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1 Introduction
The variational inequality theory, which is mainly due to Stampacchia [], provides very
powerful techniques for studying problems arising in mechanics, optimization, trans-
portation, economics, contact problems in elasticity, and other branches of mathematics.
The free boundary value problem can be studied effectively in the framework of variational
inequalities, the traffic assignment problem is a variational inequality problems. The the-
ory of vector variational inequalities was initiated by Giannessi []. The theory has shown
to be very useful in studying problems arising in pure and applied sciences, engineering
and technology, financial mathematics, transportation, and other problems of practical
interest, see [–]. In recent years, a considerable number of generalizations of vector
variational inequalities have been considered, studied, and applied in various directions.
The general variational inequality problems provide us with a unified, simple, innovative,
and natural frame work for studying a wide class of problems involving unilateral, moving
boundary, obstacle, free boundary and equilibrium problems. The existence problems of
solutions for this problems are helpful in the sense that one would like to know if a so-
lution of a general variational inequality exists before one actually devises some plausible
algorithms for solving the problems; while existence results of the solution for Stampac-
chia variational inequalities were abundant in the last years, this is not the case of general
variational inequalities of Stampacchia type [].

Inspired and motivated by the recent work [–], the purpose of this paper is first
to study a new class of quasilinear type operators and then to establish some existence
theorems of solutions for a class of generalized vector variational inequalities and Minty
generalized vector variational inequalities.
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2 Preliminaries
In what follows, unless otherwise specified, we assume that X is a Banach space and X∗ is
its topological dual. We denote by 〈x∗, x〉 the value of the linear and continuous functional
x∗ ∈ X∗ in x ∈ X. Let K be a nonempty closed convex subset of a Banach space X, A :
K ⊂ X → X∗ and a : K → X be two given operators. Let C : K → X be a mapping with
closed convex cone values such that for each x ∈ K , int C(x) �= ∅ and satisfying the following
conditions:

(i) λC(x) ⊂ C(x), for λ > ;
(ii) C(x) + C(x) ⊂ C(x);

(iii) C(x) ∩ (–C(x)) = {}.
We will write y ≤C(x) z and y �C(x) z if and only if z – y ∈ C(x) and z – y /∈ C(x)
for all x, y, z ∈ K , respectively. We will write y ≤int C(x) z if z – y ∈ int C(x) in the case
int C(x) �= ∅.

The problem that we shall study in this paper is the so-called generalized vector varia-
tional inequalities GVVI(A, a, K) i.e., to find a x ∈ K such that

〈
A(x), a(y) – a(x)

〉
/∈ – int C(x), ∀y ∈ K . ()

We note that if a ≡ idK , then () reduces to the problem for finding x ∈ K such that

〈
A(x), y – x

〉
/∈ – int C(x), ∀y ∈ K , ()

which is called general vector variational inequalities GVVI(A, K) studied by [].
The so-called Minty generalized vector variational inequality MGVVI(A, a, K) is to find

a x ∈ K such that

〈
A(y), a(y) – a(x)

〉
/∈ – int C(x), ∀y ∈ K . ()

Note that if a ≡ idK then () reduces to the Minty general vector variational inequality
MGVVI(A, K) for finding x ∈ K such that

A(y), y – x〉 /∈ – int C(x), ∀y ∈ K , ()

where K is a convex and closed set.
Let X be a real linear space. For x, y ∈ X we denote by [x, y] = {( – t)x + ty : t ∈ [, ]}

the closed line segment with the end point x and y. The open line segment with endpoints
x, respectively y, is defined by (x, y) = [x, y]\{x, y} = {z = ( – t)x + ty : t ∈ (, )}. Let Y be
another real linear space. An operator A : D ⊆ X → Y is said to be quasilinear if

A
(
[x, y] ∩ D

) ⊆ [
A(x), A(y)

]
, for every x, y ∈ D.

Theorem . [] Let f : I ⊆ R → R be a function. Then f is a quasilinear if and only if f
is monotone.

