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Abstract

We introduce the notion of dual mixed quermassintegral quotient functions and
establish the Brunn-Minkowski inequalities for them in this paper.
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1 Introduction and main results
The setting for this paper is Euclidean n-space R”. Let S) denote the set of star bodies
containing the origin in their interiors in R”. Let $"! denote the unit sphere in R”, and
let V(K) denote the n-dimensional volume of body K. For the standard unit ball B in R”,
we use w, = V(B) to denote its volume.

In 1975, Lutwak (see [1]) gave the notion of dual mixed volumes as follows: For
Ki,Ky,...,K, € 8", the dual mixed volume, V(Kl,Kz,...,Kn), of K1,K>,...,K, is defined
by

~ 1
V(Ky,...,K,) = —/ oKy, u) - -+ p(Kyy, 1) dS(us). (1.1)
n Jgn-1
Taking Ky = -+ = Ky_; = K, Ky_iy1 = -+ = K, = L in (L.1), we write Vi(K,L) = V(K,n —
i;L,i), where K appears # — i times and L appears i times. Then
~ 1 , .
ViK,L) = —/ P(K, )" p(L, u) dS(u). (1.2)
n Jsn-1

Let L = Bin (1.2) and notice p(B, -) =1, and allow i is any real, then the dual quermassin-
tegrals can be defined as follows: For K € S” and i is any real, the dual quermassintegrals,
\7%(1(), of K are given by (see [1])

1

Wi(K) = = / (K, u)'™ dS(u). 13)
n Jsn-1

Associated with dual quermassintegrals, Zhao (see [2]) defined the dual quermassinte-
gral quotient functions of a star body K by

Wi(K)

o (i,j € R). (1.4)

Qi) =
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Further, in [2] the Brunn-Minkowski type inequalities for the dual quermassintegral
quotient functions of star bodies were established as follows.

Theorem A IfK,L € S} and reals i, j satisfyi <n-1<j<n, then

1

1 1 1

i J-t i
Qw,x + 0 = A0 + Ay
Here ¥ is the radial Minkowski sum.

Theorem B IfK,L € S} and reals i, j satisfy i <1 <j <n, then

—
—
—

-l 1=
Lo I

j—i i
Qy,ucin = A0 * Ay

Here ¥ is the radial Blaschke sum.

Theorem C IfK,L € S! and reals i, j satisfy i < -1 <j < n, then
J—i J—i j—i
Q%(K%L) Q\%,,»(K) Q%(L)
+ .
VKiL) — V(K) V()

Here % is the harmonic Blaschke sum.

Motivated by the work of Zhao, we give the following definition of dual mixed quer-
massintegral quotient function.

LetKi ==Ky, ;1=K ,K,;=---=K,, =B, K, =L in (L1), then we write W;(K,L) =
V(K,n —i-1;B,i;L,1), where K appears 7 — [ — 1 times, B appears i times and L appears
1 time. Here, we allow i to be any real and define as follows: For K, L € S/ and i any real,

the dual mixed quermassintegrals, W;(K, L), of K and L are given by
~ 1 .
Wi, = o [ oot St (15)
sn-1

Obviously, from (1.3) and (1.5), we have V~V,~(K LK) = V~Vl~(K )- According to (1.5), we define
the following.

Definition1.1 Let K,L € S} and i,j € R, the dual mixed quermassintegral quotient func-
tion, Qi (k1) of K and L can be defined by

Wi(K, L)

FED (1.6)

QW k.0 =

Obviously, if L = K, then (1.6) is just (1.4).
The aim of this paper is to establish the following Brunn-Minkowski type inequalities
for dual mixed quermassintegral quotient functions of star bodies.

Theorem 1.1 For K,K',Le S}, ifi<n-2<j<n-1,then

L L
J-i j—i J—i .
Q‘TV,-J(K;K’,L) = QVNV,-J'(K,L) * QWL»J-(K’,L)’ (1.7)
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ifn-2<i<n-1<j, then

1 1

i i
Qi = Lyucn + Q

1

b=
Wi (K'.L)° (1.8)

In each case, equality holds if and only if K and K' are dilates. Here ¥ is the radial

Minkowski sum.

