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Abstract
In this article, we extend general fuzzy normed spaces to fuzzy β-normed spaces and
adopt the fixed point and direct methods to prove the Hyers-Ulam-Rassias stability of
the quartic functional equation f (2x + y + z) + f (2x + y – z) + f (2x – y + z) + f (–2x + y +
z) + f (2y) + f (2z) = 8[f (x + y) + f (x – y) + f (x + z) + f (x – z)] + 2[f (y + z) + f (y – z)] + 32f (x)
in fuzzy β-normed spaces.
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1 Introduction
In , Ulam [] asked the following question concerning the stability of group homo-
morphisms: Under what condition is there an additive mapping near an approximately
additive mapping between a group and a metric group?

In the next year, Hyers [] gave a positive answer to the above question for additive
groups under the assumption that the groups are Banach spaces. In , Rassias [] ex-
tended the theorem of Hyers by considering the unbounded Cauchy difference. Gǎvruta
[] proved the Hyers-Ulam-Rassias stability with the generalized control function. This
stability result is called the Hyers-Ulam-Rassias stability of functional equations. Rassias
[] first introduced the quartic functional equation

f (x + y) + f (x – y) + f (x) = 
[
f (x + y) + f (x – y) + f (y)

]

and solved the Ulam stability problem of the function. Later Sahoo and Chung [], and
Lee et al. [] remodified Rassias’ equation and obtained its general solution.

Pinsker [] characterized orthogonally additive functionals on an inner product space.
The orthogonal Cauchy functional equation

f (x + y) = f (x) + f (y), x ⊥ y
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in which ⊥ is an abstract orthogonality relation, was first investigated by Gudder and
Strawther []. Ger and Sikorska discussed the orthogonal stability of the orthogonal
Cauchy functional equation in [].

Park [] proved the Hyers-Ulam-Rassias stability of the orthogonality quartic func-
tional equation

f (x + y) + f (x – y) + f (x) = 
[
f (x + y) + f (x – y) + f (y)

]
, x ⊥ y

where ⊥ is the orthogonality in the sense of Rätz.
Let us recall the orthogonality in the sense of Rätz [].

Definition . ([]) Suppose X is a real vector space with dim X ≥  and ⊥ is a binary
relation on X with the following properties:

(O) totality of ⊥ for zero: x ⊥ ,  ⊥ x for all x ∈ X ;
(O) independence: if x, y ∈ X – {}, then x, y are linearly independent;
(O) homogeneity: if x, y ∈ X , x ⊥ y, then αx ⊥ βy for all α,β ∈R;
(O) the Thalesian property: if P is a -dimensional subspace of X, x ∈ P and λ ∈ R+, which

is the set of nonnegative real numbers, then there exists y ∈ P such that x ⊥ y and
x + y ⊥ λx – y.

The pair (X,⊥) is called an orthogonality space. By an orthogonality normed space we
mean an orthogonality space having a normed structure.

Arunkumar et al. [] proved that a mapping f : X → Y satisfies the functional equation

f (x + y + z) + f (x + y – z) + f (x – y + z) + f (–x + y + z) + f (y) + f (z)

= 
[
f (x + y) + f (x – y) + f (x + z) + f (x – z)

]
+ 

[
f (y + z) + f (y – z)

]
+ f (x) (.)

if and only if the mapping f : X → Y is quartic. Moreover, they proved the Hyers-Ulam-
Rassias stability of the quartic functional equation (.) in orthogonality normed spaces.

Katsaras [] defined a fuzzy norm on a vector space to construct a fuzzy vector topo-
logical structure on the space. Some mathematicians have defined fuzzy norms of a vector
space from various points of view (see [–]).

Bag and Samanta [], following Cheng and Mordeson [], gave an idea of fuzzy norm
in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek [].

A number of mathematicians have extensively investigated the stability problems of sev-
eral functional equations, and they obtained many interesting results concerning the prob-
lem (for instance [–]).

In this article, we extend general fuzzy normed spaces to fuzzy β-normed spaces and
prove the Hyers-Ulam-Rassias stability of the orthogonally quartic functional equation
(.) in this kind of spaces by two different methods: the fixed point and direct methods.

Now we introduce the concept of a fuzzy β-normed vector space and associated concept
of a fuzzy β-norm, followed by some examples to show the validity of the notion.