Theorem . [] Let A : X → Y be a linear operator. Then A is quasilinear.
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Theorem . [] Let D ⊆ X be a convex set and A : D → Y be a quasilinear operator.
Then for every n ∈ N and every x, . . . , xn ∈ D and every x ∈ co{x, x, . . . , xn} we have

A(x) ∈ co
{

A(x), . . . , A(xn)
}

,

where co(E) denotes the convex hull of the set E ⊆ Y .

Definition . Let X and Y be two real linear spaces. Then the operator A : D ⊆ X → Y
is quasilinear if for every x, y ∈ D and every z ∈ [x, y] ∩ D,

A(z) ∈ [
A(x), A(y)

]
.

Proposition . Let X and Y be two real linear spaces and A : D ⊆ X → Y be a quasilinear
operator. Then λA : D → Y is quasilinear for all λ ∈ R.

Proof For x, y ∈ D, z ∈ [x, y] ∩ D it follows from Definition . that

A(z) ∈ [
A(x), A(y)

]
.

Therefore

λA(z) ∈ [
λA(x),λA(y)

]
. �

Definition . Let U and V be two real linear spaces and A : D ⊆ U → V be an operator.
A is said to be c-monotone, if for every v ∈ V the set A–(v) is convex.

Proposition . Let X and Y be two real linear spaces, D ⊆ X be a convex set and A : D →
Y be a quasilinear mapping. Then A is c-monotone.

Proof Suppose to contrary that A is not c-monotone. Then there exists u ∈ Y such that
A–(u) is not convex. Consequently for x, y ∈ A–(u), x �= y there exists z ∈ (x, y) with
A(z) �= u. Since A is quasilinear,

A(z) ∈ [
A(x), A(y)

]
= {u},

a contradiction. �

Definition . Let D be an open subset of a topological space X and f : D → Y be an
operator where Y is an arbitrary set. Then f is said to be locally injective, if for each x ∈ D, it
admits a neighborhood Ux ⊆ D such that f is injective on Ux i.e., f (u) �= f (v) for all u, v ∈ Ux,
u �= v.

Proposition . Let X be a topological real linear space, Y be a real linear space and
D ⊆ X be a convex and open subset. Let A : D → Y be quasilinear and locally injective.
Then A is injective.

Proof Now we prove that for each u ∈ A(D), A–(u) contains only one point. Assume that
there exist x, y ∈ A–(u), x �= y. Since A is locally injective, there exists a neighborhood Ux
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of x contained in D such that A(z) �= A(x) for z �= x, z ∈ Ux. Since A is c-monotone and
[x, y] ⊆ A–(u), z ∈ Ux ∩ (x, y]. Hence A(z) = u and A(z) �= A(x) = u, a contradiction. �

Definition . Let X be a real linear spaces and Y be a topological space. Let A : D ⊆
X → Y be an operator. We say A is continuous on line segment at x ∈ D if for every se-
quence {tn} ⊆ R of a real number convergent to  and every x, y ∈ D with x + tny ∈ D we
have

A(x + tny) → A(x), n → ∞.

We say that A is continuous on line segments in D if it has the continuity property at every
x ∈ D.

Lemma . [] Let X be a real linear space. Let Y be a real linear metric space and
D ⊆ X be a convex subset. Let A : D → Y be a quasilinear operator which is continuous on
line segments. Then for every x, y ∈ D we have

A
(
[x, y]

)
=

[
A(x), A(y)

]
.

Remark . In Lemma ., if A is also injective, then for every x, y ∈ D, x �= y we have

A
(
(x, y)

)
=

(
A(x), A(y)

)
.

Proposition . Let X be a real linear space, Y be a real linear metric space. Let A :
D ⊆ X → Y be an injective convex and quasilinear mapping and it is continuous on line
segments. Then the operator A– : A(D) → D is quasilinear.

Proof Since A is injective, A– : A(D) → D is single valued. Suppose there exist u, v ∈ A(D)
and w ∈ (u, v) such that

A–(w) /∈ (
A–(u), A–(v)

)
.