Theorem 1.2 For K,K',L € S}, ifi <0 <j<n-1, then

N
—
N
—

<

Q

]

if0<i<n-1<j,then

N
—
—_

Q:

ij

n—
j—i

>
(K¥K',L) = QW,-

1~

)

J-i
i = Quun T Q

w«p+Q

N
i

KL (1.9)

=]

N
—

1,,-(1<’,L)' (1.10)

>

In each case, equality holds if and only if K and K’ are dilates. Here ¥ is the radial Blaschke

sum.

Theorem 1.3 For K,K',L e S}, ifi<-2<j<n-1,then

n+l n+l

Q4 Qf
W;j(K$K',L) W;j(K,L)

n+l
=i

VIKiK) — V(K)
if-2<i<n-1<j, then

n+l n+l

Qf QL
Wij(K+K',L) W (K.L)

VIKAK) — V(K)

Wi (K'.L)

. ; 111
V(K") (1)
n+l
El
Wi, (K',L)

. 1.12
V(K") (112)

In each case, equality holds if and only if K and K' are dilates. Here + is the harmonic

Blaschke sum.

2 Preliminaries

For a compact set K in R” which is star shaped with respect to the origin, we define the

radial function px (%) = p(K, u) of K by

o(K,u) =max{A > 0:Auc K},

ueS L

If px is positive and continuous, K will be called a star body (about the origin). Two star

bodies K and L are said to be dilates (of one another) if px(u#)/p. (1) is independent of

ueS1

For Ki,K; € 8!, and A1, A, > 0 (not both 0), the radial function of the radial Minkowski
linear combination A1 Kj ¥ A, K; is given by Zhang (see [3]):

P(MKy F A Ko, 1) = A p(K1, u) + Ao p(Ky, u).

2.1)

Page 3 of 9
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For Ki,K, € 87, and A, A3 > 0 (not both 0), the radial Blaschke linear combination A, -

Ki ¥ X - K; is a star body whose radial function is given by Lutwak (see [4]):
p(ry - Ky ¥ dg - Koy )"™ = 2y p(Ky, )" + Ao p(Kp, )" (2.2)

For K3, K5 € 87, and A1, A2 > 0 (not both 0), the harmonic Blaschke linear combination

A 0 K % Ap 0 K; is a star body whose radial function is given by Lutwak (see [5]):

p(a oKy ¥ hy o Ko,u)™  p(Ky,u)™  p(Kp, u)"!

- A . 2.3
Vg oK 3 i 0Ky) VK TV 23)

3 Proofs of theorems
According to a generalization of the Dresher inequality (see [6]), we get the reverse

Dresher inequality.

Lemma 3.1 (Dresher’s inequality) Let functions fi,f», 1,82 > 0, E is a bounded measurable
subsetin R". Ifp>1>r >0, then

(3.1)

e - ()

equality holds if and only if filfa = @1/g.

Lemma 3.2 (Reverse Dresher’s inequality) Let functions fi,f>, 1,82 > 0, E is a bounded

measurable subset in R". If1>p >0 >r, then

(kv (L ey (e dey 62

fE(gl + @) dx nglrdx ngZde
equality holds if and only if filf> = g1/g.

Proof of Lemma 3.2 If fi,fo,41,82 > 0, and 1 > p > 0 > r, according to the Minkowski in-
equality,

([o-sra ~(fra) -([re)’
(favera) =(fe) - [ 0]
For1>p>0>r, wehave
[Geras=(([ra) +([ra) Y, 03
/E(gl + &) dx < <</‘;g1’dx>% +</Eg§dx>%>r. (3.4)
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According to the Holder inequality, ’% >1, and (3.3), (3.4),

(M)ﬁ N [«fmx)% +</Eﬁdx>é>p}ﬁ
Jeeverds) =L g0’ + (g0
(pfl 7 + (o ff P17
([, & dx)7 + ([, g5 dn) 17

L

_ [((/Eﬁdx>” )":ﬂ«/ﬁdx)p)p]p

77‘)

() () 7]

1

- </Eﬁpdx>w</5gfdx>p}r + (/Eﬁ’dx)”l’(/fg;dx)”‘l’

i (fEffdx)ﬁ . (jEffdx)ﬁ

Jeaidx Jegdx

According to the equality condition of the Minkowski inequality and the Holder inequality,
equality holds in (3.2) if and only if 1/ = ¢&1/g>. O

