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1 Introduction

The study of generalized Calder6n-Zygmund operators and strongly singular non-
convolution operators originated in the classical Calderén-Zygmund operator. The theory
of the Calder6n-Zygmund operator was one of the important achievements of classical
analysis in the last century, and it has many important applications in Fourier analysis,
complex analysis, operator theory and so on.

The introduction of the strongly singular Calder6n-Zygmund operator is motivated by
a class of multiplier operators whose symbol is given by e/é/"/|£|# away from the origin,
0 <a<1, B >0. Fefferman and Stein [1] enlarged the multiplier operators onto a class
of convolution operators. Coifman [2] also considered a related class of operators for
n = 1. The strongly singular non-convolution operator, whose properties are similar to
those of the classical Calderén-Zygmund operator, but the kernel is more singular near
the diagonal than that of the standard one, was introduced by Alvarez and Milman in [3].
Furthermore, following a suggestion of Stein, the authors in [3] showed that the pseudo-
differential operator with symbol in the Hérmander class S;fs» where 0 < § <« <1 and
n(l — «)/2 < B < n/2, is included in the strongly singular Calderén-Zygmund operator.
Thus, the strongly singular Calderén-Zygmund operator correlates closely with both the
theory of Calderén-Zygmund singular integrals in harmonic analysis and the theory of
pseudo-differential operators in partial differential equations.

Suppose that T is a strongly singular Calderén-Zygmund operator or a generalized
Calder6n-Zygmund operator, whose strict definitions will be given later, and b is a lo-
cally integrable function on R”. The commutator [b, T] generated by b and T is defined as
follows:

[6, T1(f)(x) = b(x) If (x) - T (bf ) (x).
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In 1986, Alvarez and Milman [3, 4] discussed the boundedness of the strongly singular
Calder6n-Zygmund operator on Lebesgue spaces. In 2006, in [5], the behavior of Toeplitz
operators related to strongly singular Calderén-Zygmund operators and Lipschitz func-
tions was discussed on Lebesgue spaces. Furthermore, in 2007, Lin and Lu [6] proved the
boundedness of the commutators of strongly singular Calderén-Zygmund operators on
Hardy type spaces. In 2008, the authors in [7] obtained two kinds of endpoint estimates for
strongly singular Calderén-Zygmund operators. And the pointwise estimate for the sharp
maximal function of commutators generated by strongly singular Calderén-Zygmund op-
erators and BMO functions was also established.

In 2007, the authors in [8] obtained the boundedness of generalized Calderén-Zygmund
operators on weighted Lebesgue spaces and weighted Hardy spaces. In 2011, the point-
wise estimates for the sharp maximal functions of commutators generated by generalized
Calderén-Zygmund operators and BMO functions or Lipschitz functions were established
in [9].

The classical Morrey spaces which were introduced by Morrey in [10] came from [10, 11]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, one can refer to [10,
12]. In 1987, Chiarenza and Frasca [13] proved the boundedness of the Hardy-Littlewood
maximal operator, the fractional integral operator and the Calderén-Zygmund singular
integral operator on Morrey spaces. In 2010, Fu and Lu [14] established the bounded-
ness of weighted Hardy operators and their commutators on Morrey spaces. Lin [9, 15]
discussed the commutators of strongly singular Calderén-Zygmund operators and gener-
alized Calder6n-Zygmund operators on Morrey spaces, respectively.

In 2009, Komori and Shirai [16] defined the weighted Morrey spaces and studied the
boundedness of the Hardy-Littlewood maximal operator, the fractional integral oper-
ator and the classical Calder6n-Zygmund singular integral operator on these weighted
spaces. In 2012, Wang [17] researched the behavior of commutators generated by classical
Calderén-Zygmund operators and weighted Lipschitz functions or weighted BMO func-
tions on weighted Morrey spaces. In 2013, the authors in [18] proved the boundedness of
some sublinear operators and their commutators on weighted Morrey spaces. In 2014, Lin
and Sun [19] established the boundedness of commutators generated by strongly singular
Calder6n-Zygmund operators and weighted BMO functions on weighted Morrey spaces.
In 2015, the authors in [20] studied the properties of commutators generated by gener-
alized Calderén-Zygmund operators and weighted BMO functions on weighted Morrey
spaces.

Inspired by the above results, in this paper we are interested in the boundedness of the
commutators generated by weighted Lipschitz functions and strongly singular Calderén-
Zygmund operators or generalized Calderén-Zygmund operators on weighted Morrey
spaces.

Before stating our main results, let us first recall some necessary definitions and nota-

tions.