Denote by x = A–(u), y = A–(v), z = A–(w) then from Remark . we have A(x, y) =
(A(x), A(y)) and there exists z′ ∈ (x, y) such that A(z′) = A(z) = w. From the injectivity of
A we have z = z′, which is a contradiction. Therefore z /∈ (x, y). �

Theorem . Let X be a real linear space, Y be a real linear space and also metric space.
Let A : D ⊆ X → Y be continuous on line segments, quasilinear with its domain D and
convex. Then A(D) is convex.

Proof Let u, v ∈ A(D), then we prove that [u, v] ⊆ A(D). Let x ∈ A–(u), y ∈ A–(v), from
Lemma . A([x, y]) = [A(x), A(y)], therefore we have

[u, v] = A
(
[x, y]

) ⊆ A(D). �

Definition . Let X be a real linear space and D ⊆ X be convex. A function f : D → R
is called quasiconvex if for every x, y ∈ D and t ∈ [, ] we have

f
(
( – t)x + ty

) ≤ max
{

f (x), f (y)
}

.
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f is called quasiconcave [] if –f is quasiconvex i.e.,

f
(
( – t)x + ty

) ≥ min
{

f (x), f (y)
}

, ∀x, y ∈ D, t ∈ [, ].

A function that is quasiconvex and quasiconcave at the same time is called quasilinear.

Proposition . Let X, Y , Z be real linear spaces, and let D ⊆ X and A : D → Y , B :
A(D) → Z be two quasilinear operators. Then B ◦ A : D → Z is quasilinear.

Proof For x, y ∈ D we have A([x, y] ∩ D) ⊆ [A(x), A(y)]. For u, v ∈ A(D) we have B[u, v] ∩
A(D) ⊆ [Bu, Bv]. Let z ∈ [x, y] ∩ D and w = A(z), u = A(x), v = A(y). Therefore, w ∈ [u, v]
and B is quasilinear, and we get B(w) ∈ [B(u), B(v)], that is,

(B ◦ A)(z) ∈ [
(B ◦ A)(x), (B ◦ A)(y)

]
. �

Definition . Let X be a real linear space and D ⊆ X. The convex hull of the set D is
defined by

co(D) =

{ n∑

i=

λixi : xi ∈ D,
n∑

i=

λi = ,λi ≥ ,∀i ∈ {, , . . . , n}, n ∈ N

}

.

Theorem . Let X and Y be two real linear spaces, and D ⊆ X be a convex subset.
Let A : D → Y be quasilinear, then for every n ∈ N , every x, x, . . . , xn ∈ D and every x ∈
co{x, x, . . . , xn}, we have

A(x) ∈ co
{

A(x), A(x), . . . , A(xn)
}

.

Theorem . Let Y be a topological vector spaces with a pointed closed and convex cone
C such that int C �= ∅, then for all x, y, z ∈ Y we have

(i) x – y ∈ – int C and x /∈ – int C ⇒ y /∈ – int C;
(ii) x + y ∈ –C and x + z /∈ – int C ⇒ z – y /∈ – int C;

(iii) x + z – y /∈ – int C and –y ∈ –C ⇒ x + z /∈ – int C;
(iv) x + y /∈ – int C and y – z ∈ –C ⇒ x + z /∈ – int C.

3 Existence of solutions for generalized vector variational inequalities
In this section we present some existence results of solutions for vector variational in-
equalities () and ().

Definition . (Knaster-Kuratowski-Mazurkiewicz) Let X be a Hausdorff linear space
and M ⊆ X. The mapping G : M → X is called a KKM mapping, if for each finite number
of elements x, x, . . . , xn ∈ M we have

co{x, . . . , xn} ⊆
n⋃

j=

G(xi).

Lemma . [] Let X be a Hausdorff linear space, M ⊆ X and G : M → X be a KKM
mapping. If G(x) is closed for every x ∈ M and there exists x ∈ M such that G(x) is compact
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then

⋂

x∈M

G(x) �= ∅.