Proof of Theorem 1.1 From (2.1), for K,K',L € S/,

~ . 1
Woopa (KFK,L) =~ /

NG

P )pr () dS(w)

= %/5”4 (PK(M) + pk/(u))ppL(u) ds(u)
- / (o (@)pf @) + prc (w)p] ()" dS(u) (35)
n Jgn-1
and
Wi (KFK1) = % /Sn—l (pK(u)'OL% () + PK'(M),OL% ()" dS(u). (3.6)

From (3.1), (3.5), and (3.6), for p > 1 > r > 0, we have

( Wpa (K3 K, L) > o (fsn_l (ox(w)p] () + pr ()] ()P dS(u) ) e
Wi a (KK L) S ok @)of () + pic () pf (1)) dS(u)

5 ( Jona (o)} () dS(u))zir
Jsn1 (ox @) pf (w))" dS(u)

. fsnAm«(u)p{(u))ﬂdsw))ﬁ
Jnr (o @) o () dS ()

_ <fsn1 Pl () pr () S (1) ) =
Jon1 P () pr () dS ()

Page 5 of 9
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. ( Jips 05 () o1 (1) dsw))ﬁ
Jsn1 k(W) pr () dS(u)

( Wpr (K, L) ) 7 ( W,iopa (K, L) ) 7
= =——— +| =———— .

- - (3.7)
Wn—r—l (K’ L) Wn—r—l (K/r L)

According to the equality condition of inequality (3.1), we see that equality holds in (3.7)
ifand only if K and L, K’, and L are dilates, respectively. So K and K’ are dilates.

Leti=n—-p-1,j=n—-r-1,thenp>1>r>0andi<n-2<j<n-1are equivalent.
This and (3.7) yield inequality (1.7) and its equality condition.

Similarly, if 1 > p > 0 > r, according to (3.2), (3.5), and (3.6), we have

( W,y (K 3K, L) ) o ( Wripa (K, L) ) zﬁ ( Wyt (K, L) ) 7 63
-~ _—~ + _— ) .
Wn—r—l (1< ¥ [<,) L) N Wn—r—l (K’ L) Wn—r—l (K/r L)

and equality holds if and only if K and K" are dilates.
Leti=n-p-1,j=n-r—1, then (3.8) gives inequality (1.8) and its equality condition.
O

Proof of Theorem 1.2 From (2.2), for K,K’,L € S)}, we have

l/,,_l Pk s 1) pr () dS(u)

nJs

W, p1 (KK, L)

= % /5n—1 (plré_l(u) + p,”gl(u)) %pL(M) das(u)

P
n-1

! / (P W () + ol o, ()T dS(w) (3.9)
n Jsn-1

and

.y - 1 .
Wit (KK, L) = — / P () () dS(w)
N

n-1
r

: / (p}?l(u)p;%1 () + P (wo,” ()™ dS(u). (3.10)

According to (3.1), (3.9), and (3.10), forp >n-1>r >0,

o
o

1 [ W (KXK', 1) ]5
nep-ta-r1KFKLL) | Yy (K YK, L)

e
S

n-1 1

S (O @), @)+ Pl )y () ds<u>]p—r

L [ (ol @y )+ P )y ()71 dS(u)

IA

[ Js1 (Pl wp,” () dS(u) } =
L [ (0l ), ()77 dS(w)

n-1
P

[ oo p,” @) dS(u)]Zi
Jo (P @), ()71 dS(u)
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n-1

[fsn 1 o () pr (1) dS(u)]_r . [fsnl P (1) pr () dS(u)}z%
Jsn-1 P () pr (1) AS(ue) Jsn1 o () pr () dS(ua)

[\TV (K, L) ]p ; [\J~7,1_10_1(1<’,L)]13‘l
T~ + —_—~
W I(K L) Wn—r—1(1<,rL)

= Qg

._.

n-1

+ Q&7
W—p 1n—r-1 (KL) W—p lnrl(K L)

Then

-1

E
L
ik

n-1l
p-r

ol < v
QW n-p-1,n-r-1 1(K¥KL) — QWn—p—l,n—r—l(K;L) + QW n—p-1,n—r- ~1(K7,L)" (3'11)

According to the equality condition of inequality (3.1), we see that equality holds in (3.11)
if and only if K and K’ are dilates.

