wi,j(K ′ ,L); (.)

if  ≤ i < n –  < j, then

Q
n–
j–i
˜Wi,j(K +̆ K ′ ,L) ≥ Q

n–
j–i
˜Wi,j(K ,L) + Q

n–
j–i
˜Wi,j(K ′ ,L). (.)

In each case, equality holds if and only if K and K ′ are dilates. Here +̆ is the radial Blaschke
sum.

Theorem . For K , K ′, L ∈ Sn
o , if i ≤ – ≤ j < n – , then

Q
n+
j–i
˜Wi,j(K +̂ K ′ ,L)

V (K +̂ K ′)
≤

Q
n+
j–i
˜Wi,j(K ,L)

V (K)
+

Q
n+
j–i
˜Wi,j(K ′ ,L)

V (K ′)
; (.)

if – ≤ i < n –  < j, then

Q
n+
j–i
˜Wi,j(K +̂ K ′ ,L)

V (K +̂ K ′)
≥

Q
n+
j–i
˜Wi,j(K ,L)

V (K)
+

Q
n+
j–i
˜Wi,j(K ′ ,L)

V (K ′)
. (.)

In each case, equality holds if and only if K and K ′ are dilates. Here +̂ is the harmonic
Blaschke sum.

2 Preliminaries
For a compact set K in R

n which is star shaped with respect to the origin, we define the
radial function ρK (u) = ρ(K , u) of K by

ρ(K , u) = max{λ ≥  : λu ∈ K}, u ∈ Sn–.

If ρK is positive and continuous, K will be called a star body (about the origin). Two star
bodies K and L are said to be dilates (of one another) if ρK (u)/ρL(u) is independent of
u ∈ Sn–.

For K, K ∈ Sn
o , and λ,λ ≥  (not both ), the radial function of the radial Minkowski

linear combination λK +̃λK is given by Zhang (see []):

ρ(λK +̃λK, u) = λρ(K, u) + λρ(K, u). (.)



Zhang et al. Journal of Inequalities and Applications  (2015) 2015:340 Page 4 of 9

For K, K ∈ Sn
o , and λ,λ ≥  (not both ), the radial Blaschke linear combination λ ·

K +̌λ · K is a star body whose radial function is given by Lutwak (see []):

ρ(λ · K +̌λ · K, u)n– = λρ(K, u)n– + λρ(K, u)n–. (.)

For K, K ∈ Sn
o , and λ,λ ≥  (not both ), the harmonic Blaschke linear combination

λ ◦ K +̂λ ◦ K is a star body whose radial function is given by Lutwak (see []):

ρ(λ ◦ K +̂λ ◦ K, u)n+

V (λ ◦ K +̂λ ◦ K)
= λ

ρ(K, u)n+

V (K)
+ λ

ρ(K, u)n+

V (K)
. (.)

3 Proofs of theorems
According to a generalization of the Dresher inequality (see []), we get the reverse
Dresher inequality.

Lemma . (Dresher’s inequality) Let functions f, f, g, g ≥ , E is a bounded measurable
subset in R

n. If p ≥  ≥ r ≥ , then

(
∫

E(f + f)p dx
∫

E(g + g)r dx

) 
p–r

≤
(

∫

E f p
 dx

∫

E gr
 dx

) 
p–r

+
(

∫

E f p
 dx

∫

E gr
 dx

) 
p–r

, (.)

equality holds if and only if f/f = g/g.

Lemma . (Reverse Dresher’s inequality) Let functions f, f, g, g ≥ , E is a bounded
measurable subset in R

n. If  ≥ p >  > r, then

(
∫

E(f + f)p dx
∫

E(g + g)r dx

) 
p–r

≥
(

∫

E f p
 dx

∫

E gr
 dx

) 
p–r

+
(

∫

E f p
 dx

∫

E gr
 dx

) 
p–r

, (.)

equality holds if and only if f/f = g/g.

Proof of Lemma . If f, f, g, g ≥ , and  ≥ p >  > r, according to the Minkowski in-
equality,

(∫

E
(f + f)p dx

) 
p

≥
(∫

E
f p
 dx

) 
p

+
(∫

E
f p
 dx

) 
p

,

(∫

E
(g + g)r dx

) 
r
≥

(∫

E
gr

 dx
) 

r
+

(∫

E
gr

 dx
) 

r
.

For  ≥ p >  > r, we have

∫

E
(f + f)p dx ≥

((∫

E
f p
 dx

) 
p

+
(∫

E
f p
 dx

) 
p
)p

, (.)

∫

E
(g + g)r dx ≤

((∫

E
gr

 dx
) 

r
+

(∫

E
gr

 dx
) 

r
)r

. (.)