Definition . Let X be a real vector space. A function Nβ : X × R → [, ] is called a
fuzzy β-norm on X with  < β ≤  if for all x, y ∈ X and s, t ∈R,
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(N) Nβ (x, t) =  for t ≤ ;
(N) x =  if and only if Nβ (x, t) =  for all t > ;
(N) Nβ (cx, t) = Nβ (x, t

|c|β ) if c �= ;
(N) Nβ (x + y, s + t) ≥ min{Nβ(x, s), Nβ(y, t)};
(N) Nβ (x, ·) is a non-decreasing function of R and limt→∞ Nβ (x, t) = ;
(N) for x �= , Nβ (x, ·) is continuous on R.

The pair (X, Nβ ) is called a fuzzy β-normed vector space.

We remark that when β = , (X, Nβ ) is fuzzy normed space (X, N).

Example . Let (X,‖ · ‖β ) ( < β ≤ ) be a β-normed linear space and α,γ > . Then

Nβ (x, t) =

⎧
⎨

⎩

αt
αt+γ ‖x‖β

, t > , x ∈ X;

, t ≤ , x ∈ X,

is a fuzzy β-norm on X.

Proof (N), (N), and (N) are obviously true.
Notice that for any t ∈R, t > , and c �= 

Nβ (cx, t) =
αt

αt + γ ‖cx‖β

=
αt

αt + γ |c|β‖x‖β

=
α · t

|c|β
α · t

|c|β + γ ‖x‖β

= Nβ

(
x,

t
|c|β

)
,

which implies that (N) holds.
To prove (N), let s > , t > , we assume that Nβ (x, s) ≥ Nβ (y, t), thus

Nβ (x, s) – Nβ (y, t) =
αs

αs + γ ‖x‖β

–
αt

αt + γ ‖y‖β

=
αs(αt + γ ‖y‖β ) – αt(αs + γ ‖x‖β )

(αs + γ ‖x‖β )(αt + γ ‖y‖β )

=
αγ s‖y‖β – αγ t‖x‖β

(αs + γ ‖x‖β )(αt + γ ‖y‖β )
≥ ,

we can get

αγ
(
s‖y‖β – t‖x‖β

) ≥ .

We have by the above inequality

Nβ (x + y, s + t) – Nβ (y, t) =
α(s + t)

α(s + t) + γ ‖x + y‖β

–
αt

αt + γ ‖y‖β

≥ α(s + t)
α(s + t) + γ ‖x‖β + γ ‖y‖β

–
αt

αt + γ ‖y‖β

=
α(s + t)(αt + γ ‖y‖β )

[α(s + t) + γ ‖x‖β + γ ‖y‖β ](αt + γ ‖y‖β )
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–
αt[α(s + t) + γ ‖x‖β + γ ‖y‖β ]

[α(s + t) + γ ‖x‖β + γ ‖y‖β ](αt + γ ‖y‖β )

=
αγ (s‖y‖β – t‖x‖β )

[α(s + t) + γ ‖x‖β + γ ‖y‖β ](αt + γ ‖y‖β )
≥ .

So,

Nβ (x + y, s + t) ≥ Nβ (y, t).

Similarly, from Nβ (y, t) ≥ Nβ (x, s), we can obtain

Nβ (x + y, s + t) ≥ Nβ (x, s).

Therefore, Nβ (x + y, s + t) ≥ min{Nβ (x, s), Nβ(y, t)} and (N) hold.
For any t, t ∈R, and t ≥ t,

Nβ (x, t) – Nβ (x, t) =
αt

αt + γ ‖x‖β

–
αt

αt + γ ‖x‖β

=
αt(αt + γ ‖x‖β ) – αt(αt + γ ‖x‖β )

(αt + γ ‖x‖β )(αt + γ ‖x‖β )

=
(t – t)αγ ‖x‖β

(αt + γ ‖x‖β )(αt + γ ‖x‖β )
≥ .

So Nβ(x, ·) is a non-decreasing function of R, which proves (N). �

Definition . Let (X, Nβ ) be a fuzzy β-normed vector space. A sequence {xn} in X is said
to be convergent or converge if there exists an x ∈ X such that limn→∞ Nβ (xn – x, t) =  for
all t > . In this case, x is called the limit of the sequence {xn} in X and we denote Nβ -
limn→∞ xn = x.