Definition 1.1 Let S be the space of all Schwartz functions on R” and &’ be its dual space,
the class of all tempered distributions on R”. Let T : S — &’ be a bounded linear operator.
T is called a strongly singular Calderén-Zygmund operator if the following three condi-
tions are satisfied.
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(1) T can be extended into a continuous operator from L2(R") into itself.
(2) There exists a function K(x,y) continuous away from the diagonal {(x,y) : x = y}
such that

ly —zI°

|K(x,y) —K(x,z)| + |K(y,x) —K(z,x)‘ <C =
|x_z|n+&

if2]y—z|* <|x—z| forsome0<d <land O < <1. And

1.9)= [ [ Koy gwdyas
for f,g € S with disjoint supports.

(3) Forsome n(l —a)/2 < B <n/2,both T and its conjugate operator T* can be
extended into continuous operators from L4 to L2, where 1/g = 1/2 + 8/n.

Definition 1.2 Suppose that T: S — &’ is a linear operator with kernel K(-,-) defined
initially by

T(f)(x) = / I<(x¢ y)f(J’) d% f € C?o (Rn), x & Suppf.
RH
The operator T is called a generalized Calderén-Zygmund operator provided the following
three conditions are satisfied.

(1) T can be extended into a continuous operator on L2(R").
(2) K is smooth away from the diagonal {(x,) : x = y} with

/ (|K(xy) - K(x,2)| + |[K(y,5) - K(z,%)|) dx < C,
[x=y[>2|z—y|

where C > 0 is a constant independent of y and z.
(3) There is a sequence of positive constant numbers {C;} such that for each j € N,

I/q /
(/ |K(x,y)—K(x,z)‘qu> < C,'(2’|z—y|)7n/q
Y |z-y|<lx—y|<2* [z
and

1/q ,
(/ |K(y,x)—K(z,x)‘qu) < C,'(2’|z—y|)7n/q,
Y |y-z|<|y-x|<2*1|y—z]

where (g, q’) is a fixed pair of positive numbers with 1/g + 1/¢' =1 and 1 < ¢’ < 2.

If we compare the generalized Calderén-Zygmund operator with the classical Calderén-

Zygmund operator, whose kernel K(x,y) enjoys the conditions
K (x,9)] < Clx—y[™

and

§
K (x,9) — K(x,2)| + |[K(y,%) - K(z,%)| < Clx —y|_”<%> )
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where |x—y| > 2|z—y| for some § > 0, we can find out that the classical Calderén-Zygmund
operator is a generalized Calderén-Zygmund operator defined as in Definition 1.2 with
C;=27,jeN,andany1<q < ooc.

Definition 1.3 ([21]) A non-negative measurable function w is said to be in the Mucken-
houpt class A, with 1 < p < oc if for every cube Q in R”, there exists a positive constant C
independent of Q such that

1 1 .o\
— d. — - g <C,
QQL”W“>Q@A”W 0 =

where Q denotes a cube in R” with the side parallel to the coordinate axesand 1/p+1/p’ = 1.
When p =1, a non-negative measurable function w is said to belong to A; if there exists a
constant C > 0 such that for any cube Q,

1 / o) dy < Co(x), a.e.xecQ.
QI Jo

It is well known that if w € A, with 1 < p < 0o, then w € A, for all ¥ > p and w € A, for
somel<g<p.

Definition 1.4 ([16]) Let 1 < p <00, 0 < k <1 and w be a weighted function. Then the
weighted Morrey space LP*(w) is defined by

1K) = {f € LY, (@) : [l ok < 00}

where

1 1/17
i xw=su(————/’(mpw@nm) ,
Flurso 2 \o(QF Qlf |
and the supremum is taken over all cubes Q in R".

Definition 1.5 ([16]) Let 1 <p <00, 0 < k <1 and u, v be two weighted functions. Then
the weighted Morrey space L”X(u, v) for two weights is defined by

17K, v) = {f € L8 (1,v) : f | oy < 00},

where

1 » 1/p
I 122k ) =5‘(12P(W/QV(JC)| u(x)dx> ,

and the supremum is taken over all cubes Q in R".

Definition1.6 Letl <p < 00,0 < fy <1and w be a weighted function. A locally integrable
function b is said to be in the weighted Lipschitz space Liplg0 () if

1 1 o\
||b||Lip§0(w) = SL(;P W <m /Q|b(x) - bQ!pw(ac)1 pdx) < 00,
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where b = ﬁ /. o b(y) dy and the supremum is taken over all cubes Q C R”. Moreover, we
denote simply by Lipg (@) when p = 1.

Definition 1.7 The Hardy-Littlewood maximal operator M is defined by

1] / ol

We set M,(f) = M(|f|*)"*, where 0 < s < 00.
The sharp maximal operator M* is defined by

M) =sun o [ 170)~fol dy~supind o 1700 -l

We define the ¢-sharp maximal operator M (f) = M*(|f|))V¢, where 0 < ¢ < 1.