An operator T : X → X∗ is called weak to ‖ · ‖-sequentially continuous at x ∈ X if, for
every sequence {xn} which converges weakly to x, we have {T(xn)} → T(x) in the topology
of the norm of X∗. An operator T : X → X is called weak to weak sequentially continuous
at x ∈ X if, for every sequence {xn} which converges weakly to x, we find that {T(xn)}
converges to T(x).

Lemma . If P ⊂ Q ⊂ X where Q is weakly compact and P is weakly sequentially closed,
then P is weakly compact.

Proof From the Eberlein-Smulian theorem [], Q is weakly sequentially compact. Let
{xk} ⊆ P, hence {xk} ⊆ Q, which is weakly sequentially compact. Hence there exists {xkn} ⊆
{xk}, weakly converges to a point x ∈ Q. But {xkn} ⊆ P, which is weakly sequentially closed,
hence x ∈ P. Thus P is weakly sequentially compact. Therefore from the Eberlein-Smulian
theorem P is weakly compact. �

Lemma . Let {(xi, x∗
i )}i∈I ⊂ X ×X∗ be a bounded net and assume that one of the following

conditions is fulfilled:
(a) {xi}i∈I converges to x in the weak topology of X and {x∗

i }i∈I converges to x∗ in the
topology of norm of X∗.

(b) {xi}i∈I converges to x in the topology of norm of X and {x∗
i }i∈I converges to x∗ in the

weak ∗ topology of X∗.
Then 〈x∗

i , xi〉 → 〈x∗, x〉.

Now we are ready to state our first main result.

Theorem . Let X be a real Banach space and X∗ be its topological dual. Let K be a
weakly compact convex subset of X , A : K → X∗, and a : K → X be two given operators.
Assume that C : K → X is a mapping with closed convex solid cone values and for each
x ∈ K , int C(x) �= ∅. If A is weak to ‖·‖-sequentially continuous, a is quasilinear and weak to
weak sequentially continuous. Then the generalized vector variational inequality () admits
a solution.

Proof Define a mapping G : K → K by

G(y) =
{

x ∈ K :
〈
A(x), a(y) – a(x)

〉
/∈ – int C(x)

}
, ∀y ∈ K .

It is easy to see that the existence of solutions of the generalized vector variational inequal-
ity () is equivalent to finding an element

x ∈
⋂

y∈K

G(y).

Now we first prove that G is a KKM mapping with weakly compact value and all conditions
in Ky Fan’s lemma are satisfied. In fact, G(y) �= ∅ and for all y ∈ K we have y ∈ G(y). For
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any y ∈ K , consider a sequence {xk} ⊆ G(y) converges weakly to x ∈ K . We prove that
x ∈ G(y).

Indeed we have

〈
A(xk), a(y) – a(xk)

〉
/∈ – int C(x)

and

〈
A(xk), a(y) – a(xk)

〉
=

〈
A(xk) – A(x), a(y) – a(xk)

〉

+
〈
A(x), a(y) – a(xk)

〉
/∈ – int C(x), ∀y ∈ K .

We prove that

〈
A(xk) – A(x), a(y) – a(xk)

〉 → , k → ∞.

Indeed, from the triangle inequality, for all y ∈ K , we have

∣∣〈A(xk) – A(x), a(y) – a(xk)
〉∣∣ ≤ ∥∥A(xk) – A(x)

∥∥∥∥a(y) – a(xk)
∥∥.

Since a : K → X is weak to weak continuous and K is weakly compact, a(xk) – a(y) is
bounded. Let M >  such that

∥∥a(xk) – a(x)
∥∥ ≤ M, ∀k ∈ N .

Therefore

∣∣〈A(xk) – A(x), a(y) – a(xk)
〉∣∣ ≤ M

∥∥A(xk) – A(x)
∥∥, ∀y ∈ K .

Since A is weak to norm sequentially continuous we have

〈
A(xk) – A(x), a(y) – a(xk)

〉 → , k → ∞.