Definition . Let (X, Nβ) be a fuzzy β-normed vector space. A sequence {xn} in X is
called Cauchy if for each ε >  and each t >  there exists an n ∈N such that for all n ≥ n

and all p > , we have Nβ (xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy β-normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy β-norm is said to be com-
plete and the fuzzy β-normed vector space is called a complete fuzzy β-normed space.

Example . Let N : X ×R → [, ] be a fuzzy β-norm on R defined by

Nβ (x, t) =

⎧
⎨

⎩

t
t+|x|β , t > ;

, t ≤ .

Then (R, Nβ ) is a complete fuzzy β-normed space.
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Proof Let {xn} be a Cauchy sequence inR, δ > , and ε = δβ

+δβ . Then there exist some m ∈N

such that for all n ≥ m and all p > ,


 + |xn+p – xn|β ≥  – ε.

So |xn+p – xn|β < δ for all n ≥ m and all p > . Therefore {xn} is a Cauchy sequence in
(R, | · |β ). Let xn → x ∈R as n → ∞. Then limn→∞ Nβ (xn – x, t) =  for all t > . The rest
of the proof is similar to the proof of Example .. �

Definition . Let X be a set. A function d : X ×X → [,∞] is called a generalized metric
on X if and only if d satisfies

(M) d(x, y) =  if and only if x = y;
(M) d(x, y) = d(y, x) for all x, y ∈ X ;
(M) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem . ([]) Let (X, d) be a generalized complete metric space and J : X → X be a
strictly contractive mapping with Lipschitz constant L < . Then, for all x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
(i) d(Jnx, Jn+x) < ∞ for all n ≥ n;

(ii) the sequence {Jnx} converges to a fixed point x∗ of J ;
(iii) x∗ is the unique fixed point of J in the set X∗ = {y ∈ X|d(Jn x, y) < ∞};
(iv) d(y, x∗) ≤ 

–L d(Jy, y) for all y ∈ X∗.

Definition . An even mapping f : X → Y is called an orthogonally quartic mapping if

f (x + y + z) + f (x + y – z) + f (x – y + z) + f (–x + y + z) + f (y) + f (z)

= 
[
f (x + y) + f (x – y) + f (x + z) + f (x – z)

]
+ 

[
f (y + z) + f (y – z)

]
+ f (x)

for all x, y, z ∈ X with x ⊥ y, y ⊥ z and z ⊥ x in the sense of Rätz.

2 Fuzzy stability of the orthogonally quartic functional equation: fixed point
method

In this section, using the fixed point method, we prove the Hyers-Ulam-Rassias stability
of the quartic functional equation in complete fuzzy β-normed spaces.

Definition . Let (X,⊥) be a real orthogonality vector space and (Y , Nβ ) be a complete
fuzzy β-normed space, where  < β ≤ . Define a difference operator Df : X → Y by

Df (x, y, z) = f (x + y + z) + f (x + y – z) + f (x – y + z) + f (–x + y + z) + f (y)

+ f (z) – 
[
f (x + y) + f (x – y) + f (x + z) + f (x – z)

]

– 
[
f (y + z) + f (y – z)

]
– f (x)

for all x, y, z ∈ X with x ⊥ y, y ⊥ z, and z ⊥ x in the sense of Rätz.



Yang et al. Journal of Inequalities and Applications  (2015) 2015:342 Page 6 of 14

Theorem . Let (X,⊥) be a real orthogonality vector space, (Y , Nβ ) be a complete fuzzy β-
normed space with  < β ≤ , and ϕ : X → [,∞) be a function and there exists a constant
L,  < L < , such that

ϕ(x, y, z) ≤ βLϕ(x, y, z) (.)

for all x, y, z ∈ X, with x ⊥ y, y ⊥ z, and z ⊥ x. Assume that a mapping f : X → Y is an even
mapping satisfying f () =  and the inequality

Nβ

(
Df (x, y, z), t

) ≥ t
t + ϕ(x, y, z)

(.)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x. Then there is a unique orthogonally
quartic mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ β ( – L)t
β ( – L)t + ϕ(, x, )

(.)

for all x ∈ X, t > .