Definition 1.8 ([22]) A weighted function w belongs to the reverse Holder class RH, if
there exist two constants r > 1 and C > 0 such that the following reverse Holder inequality

(6/Qa)(x)’dx>r §C(6/Qw(x)dx)

holds for every cube Q in R”. Denote by r,, the critical index of w for the reverse Holder
condition. That is, r,, = sup{r > 1: w € RH,}.

Definition 1.9 For 0 < By < 1,1 < r < 00, the fractional maximal operator Mg, , is defined
by

1 RN
Mﬂo,rm(x):sg(w /Q 00| dy) |

Definition1.10 For 0 < 8y <#n,1 <r < oo and a weight w, the weighted fractional maximal
operator Mg, ,., is defined by

1

1 , ;
Mporal)) =2‘1‘3<W [rol 0)

where the above supremum is taken over all cubes Q containing x.

2 Main results

In what follows, we will give the main results in this paper.

Theorem 2.1 Let T be a strongly singular Calderdon-Zygmund operator, o, 8, 8 be given as
in Definition1.1, and "(12"’) <B <% (n=2).Suppose0 < fy <1, ”1 —~ +2’3 <p<go % = }7—‘370,
0<k< g, weAandr, > M—Z‘ZW Ifb € Lipg, (), then [b, T] is bounded from LP* (w)
to LT%P (1~1, ).

Theorem 2.2 Let T be a generalized Calderon-Zygmund operator and q' be given as in
Definition 1.2. Suppose 0 < o <1, ¢ < p < nlBo, 1/s =1/p — Bo/n, 0 < k < pls, {iC;} € I,
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P € Ay and r, > max{EDL, I If b € Lipy, (o), then [b, T] is bounded from LP*(w) to
Ls,ks/p(wl—s, w)

Noticing that the classical Calder6n-Zygmund operator is a generalized Calderén-
Zygmund operator defined as in Definition 1.2 with C; =27 (j € N) and any 1 < g < 00, we
can obtain the following result as a corollary.

Corollary 2.1 Let T be a classical Calderon-Zygmund operator, 0 < By <1, 1 < p < n/po,
1/s=1/p—Bo/n, 0 <k < pls, ’? € Ay and r,, > pl/s;fk. Ifbe Lipﬂ0 (w), then [b, T is bounded
Sfrom LPK(w) to L3P (0!, w).

Remark 2.1 As matter of fact, the result of Corollary 2.1 was obtained in [17] with the
special case § = 1. Thus Theorem 2.2 can be regarded as a generalization of the corre-
sponding result in [17]. And from this point of view, the range of the index in Theorem 2.2
is reasonable.

3 Preliminaries

In order to obtain our main results, first we introduce some requisite lemmas.

Lemma 3.1 ([3, 4]) If T is a strongly singular Calderén-Zygmund operator, then T is the
type of weak (1,1) and can be defined to be a continuous operator from L* to BMO.

It follows from Definition 1.1, Lemma 3.1 and the interpolation theory that the strongly
singular Calderén-Zygmund operator 7' is bounded on L7 for 1 < p < oo, and T is bounded
from L* to LY, W <u<ooand 0 < % < «. In particular, if we restrict @ <B< g
in (3) of Definition 1.1, then T is bounded from L* to L', where W < u < oo and

0<% <a.

Lemma 3.2 ([8]) Let T be a generalized Calderén-Zygmund operator and the sequence
{Ci} e I, then T is bounded on LP(R") and the type of weak (1,1), where 1 < p < cc.

Lemma 3.3 ([17]) LetO<t<1,1<p<ooand 0 <k<1.Ifu,v € Aw, then we have

[MA) iy = CIME i

for all functions f such that the left-hand side is finite. In particular, when u = v = w and
w € Ay, we have

“Mt(f)”wk(w) = C||M§(f)||wk(w)
for all functions f such that the left-hand side is finite.

Lemma 3.4 ([23]) Let i € Ay, then there are constants Cy, Cy and 0 < § < 1 depending only
on A;-constant of |4 such that for any measurable subset E of a ball B,

IEl _ w(E) 1208
B = ) f@(@) '
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Lemma 3.5 ([19]) Let T be a strongly singular Calderdn-Zygmund operator, and o, B, §
be given as in Definition 1.1. If% <p<00,0<k<land we Agpini-a)+2p), then T
is bounded on LP*(w).

Lemma 3.6 ([20]) Let T be a generalized Calderén-Zygmund operator, q' be the same as
in Definition 1.2, and the sequence {(C;} € I". If ¢ <p < 00,0 <k <land w € Ay, then T is
bounded on LP*(w).