Leti=n-p-landj=n-r-1,thenp>n-1>r>0andi <0 <j<n-1areequivalent.
This and (3.11) yield inequality (1.9) and its equality condition.

Similarly, if n =1 > p > 0 > r, according to (3.2), (3.9), and (3.10), we have

~ -, L ~ L ~ , L
(%W%WTKLDP Z<%w4mmvp +C%%JKJ»p’ 612)
Wn—r—l (1< + I</r L) Wn—r—l (I(r L) Wn—r—l (K/’ L)

and equality holds if and only if K and K” are dilates.
Leti=n—-p-1andj=n-r-1,then (3.12) gives inequality (1.10) and its equality

condition. O

Proof of Theorem 1.3 From (2.3), for K,K’,L € S¥,

\77,,_,,_1(1<$1</,L)= 1 / PO+ 1o () pr (14) as(w)
S

V(KK /) w1 V(K 3 K')p/0)

1 n+l , %
B ;/SH(%) pr(m) dS(u)

= 1 pligrl(u) /)K/l(u)
- ;/Sn 1( V(K) * V(K') ) or(u)dS(u)

i ( RN ) e )%dS(u) (313)
Sn 1

V(K) V(K)
and
W (K3KLD 1 [ (o we, ) e W)
VK /( v T V) ) st G

According to (3.1), (3.13), and (3.14), forp > n+1>r> 0,

~ n+l
;%1 _ Wn—p—l(K‘T'K/xL) pr
Wnp-tmra GHKD =\ 7, (K 3K, L)
n+1( )

n+1 P+ pK, 17 ) n+l
fsn 1( V(K) p ( ) VK pL ( ))”+1 ds(u)]pr

n+1 p[fé/ (u)

fsn 1( V(K) IOL ( ) (K’ 'OL (u))”+1 dS(I/l)

Vwﬁfﬂ
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V(s )[fsm K, ) dsw)]“‘
S (VI p2 o, ()71 dS(u)
VK K) Joa (V(K') lp’“l(u)pi (u)) 1 dS(u)]?fi
Ssra (VK)o (), ™ ()71 dS (us)
VKK [ fS,H(V(K)*)%pz(u)m(u) dS(u)]Zi
Jsna (V(K)™) 5T pg () pr () dS (ue)

+V(KK) [fs” - V(K”’l)%p,’i/(u)m(u) ds(u>]z*1
fsn (VK- n+1 Pk/(u)pL(u) dS(u)

_ VKK (fsn_l ) pr () S () ) P

V(KK (fsm P () pr (1) dS(w) ) b
VK \ fguor pi (0) pr (1) dS (us)

_ VK5K) < wp-1(K, L))p—
VK) \ W, (K, L)

V(K+K’)( 1 (K, L))
V(I(/) n—r—l (1</: )
n+l n+l
p-r p-r
QWn —p-1,n—r- 1(K,L) + QWn —p-1,n—r- 1(K7,L)
V(K) V(K" ’

_ v(1<¢1<)<

n+l n+l n+l
QL' QL' QL'
Wn—p—l,n—r—l(K‘?'K/'L) W n-p-l,n-r-1 1(K,L) Wn—p—l,n—r—l(K/;L)

VKIKY - VK V(K

According to the equality condition of inequality (3.1), we see that equality holds in (3.15)

if and only if K and K’ are dilates.

Leti=n-p-landj=n-r—1,thenp>n+1>r>0andi<-2 <j<n-1areequivalent.

This and (3.15) yield inequality (1.11) and its equality condition.
If n+1>p>0>r,according to (3.2), (3.13), and (3.14), we have

1 +1

=

n+l n+l
p P
Q"i/ n-p-1l,n-r-1 (1<‘;K/vL) Q n-p-l,n-r-1 1(KL) + QVN(/ n-p-1l,n—-r— 1(K7,L)
VIK3K) — ~ V(K) V(K')

’

with equality if and only if K and K’ are dilates.

Leti=n—-p-1andj=n-r-1,then (3.16) gives inequality (1.12) and its equality

condition.
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