Therefore, for all y ∈ K , k → ∞, we have

〈
A(xk) – A(x), a(y) – a(xk)

〉 → 〈
A(x), a(y) – a(x)

〉
/∈ – int C(x),

and from

〈
A(xk), a(y) – a(xk)

〉
/∈ – int C(x)

we have

〈
A(x), a(y) – a(xk)

〉
/∈ – int C(x).

Hence x ∈ G(y), which shows that G(y) is weakly sequentially closed for all y ∈ K .
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Now we prove that G(y) is weakly compact for all y ∈ K . In fact, let {xn} ⊆ G(y). Since
G(y) ⊆ K and {xn} ⊆ K . Again since K is weakly compact and from the Eberlein-Smulian
theorem [], K is weakly sequentially compact. Hence there exists a subsequence {xnk }
of {xn} converges weakly to x ∈ K . Then {xnk } ⊆ G(y) and from weak sequentially closed-
ness of G(y), we have x ∈ G(y). Hence G(y) is weakly sequentially compact and from the
Eberlein-Smulian theorem it is weakly compact. Therefore G(y) is weakly compact and
weakly closed for all y ∈ K . Let y, . . . , yn ∈ K and y ∈ co{y, . . . , yn}. We show that

y ∈
n⋃

i=

G(yi).

Suppose to the contrary that y /∈ G(yi) for every i ∈ {, , . . . , n}. Hence

〈
A(y), a(yi) – a(y)

〉 ∈ – int C(x), for every i ∈ {, , . . . , n}. ()

Since a is quasilinear, from Theorem . we have

a(y) ∈ co
{

a(y), a(y), . . . , a(yn)
}

.

Hence

a(y) =
n∑

i=

λia(yi) with λi ≥ , i ∈ {, . . . , n},
n∑

i=

λi = .

From () we have

〈

A(y),
n∑

i=

λia(yi) – a(y)

〉

∈ – int C(x),

a contradiction.
Hence G is a KKM mapping and it satisfies all the conditions in Ky Fan’s lemma. Conse-

quently

⋂

y∈K

G(y) �= ∅.

Hence the generalized vector variational inequality () admits a solution. �

Corollary . Assume that K is a weakly compact convex subset of X and X∗ its topolog-
ical dual. Let A : K → X∗ be a single-valued operator. Assume that C : K → X is a map-
ping with closed convex solid cone values and for each x ∈ K , int C(x) �= ∅. If A is weak to
‖ · ‖-sequentially continuous, then () admits a solution.

Theorem . Let X be a reflexive Banach space, X∗ be the topological dual of X∗, and
K be a convex and closed subset of X. Let A : K → X∗ and a : K → X be given operators.
Assume that C : K → X is a mapping with closed convex solid cone values and for each
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x ∈ K , int C(x) �= ∅. If A is weak to ‖ · ‖-sequentially continuous and a is quasilinear and
weak to weak sequentially continuous, then there exists y ∈ K such that

lim inf‖x‖→∞,x∈K

〈
A(x), a(x) – a(y)

〉 ∈ – int C(x).

Then the generalized vector variational inequality () admits a solutions.

Proof Define a mapping G : K → K by

G(y) =
{

x ∈ K :
〈
A(x), a(y) – a(x)

〉
/∈ – int C(x)

}
, ∀y ∈ K .

It suffices to prove G(y) is closed for all y ∈ K and G(y) is weakly compact. The rest is
similar to the proof given in Theorem .. In the same way as in the proof of Theorem .
we can prove that G is weakly sequentially closed for all y ∈ K . Since G(y) is sequentially
closed in the norm topology for all y ∈ K , G(y) is closed for all y ∈ K .

Next we show that G(y) is bounded. Suppose to the contrary that there exists {xk} ⊆
G(y) such that ‖xk‖ → ∞, k → ∞. Since xk ∈ G(y) for all k ∈ N we have

〈
A(xk), a(xk) – a(y)

〉
/∈ – int C(x), k ∈ N ,

hence

lim inf‖xk‖→∞
〈
A(xk), a(xk) – a(y)

〉
/∈ – int C(x).