Lemma 3.7 Ife >0, thenInx < %xsfor all x> 1.
The above result comes from the monotone property of the function ¢(x) = Inx — %x’?.

Lemma 3.8 ([17]) Let 0 < Bo < n, 1 < p < n/Bo, 1/s = 1/p — Bo/n and «*? € A,. Then if

0<k<plsandr,> L we have
pls—k

||Mﬂ0,1(f) Ls,kx/p(ws/pyw) = C”.f”[}’vk(w)

Lemma 3.9 ([17]) Let 0 < o <n,1<p<n/Bo, 1/s=1/p — Bo/n, 0 <k < pl/s and v € A.
Then, for every 1 < r < p, we have

||Mﬂ,r,w(f) Ls,ks/p(w) < Cllf”[}”k(w)

Lemma 3.10 ([24, 25]) Let 0 < Bo <1 and w € A;. Then, for any 1 < p < 0o, there exists an
absolute constant C > 0 such that ||b||Lip‘{a30 o = C||b||Lipﬂ0 ()

Lemma 3.11 Let 0 < o <1, w € Ay and f be a function in Lipg (w). Suppose 1 < p < oo,
x€R", and ri,ry >0. Then

; _ I3 -p g )’17

( |B(x; 7'1)| B(x,r1) V(y) fé(x’rZ) | w(y) 4
<cC r2 |\ [ @(B(x,11)) i Boln
=< Cllf llLipg, @@ *){ 1+ |In NS rirzlgca)(B(x, )"

Proof Without loss of generality, we may assume that 0 < r, < r; and omit the case 0 <
r1 < rp due to their similarity. For 0 < r, < ry, there are ki, ky € Z such that 2kl oy < 2k
and 2F271 < y, < 2%2 Then k, < ky and

(kl—k2—1)1n2<lnﬂ < (ki —ky+1)In2.
r

Thus, we have

(é o) —fB(x,rz)’pw(y)l_pdy>ﬁ

|B(x’ rl)' B(x,r1)

1 , ~ ,l;
= <m /B(x,n) lf()/) _ﬁB(x,zkl)| o(y) de)

1

|B(xr r1)| B(x,r1)

1
?
+ [fBr) _fB(x,2k1)|< w(y)'? dy)
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1
Zin _ 4 1-p g
= <|B(xr 2k1)| /B(x,Zkl)lfO/) J%(x,2k1)| w(y) dy)

k-1
+ ([fB(x,rz) —Sa@ak)l + Z VB2 —fB(x,zj)|)

j=ka

1
1 r
X w )l_pd )
(|B(x, 1)l /B(x,rl) v ’

< Clf ipyy (%) 0 (B(x,29)) "

1
- ko | &
* (IB(x,r2)| /B(m)lf(y) oty dy

k-1

1
+ e ) - 1) |
2 BT Sy i y)

J=ka
. 1
p
o L w )I-Pd) .
(|B(x, )| /B(x,n) v ’

1
|B(x, 7’2)| B(x,rp)

Write

VU’) — St | dy

2" , N }7
= m([gwmlf@) ~fawain | @) d)’)

8 (/];(x,ZkZ) “b) dy)

, @(B(x,2%2))
|B(x, 2%2)|

N

x,2K2)) Jpiuota)

1 »
X (W [F0) ooy | @) dy)
< 27|[f lipy, (@ (Koo (B(x, 2°2)) "

and

1

: )— x,2/t1 d
|B(x,2)] B(x,?/)lf(y Jawsarn| 4

1
2" » - >17

S —" — O w pd

= Bt 2] (/B(x,mlf(y) S '@t dy

1
7

d p
(s 09)

(B, 2")
T B, 2|

1
: (m /l;(xyyﬂ) V()/) _fB(x,QJ+1)

< 2" gy (0 ()0 (B, 2))

o) dy)"
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If1 < p < 0o, then it follows from w € A; C Ay that

1 17 )%
<|B(x>rl)| B(x,rl)w(y) )
e
= <|B(x,r1)| /xrl) dy)
i C(w(B(x,m)))z%'
|B(x, 71)]

If p = 1, then the above estimate holds obviously.
Thus

(——1—— lﬂw—ﬁ@mfw@fW¢Q”

|B(x’ rl)' B(x,r1)

< Clf ipyy (r0(x)? 0 (B(x,29)) "

+ C(”_f”LipﬁO(a))w(x)u)(B(x, 2k2))ﬁo/n

k1-1 l/
+ Z |[f||Lipﬁ0(w)w(x)w(B(x, 27*1))’30/") (M)

s 1B, )]

N

o/n B(x, p

+ Clki = ko + D Lipg, (0@ (B(x, 27)) """

(a)(B(x, rl))>§
o ((2B& )
|B(x, )|

< Clf i po @) (1 .