Proof From (.), we get

ϕ
(
nx, ny, nz

) ≤ nβLnϕ(x, y, z) (.)

for all x, y, z ∈ X, with x ⊥ y, y ⊥ z, and z ⊥ x. Replacing (x, y, z) by (, x, ) in (.), we get

Nβ

(
f (x) – f (x), t

) ≥ t
t + ϕ(, x, )

(.)

for all x ∈ X and all t > . From (N), we get

Nβ

(



f (x) – f (x),


β

t
)

≥ t
t + ϕ(, x, )

(.)

for all x ∈ X and all t > .
If we define

E =
{

h : X → Y
∣∣h() = 

}

and introduce a generalized metric on E as follows:

d(g, h) = inf

{
μ ∈ [,∞]

∣
∣∣Nβ

(
g(x) – h(x),μt

) ≥ t
t + ϕ(, x, )

, x ∈ X, t > 
}

,

then (E, d) is complete (see[]).
We define an operator J : E → E by

(Jh)(x) =



h(x)

for all x ∈ X.
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First, we assert that J is strictly contractive on E. Given g, h ∈ E, let d(g, h) = α. Then

Nβ

(
g(x) – h(x),αt

) ≥ t
t + ϕ(, x, )

for all x ∈ X and all t > . Hence

Nβ

(
(Jg)(x) – (Jh)(x),αLt

)
= Nβ

(



g(x) –




h(x),αLt
)

= Nβ

(
g(x) – h(x), βαLt

)

≥ βLt
βLt + ϕ(, x, )

≥ t
t + ϕ(, x, )

for all x ∈ X and all t > , so, d(Jg, Jh) ≤ αL. Then we conclude that d(Jg, Jh) ≤ Ld(g, h) for
all g, h ∈ E.

Next, we assert that d(Jf , f ) < ∞. From (.), we get

Nβ

(
(Jf )(x) – f (x),


β

t
)

≥ t
t + ϕ(, x, )

for all x ∈ X and all t > , i.e.,

d(Jf , f ) ≤ 
β

< ∞. (a)

Now, it follows from Theorem .(ii) that there exists a function Q : X → Y with Q() =
, which is a fixed point of J (i.e., J(x) = J(x)), such that Jnf → Q, namely,

Q(x) = lim
n→∞

f (nx)
n (b)

for all x ∈ X.
Since the integer n of Theorem .(i) is  and f ∈ E∗ (see Theorem .(iii) for the defi-

nition of X∗), by (iv) of Theorem . and (a), we get

d(f , Q) ≤ 
 – L

d(Jf , f ) ≤ 
β


 – L

(c)

for all x ∈ X. So,

Nβ

(
f (x) – Q(x),


β


 – L

t
)

≥ t
t + ϕ(, x, )

,

then the inequality (.) is true for all x ∈ X, t > .
From (.) and (.) we have

Nβ

(


n Df
(
nx, ny, nz

)
,

t
nβ

)
≥ t

t + ϕ(nx, ny, nz)
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for all x, y, z ∈ X, t >  with x ⊥ y, y ⊥ z, and z ⊥ x and n ∈ N, since nx ⊥ ny, ny ⊥ nz,
and nz ⊥ nx. So, from (.), we get

Nβ

(


n Df
(
nx, ny, nz

)
, t

)
≥ nβ t

nβ t + nβLnϕ(x, y, z)
,

then

Nβ

(


n f
(
n(x + y + z)

)
+


n f

(
n(x + y – z)

)
+


n f

(
n(x – y + z)

)

+


n f
(
n(–x + y + z)

)
+


n f

(
n(y)

)
+


n f

(
n(z)

)

– 
[


n f

(
n(x + y)

)
+


n f

(
n(x – y)

)
+


n f

(
n(x + z)

)
+


n f

(
n(x – z)

)]

– 
[


n f

(
n(y + z)

)
+


n f

(
n(y – z)

)
]

–  × 
n f

(
n(x)

)
, t

)

≥ t
t + Lnϕ(x, y, z)

for all x, y, z ∈ X, t >  with x ⊥ y, y ⊥ z, and z ⊥ x and n ∈N. Since

lim
n→∞

t
t + Lnϕ(x, y, z)

= 

for all x, y, z ∈ X, t >  with x ⊥ y, y ⊥ z, and z ⊥ x, we obtain

Q(x + y + z) + Q(x + y – z) + Q(x – y + z) + Q(–x + y + z) + Q(y) + Q(z)

= [Q(x + y) + Q(x – y) + Q(x + z) + Q(x – z)] + [Q(y + z) + Q(y – z)] + Q(x)

for all x, y, z ∈ X, t >  with x ⊥ y, y ⊥ z, and z ⊥ x.
Assume that the inequality (.) is also satisfied with another quartic function Q′ : X →

Y besides Q. Q′ satisfies Q′ (x) = (/)Q′ (x) = (JQ′ )(x) for all x ∈ X, and Q′ is a fixed point
of J . From (.) and the definition of d, we can get

d
(
f , Q

′) ≤ 
β


 – L

< ∞,

then

d
(
Jf , Q

′) ≤ d(Jf , f ) + d
(
f , Q

′) ≤ 
β

+


β


 – L

< ∞.