Zhang et al. Journal of Inequalities and Applications  (2015) 2015:340 Page 5 of 9

According to the Hölder inequality, p–r
p > , and (.), (.),

(
∫

E(f + f)p dx
∫

E(g + g)r dx

) 
p–r

≥
[ ((

∫

E f p
 dx)


p + (

∫

E f p
 dx)


p )p

((
∫

E gr
 dx) 

r + (
∫

E gr
 dx) 

r )r

] 
p–r

=
[(
∫

E f p
 dx)


p + (

∫

E f p
 dx)


p ]

p
p–r

[(
∫

E gr
 dx) 

r + (
∫

E gr
 dx) 

r ]
r

p–r

=
[((∫

E
f p
 dx

) 
p–r

)
p–r

p
+

((∫

E
f p
 dx

) 
p–r

)
p–r

p
]

p
p–r

×
[((∫

E
gr

 dx
) –

p–r
)

–(p–r)
r

+
((∫

E
gr

 dx
) –

p–r
)

–(p–r)
r

] –r
p–r

≥
(∫

E
f p
 dx

) 
p–r

(∫

E
gr

 dx
) –

p–r
+

(∫

E
f p
 dx

) 
p–r

(∫

E
gr

 dx
) –

p–r

=
(

∫

E f p
 dx

∫

E gr
 dx

) 
p–r

+
(

∫

E f p
 dx

∫

E gr
 dx

) 
p–r

.

According to the equality condition of the Minkowski inequality and the Hölder inequality,
equality holds in (.) if and only if f/f = g/g. �

Proof of Theorem . From (.), for K , K ′, L ∈ Sn
o ,

˜Wn–p–
(

K +̃ K ′, L
)

=

n

∫

Sn–
ρ

p
K +̃ K ′ (u)ρL(u) dS(u)

=

n

∫

Sn–

(

ρK (u) + ρK ′ (u)
)p

ρL(u) dS(u)

=

n

∫

Sn–

(

ρK (u)ρ

p

L (u) + ρK ′ (u)ρ

p

L (u)
)p dS(u) (.)

and

˜Wn–r–
(

K +̃ K ′, L
)

=

n

∫

Sn–

(

ρK (u)ρ

r

L (u) + ρK ′ (u)ρ

r

L (u)
)r dS(u). (.)

From (.), (.), and (.), for p ≥  ≥ r > , we have

(

˜Wn–p–(K +̃ K ′, L)
˜Wn–r–(K +̃ K ′, L)

) 
p–r

=
(

∫

Sn– (ρK (u)ρ

p

L (u) + ρK ′ (u)ρ

p

L (u))p dS(u)
∫

Sn– (ρK (u)ρ

r

L (u) + ρK ′ (u)ρ

r

L (u))r dS(u)

) 
p–r

≤
(

∫

Sn– (ρK (u)ρ

p

L (u))p dS(u)
∫

Sn– (ρK (u)ρ

r

L (u))r dS(u)

) 
p–r

+
(

∫

Sn– (ρK ′ (u)ρ

p

L (u))p dS(u)
∫

Sn– (ρK ′ (u)ρ

r

L (u))r dS(u)

) 
p–r

=
(

∫

Sn– ρ
p
K (u)ρL(u) dS(u)

∫

Sn– ρr
K (u)ρL(u) dS(u)

) 
p–r
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+
(

∫

Sn– ρ
p
K ′ (u)ρL(u) dS(u)

∫

Sn– ρr
K ′ (u)ρL(u) dS(u)

) 
p–r

=
(

˜Wn–p–(K , L)
˜Wn–r–(K , L)

) 
p–r

+
(

˜Wn–p–(K ′, L)
˜Wn–r–(K ′, L)

) 
p–r

. (.)

According to the equality condition of inequality (.), we see that equality holds in (.)
if and only if K and L, K ′, and L are dilates, respectively. So K and K ′ are dilates.

Let i = n – p – , j = n – r – , then p ≥  ≥ r >  and i ≤ n –  ≤ j < n –  are equivalent.
This and (.) yield inequality (.) and its equality condition.

Similarly, if  ≥ p >  > r, according to (.), (.), and (.), we have

(

˜Wn–p–(K +̃ K ′, L)
˜Wn–r–(K +̃ K ′, L)

) 
p–r

≥
(

˜Wn–p–(K , L)
˜Wn–r–(K , L)

) 
p–r

+
(

˜Wn–p–(K ′, L)
˜Wn–r–(K ′, L)

) 
p–r

, (.)

and equality holds if and only if K and K ′ are dilates.
Let i = n – p – , j = n – r – , then (.) gives inequality (.) and its equality condition.