=) (o) et

This completes the proof of Lemma 3.11. d

In =

Lemma 3.12 Let T bea strongly singular Calderdn-Zygmund operator, o, B, 8 be given as
mDeﬁmtlonlland 1 —e) <B<g.LetO<Py<l,0<t<]1, %M’ <s<oo,weA NRH,

with r > %, cmd b € Lipy, (), then we have, for a.e. x € R",

M; (6, TIf)x) < C 1511 Lipg, (@) (@) Mo 50 (TF) (%) + @) Mg 5.0 () ()
Proof For any ball B = B(x, rg) with the center x and radius rp, there are two cases.

Casel:rg > 1.

We decompose f = fi + f,, where fi = f x25 and x5 denotes the characteristic function of
2B. Observe that

(6, T)©) = (bO) = b25) T(F)B) = T (b~ b2p)fs) ) = T((b - b2p)f2) )-



Lin et al. Journal of Inequalities and Applications (2015) 2015:338 Page 10 of 19

Since 0 < £ < 1, we have
1 t , 1t
(@/BHU% TIAOG)| ~ | T((b - bas)fs) ()| |dy)
Ut

< <|B| / |(5G) - b2) TN dy>m

1 . 1/t
1/t
<|B| [~ b)) - ((b—bzs)fz)(x)rdy)

= 11 +12 +13.

Since w € A;, by Holder’s inequality and Lemma 3.10, we have

C
hs [B 1(50) - ba5) T dy

< [p-outara)” [proriana)

< ! s 1-s s
: W(M/z3|b@)_b23| () dy)

c : " w(B)
) (W/BITM)! w(y)dy) W

< C” b ”Lip 8o (a))Mﬂo,s,a)(Tf) (x)a)(x)

It follows from Kolmogorov’s inequality [22], Lemma 3.1, Lemma 3.4, Holder’s inequal-
ity and Lemma 3.10 that

C
b / (b - bus)f )]

< ([ s /) ([ rorew d)m

C 1 , y 1/s'
< | — b(v) = borl® =
= sy () [0 bl 000 &)

1 s USCO(ZB)
x (W/ lf(y)lw(y)dy> o
= C”b”Llpﬁo Mﬁosw(f (%) (x)

Since rg >1and 2|y —x|* < |z—x| for any y € B, z € (2B)¢, by (2) of Definition 1.1, we can
get

13<® 1 T((b = bas)fs) ) = T((b - bag)fs) ()| dy

< @/B/(Z)B)JK@’Z)_K(x’Z)Hb(Z)_b2BW(Z)|dZd3’
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<C§:i// M|b(z)_b23|[f(z)|dzdy
- P |Bl JB Jo+18\2B |z—x|”+§7

s s 1
<Ch Y @) S /?, 5@ = bas] (@) =

j=1

By Holder’s inequality and Lemma 3.11, we have

, ) 1/s'
I < CZ |2J+1B| ( / |b(2) - bag|” w(2)" dz)

1/s
X ( / . If @) w(z) dz)
0 1 ) 1 s 1/s
—— |2 B|¥ ( / (@) w(z) dz)
21: |2/+1B| s @]
1 7%
2 1\ (22B) o(2'B)""
2j+1 |2/+IB|
STEPRANE
/+IB|SL/ a)(2 B) $
2/+IB| |2/+IB|
1

1/s
11/
x o(2"B) s( TR fy s If (2)[ )

8

< ClblILipg, ()@@ Mgy 50 (f) 6 ZJ ()"

In

X (1bllLipy, (@)@(%) (1 +

_8
< ClbllLipg, w(x)ZJ )"

= C” b”LipﬂO (w)a)(x)Mﬂo,s,w (f) (x)

Case2:0<rg<1.
(n(1-a)+2B)(s-1)
2Bs—n(1-a)-28 ’

n(l-a)+28

then 28 S+r— 1

Since r >

s+r— 1

There exists so such that 1T

Page 11 of 19

<50<

For this index s, there exists [, such that T is bounded from L% to L and 0 < 1 <a.

Then we can take 0 satisfying 0 < lo <6 <a. Let B = B(x,r%). Write f = f3 + f;, where

f3 =S Xap> then

(6, TI(N) ) = (b)) — bas) T(F)(y) — T((b - bap)fs)(¥) — T((b - bag)fa) 9).