It is a contradiction. Hence G(y) is bounded and weakly sequentially closed. Therefore
there exists N >  such that G(y) ⊆ BN where BN is the closed ball centered in  with
radius N . X is reflexive and BN is weakly compact. It follows from the proof of Theorem .
that G(y) is weakly compact. �

Theorem . Let K be a weakly compact convex subset of a Banach space X and X∗ be
the topological dual of X. Let A : K → X∗ and a : K → X be two given operators. Assume
that C : K → X is a mapping with closed convex solid cone values and for each x ∈ K ,
int C(x) �= ∅. Assume that the following conditions are fulfilled:

(a) a is quasilinear,
(b) if {xn} ⊆ K converges weakly to x ∈ K then

lim inf
n→∞

〈
A(xn), y

〉 ≤ 〈
A(x), y

〉
/∈ – int C(x), ∀y ∈ K ,

(c) the function x �→ 〈A(x), a(x)〉 : K → X is sequentially weakly lower semi-continuous.
Then generalized vector variational inequality () admits a solution.

Proof Define a mapping G : K → K by

G(y) =
{

x ∈ K :
〈
A(x), a(y) – a(x)

〉
/∈ – int C(x)

}
, ∀y ∈ K .

It suffices to show that G(y) is weakly sequentially closed for all y ∈ K . The rest is similar to
the proof given in Theorem . and we will omit. For all y ∈ K , G(y) �= ∅ and y ∈ G(y). For
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y ∈ K consider a sequence {xk} ⊆ G(y) converging weakly to x ∈ K . We prove that x ∈ G(y).
Since

〈
A(xk), a(y) – a(xk)

〉
/∈ – int C(x),

〈
A(xk), a(xk)

〉 ≤ 〈
A(xk), a(y)

〉
/∈ – int C(x).

Since the function

x �→ 〈
A(x), a(y)

〉
: K → X

is sequentially weakly lower semi-continuous, we have

〈
A(x), a(x)

〉 ≤ lim inf
k→∞

〈
A(xk), a(xk)

〉 ≤ lim inf
k→∞

〈
A(xk), a(y)

〉
/∈ – int C(x).

On the other hand from (b) we have

lim inf
k→∞

〈
A(xk), a(y)

〉 ≤ 〈
A(x), a(y)

〉
/∈ – int C(x)

and

〈
A(x), a(x)

〉 ≤ 〈
A(x), a(y)

〉
/∈ – int C(x),

which shows that x ∈ G(y). Hence G(y) is weakly sequentially closed for all y ∈ K . �

Theorem . Let X be a reflexive Banach space, X∗ is the topological dual of X and K ⊆
X be a closed and convex subset. Let A : K → X∗ and a : K → X be the given operators.
Assume that C : K → X is a mapping with closed convex solid cone values and for each
x ∈ K , int C(x) �= ∅. If the following conditions are fulfilled:

(a) a is quasilinear,
(b) if {xn} ⊆ K converges weakly to x ∈ K then

lim inf
n→∞

〈
A(xn), y

〉 ≤ 〈
A(x), y

〉
/∈ – int C(x), ∀y ∈ K ,

(c) the function x �→ 〈A(x), a(x)〉 : K → X is sequentially weakly lower semi-continuous,
(d) there exists y ∈ K such that

lim inf‖x‖→∞,x∈K

〈
A(x), a(x) – a(y)

〉 ∈ – int C(x).

Then the generalized vector variational inequality () admits a solution.

Proof In a similar way, we can prove that G(y) (see Theorem .) is weakly sequentially
closed for all y ∈ K . From Theorem ., G(y) is closed for all y ∈ K and G(y) is weakly
compact. The rest of the proof is similar to the proof of Theorem .. �

Definition . Let A : D ⊆ X → X∗ be an operator. We say that A is monotone (in the
Minty-Browder sense) [] if for all x, y ∈ D we have

〈
A(x) – A(y), x – y

〉
/∈ – int C(x).
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Remark . If operator A : K → X∗ is hemi-continuous and monotone in the Minty-
Browder sense then the solutions of the Minty generalized vector variational inequality
() and the Minty general vector variational inequality () coincide.