�

Proof of Theorem . From (.), for K , K ′, L ∈ Sn
o , we have

˜Wn–p–
(

K +̆ K ′, L
)

=

n

∫

Sn–
ρ

p
K +̆ K ′ (u)ρL(u) dS(u)

=

n

∫

Sn–

(

ρn–
K (u) + ρn–

K ′ (u)
)

p
n– ρL(u) dS(u)

=

n

∫

Sn–

(

ρn–
K (u)ρ

n–
p

L (u) + ρn–
K ′ (u)ρ

n–
p

L (u)
)

p
n– dS(u) (.)

and

˜Wn–r–
(

K +̆ K ′, L
)

=

n

∫

Sn–
ρr

K +̆ K ′ (u)ρL(u) dS(u)

=

n

∫

Sn–

(

ρn–
K (u)ρ

n–
r

L (u) + ρn–
K ′ (u)ρ

n–
r

L (u)
) r

n– dS(u). (.)

According to (.), (.), and (.), for p ≥ n –  ≥ r > ,

Q
n–
p–r
˜Wn–p–,n–r–(K +̆ K ′ ,L) =

[

˜Wn–p–(K +̆ K ′, L)
˜Wn–r–(K +̆ K ′, L)

] n–
p–r

=
[

∫

Sn– (ρn–
K (u)ρ

n–
p

L (u) + ρn–
K ′ (u)ρ

n–
p

L (u))
p

n– dS(u)
∫

Sn– (ρn–
K (u)ρ

n–
r

L (u) + ρn–
K ′ (u)ρ

n–
r

L (u)) r
n– dS(u)

] n–
p–r

≤
[

∫

Sn– (ρn–
K (u)ρ

n–
p

L (u))
p

n– dS(u)
∫

Sn– (ρn–
K (u)ρ

n–
r

L (u)) r
n– dS(u)

] n–
p–r

+
[

∫

Sn– (ρn–
K ′ (u)ρ

n–
p

L (u))
p

n– dS(u)
∫

Sn– (ρn–
K ′ (u)ρ

n–
r

L (u)) r
n– dS(u)

] n–
p–r
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=
[

∫

Sn– ρ
p
K (u)ρL(u) dS(u)

∫

Sn– ρr
K (u)ρL(u) dS(u)

] n–
p–r

+
[

∫

Sn– ρ
p
K ′ (u)ρL(u) dS(u)

∫

Sn– ρr
K ′ (u)ρL(u) dS(u)

] n–
p–r

=
[

˜Wn–p–(K , L)
˜Wn–r–(K , L)

] n–
p–r

+
[

˜Wn–p–(K ′, L)
˜Wn–r–(K ′, L)

] n–
p–r

= Q
n–
p–r
˜Wn–p–,n–r–(K ,L) + Q

n–
p–r
˜Wn–p–,n–r–(K ′ ,L).

Then

Q
n–
p–r
˜Wn–p–,n–r–(K +̆K ′ ,L) ≤ Q

n–
p–r
˜Wn–p–,n–r–(K ,L) + Q

n–
p–r
˜Wn–p–,n–r–(K ′ ,L). (.)

According to the equality condition of inequality (.), we see that equality holds in (.)
if and only if K and K ′ are dilates.

Let i = n – p –  and j = n – r – , then p ≥ n –  ≥ r >  and i ≤  ≤ j < n –  are equivalent.
This and (.) yield inequality (.) and its equality condition.

Similarly, if n –  ≥ p >  > r, according to (.), (.), and (.), we have

(

˜Wn–p–(K +̃ K ′, L)
˜Wn–r–(K +̃ K ′, L)

) 
p–r

≥
(

˜Wn–p–(K , L)
˜Wn–r–(K , L)

) 
p–r

+
(

˜Wn–p–(K ′, L)
˜Wn–r–(K ′, L)

) 
p–r

, (.)

and equality holds if and only if K and K ′ are dilates.
Let i = n – p –  and j = n – r – , then (.) gives inequality (.) and its equality

condition. �

Proof of Theorem . From (.), for K , K ′, L ∈ Sn
o ,

˜Wn–p–(K +̂ K ′, L)
V (K +̂K ′)p/(n+) =


n

∫

Sn–

ρ
p
K +̂ K ′ (u)ρL(u)

V (K +̂ K ′)p/(n+) dS(u)

=

n

∫

Sn–

(

ρn+
K +̂K ′ (u)

V (K +̂ K ′)

)
p

n+
ρL(u) dS(u)

=

n

∫

Sn–

(

ρn+
K (u)
V (K)

+
ρn+

K ′ (u)
V (K ′)

)
p

n+
ρL(u) dS(u)

=

n

∫

Sn–

(

ρn+
K (u)ρ

n+
p

L (u)
V (K)

+
ρn+

K ′ (u)ρ
n+

p
L (u)

V (K ′)

)
p

n+
dS(u) (.)

and

˜Wn–r–(K +̂ K ′, L)
V (K +̂K ′)r/(n+) =


n

∫

Sn–

(

ρn+
K (u)ρ

n+
r

L (u)
V (K)

+
ρn+

K ′ (u)ρ
n+

r
L (u)

V (K ′)

) r
n+

dS(u). (.)