Since 0 < £ < 1, we have
1 . ; 1/t
(ﬁ L1111 - 76 - b)) |dy)
1/t
< (é /B 116, TIA0) + T((b - bas)fa) )| dy)
1 . 1/t
- c(ﬁ /B |(66) = bs) T dy)

+ c(liTI /B| T((b- bzgyg)(ywdy)m
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1t
<|B| /|T (b= Dbap)fs) (9) - ((b—bzg)sz)(x)rdy)

= 111 + 112 + 113.
Similarly to estimate I;, we get
111 =< C”b”Lipﬁo(w)Mﬁo,s,w(Tf)(x)w(x)

Since 1 < sq < s < 00, there exists / (1 < [ < 00) such that % =1

. % It follows from Holder’s
inequality and the (L%, L)-boundedness of T that

< c(% [1r@-sapofar)"
< cnr ([ por-bul* Yol &)
2B

< ([ 1660) -t o)t ay) ([ o) wb)dy)
2B 2B

=1 b L I _1 i
< CMpy sl 0(2B) 4 1B ( /2B|b<y>-b23|w<y> )

(r-1)(s—sq)
s(sp—1)

and 1 < p; < co. By Holder’s mequahty, Lemma 3.11, and noticing that r = lp—" - ’f we have

Denote pg = _ (r-1)(s=s0)

rs—(s+r—1)sg

1_ _1 lpf,o—pf? ﬁ
2B

1
X (/ |b(y) - h23|lp6w0’)1_lp6 dy) "o
2B

< CM () @0(2B) |B|‘% 2B)1 ||b||upﬁ0 ()
0
X (1 + ’1nr—3 )( (ZB)) (a)(2B)) w(zé)%o
rB [2B] 128
< Clblluipyy ()@@ Mgy W)eo(2B) 1B 0 2B}
(1 +(1=6)In _>(‘”(2B)) ;
2B

Denote ¢ = n(% ) The inequality 0 < lo < 6 implies that &; > 0. By Lemma 3.7, we
have

vu—A

1

1 1 _
11 = Clblting @3 M o LB 12311 ( +8—r;1)
1

L

(i,
< CllblILipg, ()@@ Mpg 50 )®)ry ©

)-€1

= C||b| Lipg, (w)w(x)Mﬁo,s,w (f) ().
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Let & = g(oz —0). It follows from 6 < « that &, > 0. Foranyy € Band z € (2B)°, there
is 2]y —x|* <2rg < 2rg < |z — x| since 0 < rg < 1. Applying (2) of Definition 1.1, Holder’s
inequality, Lemma 3.7 and Lemma 3.11, we get

Ih < o / IT((b - b2)fa) 0) - T((b - o)) )| dy

|B|// |[K(,2) = K(x,2)|[b(2) - bas||f (2)| dz dy

ly — x|°
blz) - b dzd
B |B| '//?/*‘B\Q/B |z - xl’”" (2) = bas|f (@) dzdy

8 s 1
< CrB Z(Z’) “ | </ |b(2) - b a)(yl s dy)

j=1

<( [ fraron dy)

=

598 ad _3 o~ Po
<Cry © > (2)® —— s ||b||L1pﬂ w@(®)w (2 B) 7
S |2+1B|
. ~ 1
2rg w(2*1B)\ s = 1_fo
j+1 7]
X <1+ In i )( Y Mgy s.0(f)®) (2 B)

508 O s ) 1
=< CrB ¢ 2(2]) ¢ ”b”LipﬂO(w)w(x)Mﬁo,s,w(f)(x) (} +(1-6)In E)

Jj=1

5_@ X s
= C”bHLlpﬂO w)w( )Mﬁosw(f * Z 2] ¢ (] + _rB )
j=1

oo

£ (@-0)-¢ .
< CllblLipg, ()@@ Mo s H@rg "D j(2)

=< CllblILipy, @) @ %)M, (f ) (%)

Putting the estimates in both cases together, we have

f
M ([b, Tf)(x) ~ sup in <|B(x -1 /w |15, TIH)| —a|dy>

rg>04€C
< ClIbILipg, (@) (@) Mpo50(TF) (%) + @My 5.0 () ()

This completes the proof of Lemma 3.12. d

Lemma 3.13 Let T be a generalized Calderdn-Zygmund operator, q' be the same as in
Definition 1.2 and the sequence {jC;} € I'. Let 0 <8 <1,0< By <1, w € Ay, 1, > ¢, and
b € Lipg, (w), then, for all r > "j” -q’, we have

M([5, TI) %) < CllblLipg, (o) (©®) Mg ro(TF) (%)

+ (Mg 0 () + 0 5 Mg, (F)@)),

a.e.x € R".
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Proof For any ball B = B(x, rg) which contains x, we decompose f = f; + fo, where fi = f,,..
Observe that

[b, TIf ) = (b0) = bas) Tf () = T((b - b2s)f) ()-
Since 0 < § < 1, we have
(1 [l 2700 - r(@- bl ar)
<|B| /\[b TIf () + T((b = bag)fs) (xo) | dy)w
<c( i [160)-by1r00 @)
+ C(l%l/];|T((b—b23)ﬁ)(y)|6dy)1/8

16
<|B| /|T ((b=bap)fr)(y) - ((b—bZB)fz)(xo)de)

=1+ +1II.