Theorem . Let X be a reflexive Banach space, K ⊆ X be a closed and convex subset,
and X∗ be the topological dual of X. Let A : K → X∗, a : K → X be the given operators.
Assume that C : K → X is a mapping with closed convex solid cone values and for each
x ∈ K , int C(x) �= ∅. Then the following conclusions hold:

(i) If A : K → K is hemi-continuous and K is convex, then every solution x ∈ K of () is
also a solutions of general vector variational inequality ().

(ii) If A is monotone on the convex set K , then every solution x ∈ K of the Minty
generalized vector variational inequality () is also a solution of the Minty general
vector variational inequality ().

Definition . Let X be a Banach space, X∗ be the topological dual of X. Let A : D ⊆
X → X∗ and a : D → X be given operators. We say that A is monotone with respect to a,
if for all x, y ∈ D we have

〈
A(x) – A(y), a(x) – a(y)

〉
/∈ – int C(x).

We say that A is a-pseudomonotone if

〈
A(x), a(y) – a(x)

〉
/∈ – int C(x)

implies

〈
A(y), a(y) – a(x)

〉
/∈ – int C(x), ∀x, y ∈ D.

Remark . If a ≡ idD we obtain the definition of Minty-Browder monotonicity and
pseudomonotonicity, respectively. It is well known [, ] that monotonicity implies
pseudomonotonicity but the converse is not true.

Theorem . Let X be a reflexive Banach space, X∗ its topological dual of X and K ⊆ X
be a closed and convex subset. Let A : K → X∗, a : K → X be the given operators. Assume
that C : K → X is a mapping with closed convex solid cone values and, for each x ∈ K ,
int C(x) �= ∅. Then the following conclusions hold:

(i) If A : K → K is monotone with respect to a, then every solution x ∈ K of generalized
vector variational inequality () is also a solution of the Minty generalized vector
variational inequality ().

(ii) If A is hemi-continuous and a is strictly quasilinear then every solution x ∈ K of the
Minty generalized vector variational inequality () is also a solution of generalized
vector variational inequality ().

Proof (i) Let x ∈ K be a solution of (), then

〈
A(x), a(y) – a(x)

〉
/∈ – int C(x), ∀y ∈ K .
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On the other hand, since A is monotone with respect to a, we have

〈
A(y) – A(x), a(y) – a(x)

〉
/∈ – int C(x), ∀x, y ∈ K ;

hence

〈
A(y), a(y) – a(x)

〉 ≥ 〈
A(x), a(y) – a(x)

〉
/∈ – int C(x), ∀x, y ∈ K

and

〈
A(y), a(y) – a(x)

〉
/∈ – int C(x), ∀x, y ∈ K .

(ii) Let x ∈ K be a solution of the Minty generalized vector variational inequality ().
Then

〈
A(y), a(y) – a(x)

〉
/∈ – int C(x), ∀y ∈ K .

Let z ∈ K , z �= x. Since K is convex we have

x + t(z – x) ∈ K , ∀t ∈ [, ].

Since a is strict quasilinear,

a
(
x + t(z – x)

) ∈ (
a(x), a(z)

)
, ∀t ∈ (, ),

a
(
x + t(z – x)

)
= a(x) + α

(
a(z) – a(x)

)
, for some α ∈ (, ).

Consequentially we have

〈
A

(
x + t(z – x)

)
, a

(
x + t(z – x)

)
– a(x)

〉
/∈ – int C(x), ∀x, y ∈ K ,

or equivalently

〈
A

(
x + t(z – x)

)
,α

(
a(z) – a(x)

)〉
/∈ – int C(x), ∀x, y ∈ K .

Letting t ↓ , taking the limit, and noting that α and A are hemi-continuous, we have

〈
A(x), a(z) – a(x)

〉
/∈ – int C(x), ∀x, y ∈ K .

Since z ∈ K is arbitrary, we have

〈
A(x), a(z) – a(x)

〉
/∈ – int C(x), ∀z ∈ K .

Hence x is a solution of generalized vector variational inequality (). �
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