So, Q′ ∈ E∗ = {y ∈ E|d(Jf , y) < ∞}. (In view of (a), the integer n of Theorem .(i) is .)
Thus, Theorem .(ii) implies that Q = Q′ . This proves the uniqueness of Q. The proof is
complete. �

Corollary . Let θ ≥ , p be a real positive number with p < , and (X,⊥) be a real
orthogonality vector space with β-norm ‖ · ‖β with  < β ≤ . Assume that f : X → Y is an
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even mapping satisfying f () =  and the inequality

Nβ

(
Df (x, y, z), t

) ≥ t
t + θ (‖x‖p

β + ‖y‖p
β + ‖z‖p

β )
(.)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x. Then there is a unique orthogonally
quartic mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ (β – pβ )t
(β – pβ )t + θ‖x‖p

β

for all x ∈ X, t > .

Proof From Theorem . by taking ϕ(x, y, z) = θ (‖x‖p
β +‖y‖p

β +‖z‖p
β ) for all x, y, z ∈ X, t > ,

with x ⊥ y, y ⊥ z, and z ⊥ x, and choosing L = ( p

 )β we can get the desired result. �

Theorem . Let (X,⊥) be a real orthogonality vector space and (Y , Nβ ) be a complete
fuzzy β-normed space with  < β ≤ . Assume that ϕ : X → [,∞) is a function and there
exists a constant L,  < L < , such that

ϕ

(
x


,
y


,
z


)
≤ L

β
ϕ(x, y, z) (.)

for all x, y, z ∈ X, with x ⊥ y, y ⊥ z, and z ⊥ x. If a mapping f : X → Y is an even mapping
satisfying f () =  and (.) for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x, there is a
unique orthogonally quartic mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ β (L– – )t
β (L– – )t + ϕ(, x, )

(.)

for all x ∈ X, t > .

Corollary . Let θ ≥  and p be a real positive number with p >  and (X,⊥) be a real
orthogonality vector space with β-norm ‖ · ‖β with  < β ≤ . If f : X → Y is an even map-
ping satisfying f () =  and (.) for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x, there
is a unique orthogonally quartic mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ (pβ – β )t
(pβ – β )t + θ‖x‖p

β

for all x ∈ X, t > .

3 Fuzzy stability of the orthogonally quartic functional equation: direct
method

In this section, we assume that (X,⊥) is a real orthogonality vector space, (Y , Nβ ) is a
complete fuzzy β-normed space with  < β ≤  and (Z, N ′

β ) is a fuzzy β-normed space.

Theorem . Assume that a mapping f : X → Y is an even mapping satisfying the in-
equality

Nβ

(
Df (x, y, z), t

) ≥ N
′
β

(
ϕ(x, y, z), t

)
(.)
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and f () =  for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x, and ϕ : X → Z is a
mapping such that

N
′
β

(
ϕ

(
x


,
y


,
z


)
, t

)
≥ N

′
β

(
ϕ(x, y, z),

t
αβ

)
(.)

for some constant α ∈ R with  < α < 
 , and all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z and

z ⊥ x. Then there is a unique orthogonally quartic mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ N
′
β

(
ϕ(, x, ),

(
α–β – β

)
t
)

(.)

for all x ∈ X, t > .

Proof It follows from (.) that

N
′
β

(
ϕ

(
x
j ,

y
j ,

z
j

)
, t

)
≥ N

′
β

(
ϕ(x, y, z),

t
αβj

)
(.)

for all x, y, z ∈ X, t > , and any integers j ≥ , with x ⊥ y, y ⊥ z, and z ⊥ x. Replacing (x, y, z)
by (, x, ) in (.), Since  ⊥ x, we get

Nβ

(
f (x) – f (x), t

) ≥ N
′
β

(
ϕ(, x, ), t

)
(.)

for all x ∈ X and all t > . Replacing x by x
 in (.)