Since w € A, then it follows from Holder’s inequality and Lemma 3.10 that

I< f |(b0) = bas) TFG)| dy

< fpo-sat o) [orrs)

! 1-r v
< om0 bl o) )

1 . UVCU(B)
- dv) &2
x (w(B)l_ﬂg, [Imorenas)

< ClblILipy, (@) @*) Mo, (Tf)(%).

By Kolmogorov’s inequality, Lemma 3.2, Holder’s inequality and Lemma 3.10, we have

C
s f ()~ bas)f )]

< ([ oo~ w01 0) " ([ porowns)

< C;(; |b(y) _b |"'w(y)1—r/d >l/r/
=~ 0By \ w(2B) ), 25 4

1 , 1/r a)(B)
- d -
: <w(3)1—¥ /BVW w0 ) 1B|

< ClblILipy, (@) @(X) Mo () ().
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For III, we have
C
m<< / IT((b— bas)) ) — T((b — bas)fs) (x0) | dy
|B| Jp

< %/B/(;B)JK(%Z)—K(xo,z)||b(z)—szW(z)|dzdy

oo
1
<cd —/[ K(,2) - K(x0,2)
‘= 1Bl Jp w\y—xols\z—xokﬂ*l\y—xo\| |

x |b(2) - bas||f ()| dzdy

o0
1
<C —// K(y,z) — K(x0,2)
;‘=21|B| B ﬂ\y—xolg\z—xo\dﬁl\y—xo\| |

x |b(2) = byng||f(2)| dzdy

1
+C —// K(y,z) - K(x0,2)
FZI|B| B ﬂ\y—xolf\z—xo\<2j+1|y—xo\‘ |

X |byg — bapl|f (2)| dz dy
o= I + II,.

ro—1 7

Since r > /=4’ > ¢, there exists 1 < / < 0o such that % + 7 +1 = 1. By Hélder’s inequality

Tw

for the three numbers g, / and r, we can get

21
1111§CZ—/<
~ 1Bl Jy

1/q
/ , ' |K(5,2) = K(x0,2)|" dz)
Y ly-xo|<lz—x0| <2 |y-xo|

11
x ( / |b(2) = by | w(z) M7 dz)
Y |y—xo| <lz—x0 <2+ y—x0]
1/r
x (/ ‘ If @) o(z) dz) dy
Y ly—xo|<lz—x0|<2* [y—x0]

= 1 i -nlq
SC;IEAC;(TW—%I) *dy

i)
x ( / |b(2) = byjuip| w(z) 7 dz>
2+1B

1/r
x( , Lf(z)|’w(z)dz> .
J*1B

r-1
r—q'

rw—1
7
Tw—q

Denote pg = ﬁ. It follows from r > q thatr, > =4 Since r, =sup{s>1:w €

r-q'
RH,}, there exists s such that w € RH;and s > :_‘;, q'-Wecangetl < py <ooands = l’r’—,o - ;’%.
0

Applying Hélder’s inequality for py and pj, we have

00 1 ) i , 1/r
I < CZ ﬁ / Cj(2’|y—x0|) & dy(/_ [f(z)| w(z)dz)
i1 B 2+

1
x ( / 5@ = byay| P ar(2) o dz) "o
2+1B
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V/ 1
%—p—? Ipo
X w(z) " P dz
2+1B

o Y L,Jrl(l—m)
<> G@) "B (@ B) T
j=1

J/ 1
%—p—? Ipo
X w(z) " Podz
2+1p

1 . 1
) (W /wglf(z)l (2) dz)

1
1 o, (-l 1|70
byjag| 0 w(2) 0 d
. <a)(2/+13 /w [6(z) = by | (a0 dz

o0
N —nlq _1/d
< CllblLipg, Mporo ) D G(2) " 1B

J=1

1 UM Al 1
X , w(z)’ dz 0a)(2’+lB) " |2/*1B| o
|2/*1B| Jojrip

o0

N\ —71/ / _ ’

< Clblluipg, @Mpor ) Y C(2) ™ 1B
j=1

w(2j+lB)r lp6 lpE)

|2/+1B| Ipo
< Cllbln,, <w>Mﬂ0,r,w(f)(x)w(x)

Noticing that @ € Ay, it follows from Lemma 3.11 that

. Ao
|byjsip = bagl < ClBlILipg, @@ (2*!B) "