According to (.), (.), and (.), for p ≥ n +  > r > ,

Q
n+
p–r
˜Wn–p–,n–r–(K +̂ K ′ ,L) =

(

˜Wn–p–(K +̂ K ′, L)
˜Wn–r–(K +̂ K ′, L)

) n+
p–r

= V
(

K +̂ K ′)
[

∫

Sn– ( ρn+
K (u)
V (K ) ρ

n+
p

L (u) +
ρn+

K ′ (u)
V (K ′) ρ

n+
p

L (u))
p

n+ dS(u)
∫

Sn– ( ρn+
K (u)
V (K ) ρ

n+
r

L (u) +
ρn+

K ′ (u)
V (K ′) ρ

n+
r

L (u)) r
n+ dS(u)

] n+
p–r
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≤ V
(

K +̂ K ′)
[

∫

Sn– (V (K)–ρn+
K (u)ρ

n+
p

L (u))
p

n+ dS(u)
∫

Sn– (V (K)–ρn+
K (u)ρ

n+
r

L (u)) r
n+ dS(u)

] n+
p–r

+ V
(

K +̂ K ′)
[

∫

Sn– (V (K ′)–ρn+
K ′ (u)ρ

n+
p

L (u))
p

n+ dS(u)
∫

Sn– (V (K ′)–ρn+
K ′ (u)ρ

n+
r

L (u)) r
n+ dS(u)

] n+
p–r

= V
(

K +̂ K ′)
[

∫

Sn– (V (K)–)
p

n+ ρ
p
K (u)ρL(u) dS(u)

∫

Sn– (V (K)–) r
n+ ρr

K (u)ρL(u) dS(u)

] n+
p–r

+ V
(

K +̂ K ′)
[

∫

Sn– (V (K ′)–)
p

n+ ρ
p
K ′ (u)ρL(u) dS(u)

∫

Sn– (V (K ′)–) r
n+ ρr

K ′ (u)ρL(u) dS(u)

] n+
p–r

=
V (K +̂ K ′)

V (K)

(
∫

Sn– ρ
p
K (u)ρL(u) dS(u)

∫

Sn– ρr
K (u)ρL(u) dS(u)

) n+
p–r

+
V (K +̂ K ′)

V (K ′)

(
∫

Sn– ρ
p
K ′ (u)ρL(u) dS(u)

∫

Sn– ρr
K ′ (u)ρL(u) dS(u)

) n+
p–r

=
V (K +̂ K ′)

V (K)

(

˜Wn–p–(K , L)
˜Wn–r–(K , L)

) n+
p–r

+
V (K +̂ K ′)

V (K ′)

(

˜Wn–p–(K ′, L)
˜Wn–r–(K ′, L)

) n+
p–r

= V
(

K +̂ K ′)
(Q

n+
p–r
˜Wn–p–,n–r–(K ,L)

V (K)
+

Q
n+
p–r
˜Wn–p–,n–r–(K ′ ,L)

V (K ′)

)

,

i.e.,

Q
n+
p–r
˜Wn–p–,n–r–(K +̂K ′ ,L)

V (K +̂ K ′)
≤

Q
n+
p–r
˜Wn–p–,n–r–(K ,L)

V (K)
+

Q
n+
p–r
˜Wn–p–,n–r–(K ′ ,L)

V (K ′)
. (.)

According to the equality condition of inequality (.), we see that equality holds in (.)
if and only if K and K ′ are dilates.

Let i = n–p– and j = n–r –, then p ≥ n+ ≥ r >  and i ≤ – ≤ j < n– are equivalent.
This and (.) yield inequality (.) and its equality condition.

If n +  ≥ p >  > r, according to (.), (.), and (.), we have

Q
n+
p–r
˜Wn–p–,n–r–(K +̂K ′ ,L)

V (K +̂ K ′)
≥

Q
n+
p–r
˜Wn–p–,n–r–(K ,L)

V (K)
+

Q
n+
p–r
˜Wn–p–,n–r–(K ′ ,L)

V (K ′)
, (.)

with equality if and only if K and K ′ are dilates.
Let i = n – p –  and j = n – r – , then (.) gives inequality (.) and its equality

condition. �
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