Nβ

(
f (x) – f

(
x


)
, t

)
≥ N

′
β

(
ϕ

(
,

x


, 
)

, t
)

(.)

for all x ∈ X and all t > . Replacing x by x
j in (.)

Nβ

(
f
(

x
j

)
– f

(
x

j+

)
, t

)
≥ N

′
β

(
ϕ

(
,

x
j+ , 

)
, t

)
(.)

for all x ∈ X and all t > . Now from (N) and (.), we get

Nβ

(
jf

(
x
j

)
– j+f

(
x

j+

)
, βjt

)
≥ N

′
β

(
ϕ

(
,

x
j+ , 

)
, t

)

for all x ∈ X and all t > . It follows from (.) that

Nβ

(
jf

(
x
j

)
– j+f

(
x

j+

)
, βjt

)
≥ N

′
β

(
ϕ(, x, ),

t
αβ(j+)

)
(.)

for all x ∈ X and all t > , namely,

Nβ

(
jf

(
x
j

)
– j+f

(
x

j+

)
, βjαβ(j+)t

)
≥ N

′
β

(
ϕ(, x, ), t

)
(.)
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for all x ∈ X and all t > . So

Nβ

(

nf
(

x
n

)
– f (x),

n–∑

j=

βjαβ(j+)t

)

= Nβ

( n–∑

j=

(
j+f

(
x

j+

)
– jf

(
x
j

))
,

n–∑

j=

βjαβ(j+)t

)

≥ min
≤j≤n–

{
Nβ

(
j+f

(
x

j+

))
– jf

(
x
j

)
, βjαβ(j+)t

}

≥ N
′
β

(
ϕ(, x, ), t

)
, (.)

which yields

Nβ

(

n+pf
(

x
n+p

)
– pf

(
x
p

)
,

n–∑

j=

β(p+)αβ(j+p+)t

)

= Nβ

( n–∑

j=

(
p+jf

(
x

p+j

)
– p+j+f

(
x

p+j+

))
,

n–∑

j=

β(p+j)αβ(p+j+)t

)

≥ min
≤j≤n–

{
Nβ

(
p+jf

(
x

p+j

))
– p+j+f

(
x

p+j+

)
, β(p+j)αβ(p+j+)t

}

≥ N
′
β

(
ϕ(, x, ), t

)

for all x ∈ X, t > , and n > , p ≥ . So,

Nβ

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
, t

)
≥ N

′
β

(
ϕ(, x, ),

t
∑n–

j= β(p+j)αβ(p+j+)

)
(.)

for all x ∈ X, t > , and n > , p ≥ . Since the series
∑n–

j= βjαβj is convergent, we see
by taking the limit p → ∞ in the last inequality that the sequence {nf ( x

n )} is a Cauchy
sequence in the complete fuzzy β-normed space(Y , Nβ), so it converges in Y . We define a
mapping Q : X → Y by Q(x) = Nβ-limn→∞ nf ( x

n ) for all x ∈ X. It means that

lim
n→∞ Nβ

(
Q(x) – nf

(
x
n

)
, t

)
= 

for all x ∈ X, t > .
Replacing x, y, z by nx, ny, nz in (.), respectively, we get

Nβ

(
Df

(
x
n ,

y
n ,

z
n

)
, t

)
≥ N

′
β

(
ϕ

(
x
n ,

y
n ,

z
n

)
, t

)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x and all n ∈ N. Since x
n ⊥ y

n , y
n ⊥ z

n ,
and z

n ⊥ x
n , we have

Nβ

(
nDf

(
x
n ,

y
n ,

z
n

)
, nβ t

)
≥ N

′
β

(
ϕ

(
x
n ,

y
n ,

z
n

)
, t

)
,
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namely,

Nβ

(
nDf

(
x
n ,

y
n ,

z
n

)
, t

)
≥ N

′
β

(
ϕ

(
x
n ,

y
n ,

z
n

)
,

t
nβ

)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x and all n ∈N. From (.), we get

Nβ

(
nDf

(
x
n ,

y
n ,

z
n

)
, t

)
≥ N

′
β

(
ϕ(x, y, z),

t
(α)nβ

)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x and all n ∈N. So

Nβ

(
nf

(
x + y + z

n

)
+ nf

(
x – y + z

n

)
+ nf

(
x – y + z

n

)

+ nf
(

–x + y + z
n

)
– 

[
nf

(
x + y

n

)
+ nf

(
x – y

n

)