It follows from Holder’s inequality that

[ee) 1 1/q
L <CY’ —/</ |K(y,2) —I((xo,z)|‘7dz)
o 1Bl B \J o lysg lz=0 <2 -0

1/1 1/r
x</ |b2,-+13—b23|ldz) ( , [f(z)|’dz) dy
2j+1p 2J+1p

o0
/
< Z e |B|/|y 0|74 dy|byj — bgl|2*1B|

1 , 1/r
X <7ﬁor ) lf(Z) | dZ)

|2/‘+1B|1—— 2j+1B

[o¢]

. N1 | p-1/d

< ClbllLipgy @) Y_jCi(2) " 1B
j=1

Bo

1_
ron

X a)(Z’ +IB)

< ClblILipy, )M po.r () (x)>(x)

2*1B| Mgy () @) |2*'B

1_fo
ron

Page 16 of 19
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oo

<3 6) " @) s

j=1

Jil
< CllblILipg, () Mpo.r () @)

Putting the above estimates together and taking the supremum over all balls B which
contain x, we can get the desired result. 0

Lemma3.14 Let0< By <n,1<p<n/By,1/s=1/p- Bo/n, and @’ € A;. Then, ifl<r<p,
0<k<pls, ry> pl/s;fk, we have

”MﬂOJ(f) ||LS.kS/p(ws/p,w) =< C”f”l}z,k(w)

Proof Note that

Mo (1)) = (Mo (IF17) ()"

Let B = Bor, 5 =s/r,and p —p/r \X/e have 0 < B <mand 1< p<n/B. Then1/5=1/p - f/n,
o*? € Ay, 0 <k < p/3,and r,, > i? ~, . Using Lemma 3.8, we obtain

1/r
L5kslp (wg/ﬁ,w)

= Cllf ll k- 0

”Mﬂoyr(f) LSKSIP(SIP @) ||MB,1(lf|r)

<15

4 Proof of main results
First, we will give the proof of Theorem 2.1.

Proof of Theorem 2.1 Since r,, > %, there is r such that r > % and

w € RH,. Then p > W There exists s such that p > s > (2[(31;";)(;25( ;(’2_;) > ”(1_2"2*25 .
(n(1-a)+2B)(s— 1

The fact s > % implies that r > Sfsn(_a)-35 - By Lemma 3.3 and Lemma 3.12,

we have

16 TYO) | asaioi-a,)
< |M(16: TY) | Lasaioioa,)
< C| M (16 TY) | sasato a0
< Clbltingy ) (| OMpos0 T | s
+ | 0OMos0 () | akaip -0

= C”b”Llpﬁo(w (HMﬂo,sw Tf) ”quq/p HMﬁo,s w(f) ”quq/p )

Therefore, applying Lemma 3.9 and Lemma 3.5, we obtain

” (b, T](f)HLq,kq/p(wl—q,w) = C”b”LiPﬁO (w)(”Tf”l}"k(w) + ”f||LPJ<(w))
< ClbllLingy o I N1ty

This completes the proof of Theorem 2.1. d
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Then we will give the proof of Theorem 2.2.

Proof of Theorem 2.2 1t follows from r,, > ,q that p > ,q There exists r such that

rw -1

p>r> q By Lemma 3.3 and Lemma 3 13 we have

|| [b’ Tlf”Ls.ks/p(wl—x'w)
HM(S ([b T].f) ”LS ks/p 1-s w)

= Cla5 (16, Tf)

Lskslp (0!5,0)

< ClibllLipg, (@) (| @) Mo TH)]
+ [ @0O)M (O] sstsipoios,0)
+ oGP Mpo ()| possvios o)

= ClIblILipg, ) (| Mpo,ro (T ooy

”Mﬁo r,w(f) L5kslp (e ”Mﬁo r(f)

LS ks/p 1-; =5,w)

15kslp ws/p )) .

Therefore, applying Lemma 3.9, Lemma 3.14 and Lemma 3.6, we obtain

|| [b’ T]f LSKsID (15 1) < C”b”LipﬁO ((u)(” Tf”[}?,k(w) + ”f”LPrk(a)))

= C||b||Lipﬂ0(w)|lf||Lp.k(w)
This completes the proof of Theorem 2.2. O
Finally let us give the proof of the corollary.

Proof of Corollary 2.1 Choose g such that max{—-*— = 1

pr(u

-1 ,p/’}<q<oo, thenl<qg <2,

- It follows from g’ < Ze that r, > p_lg,q .
Since T is a generahzed Calderén- Zygmund operator defined as in Definition 1.2 with

C;j =27 (j € N) and this pair of numbers (g,q’), then by Theorem 2.2 we have that [b, T']
is bounded from L% (w) to L7 (v, w). O

q <pandq <3
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