+ nf
(

x + z
n

)
+ nf

(
x – z

n

)]

– 
[

nf
(

y + z
n

)
+ nf

(
y – z
n

)]
–  × nf

(
x
n

)
, t

)

≥ N
′
β

(
ϕ(x, y, z),

t
(α)nβ

)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x and all n ∈N. Since

lim
n→∞ N

′
β

(
ϕ(x, y, z),

t
(α)nβ

)
= 

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x and all n ∈N, we get

Nβ

(
Q(x + y + z) + Q(x + y – z) + Q(x – y + z) + Q(–x

+ y + z) + Q(y) + Q(z) – 
[
Q(x + y) + Q(x – y) + Q(x + z)

+ Q(x – z)
]

– 
[
Q(y + z) + Q(y – z)

]
– Q(x), t

)
= 

for all x, y, z ∈ X, t >  with x ⊥ y, y ⊥ z, and z ⊥ x. So, we get Q : X → Y is a quartic
mapping.

Since f (x) is an even mapping, Q(x) is an even mapping, the mapping Q : X → Y is an
orthogonally quartic mapping.

Letting n → ∞ in (.), we get the inequality (.).
To prove the uniqueness of Q, let L : X → Y be another orthogonally quartic mapping

satisfying (.). We have

Nβ

(
Q(x) – L(x), t

)

= Nβ

(
nQ

(
x
n

)
– nL

(
x
n

)
, t

)

≥ min

{
Nβ

(
nQ

(
x
n

)
– nf

(
x
n

)
, t

)
, Nβ

(
nf

(
x
n

)
– nL

(
x
n

)
, t

)}



Yang et al. Journal of Inequalities and Applications  (2015) 2015:342 Page 13 of 14

≥ min

{
N

′
β

(
ϕ

(
,

x
n , 

)
,

(α–β – β )t
 · nβ

)
, N

′
β

(
ϕ

(
,

x
n , 

)
,

(α–β – β )t
 · nβ

)}

≥ N
′
β

(
ϕ(, x, ),

(α–β – β )t



(α)nβ

)
,

which tends to  as n → ∞, for all x ∈ X, t > , and all n ∈N. So Q : X → Y is unique. This
completes the proof. �

Corollary . Let θ ≥ , p be a real positive number with p > , (X,⊥) be a real orthogo-
nality vector space with norm ‖·‖ with  < β ≤  and (R, N ′ ) be a complete fuzzy β-normed
space. If f : X → Y is an even mapping satisfying f () =  and the inequality

Nβ

(
Df (x, y, z), t

) ≥ N
′
β

(
θ
(‖x‖p + ‖y‖p + ‖z‖p), t

)
(.)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x, there is a unique orthogonally quartic
mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ N
′
β

(
ϕ(, x, ),

(
pβ – β

)
t
)

for all x ∈ X, t > .

Proof From Theorem . by taking ϕ(x, y, z) = θ (‖x‖p + ‖y‖p + ‖z‖p) for all x, y, z ∈ X, t > ,
with x ⊥ y, y ⊥ z, and z ⊥ x, and choosing α = –pβ we get the desired result. �

Theorem . Assume that a mapping f : X → Y is an even mapping satisfying the inequal-
ity (.) and f () =  for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x. Let ϕ : X → Z be
a mapping for which there is a constant α ∈ R satisfying  < α <  such that

N
′
β

(
ϕ(x, y, z),αβt

) ≥ N
′
β

(
ϕ

(
x


,
y


,
z


)
, t

)

for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z and z ⊥ x. Then there is a unique orthogonally
quartic mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ N
′
β

(
ϕ(, x, ),

(
β – αβ

)
t
)

for all x ∈ X, t > .

Corollary . Let θ ≥ , p be a real positive number with  > p > , (X,⊥) be a real or-
thogonality vector space with norm ‖ · ‖ with  < β ≤  and (R, N ′ ) be a complete fuzzy β-
normed space. If f : X → Y is an even mapping satisfying the inequality (.) and f () = 
for all x, y, z ∈ X, t > , with x ⊥ y, y ⊥ z, and z ⊥ x, there is a unique orthogonally quartic
mapping Q : X → Y such that

Nβ

(
f (x) – Q(x), t

) ≥ N
′
β

(
ϕ(, x, ),

(
β

)
t – pβ

)

for all x ∈ X, t > .
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