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1 Introduction

Throughout this paper (K, | - |) denotes an algebraically closed field and K[z] denotes the
ring of polynomials (in one variable) over K. For a given vector x in K”, x; always denotes
the ith coordinate of x. In particular, if F is a map with values in K”, then F;(x) denotes
the ith coordinate of the vector F(x). We endow the vector space K” with the norm ||x||,

defined as usual:

" 1/p
%Il = (Z |xi|1”) forl<p<oo; |l = max]lail,..., [} (1.1)
i=1

We endow R” with the coordinate-wise ordering < defined by

x=<y ifandonlyif x; <y, foreachi=1,...,n. (1.2)
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Then (R”, || - ||,) is a solid vector space. We endow K" with the cone norm || - ||: K" — R”"
defined by
lloll = (1%, - - [%ul)-
Then (K”, || - ||, X) is a cone normed space over R” (see, e.g., Proinov [1]).
Let f € K[z] be a polynomial of degree n > 2. A vector £ € K” is said to be a root vector
of f if
f@=ao][z-&) forallzeK, (1.3)

i=1

where a( € K. Obviously, f has a root vector in K" if and only if it splits in K. We denote by
sep(f) the separation number of f which is defined to be the minimum distance between
two distinct zeros of f, that is,

sep(f) = min{|€ — n| : /(&) =f(n),& #n}. (1.4)

1.1 The Weierstrass method and Weierstrass correction

In the literature, there are a lot of iterative methods for finding all zeros of f simultaneously
(see, e.g., the monographs of Sendov et al. [2], Kyurkchiev [3], McNamee [4] and Petkovié
[5] and references given therein). In 1891, Weierstrass [6] published his famous iterative
method for simultaneous computation of all zeros of f. The Weierstrass method is defined
by the following iteration:

D =2 ® _wr (xV), k=0,1,2,..., (1.5)

where the operator Wy: D C K” — K” is defined by

f(xi)

a0 1 (- %) (i=1...,n), (1.6)

Wy (x) = (Wi(x),..., Wu(x)) with Wj(x) =

where g € K is the leading coefficient of f and the domain D of W is the set of all vec-
tors in K” with distinct components. The Weierstrass method (1.5) has second order of
convergence provided that all zeros of f are simple. The operator W is called Weierstrass
correction. We should note that Wy plays an important role in many semilocal convergence
theorems for simultaneous methods.

1.2 The Ehrlich method

Another famous iterative method for finding simultaneously all zeros of a polynomial f
was introduced by Ehrlich [7] in 1967. The Ehrlich method is defined by the following
fixed point iteration:

D =T(W), k=0,12,..., 1.7)
where the operator T: 2 C K" — K" is defined by T'(x) = (T1(x), ..., Tx(x)) with

S (x;)
f/(xi) _f(xi) Zj#i x,+x,

Ti(x) =x; — (i=1,...,n) (1.8)
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and the domain of T is the set

G = {xeD:f’(xi) —f(xi)zx,ix,
j

j#i !

40 forie]n}. (1.9)

Here and throughout the paper, we denote by I, the set of indices 1,...,#, that is,
I, ={1,...,n}. The Ehrlich method has third order of convergence if all zeros of f are sim-
ple. The Ehrlich method was rediscovered by Abert [8] in 1973. In 1970, Bérsch-Supan [9]
introduced another third-order method for numerical computation of all zeros of a poly-
nomial simultaneously. In 1982, Werner [10] has proved that the both methods are iden-
tical. The Ehrlich method (1.7) is known also as ‘Ehrlich-Abert method’, ‘Borsch-Supan
method’, and ‘Abert method’.

Recently, Proinov [11] obtained two local convergence theorems for Ehrlich method un-
der different types of initial conditions. The first one generalizes and improves the results
of Kyurkchiev and Tashev [12, 13] and Wang and Zhao [14], Theorem 2.1. The second one
generalizes and improves the results of Wang and Zhao [14], Theorem 2.2 and Tilli [15],
Theorem 3.3.

Before we state the two results of [11], we need some notations which will be used
throughout the paper. For given vectors x € K” and y € R”, we define in R” the vector

L(M M)
y yl) )yn )

provided that y has no zero components. Given p such that 1 < p < oo, we always denote
by g the conjugate exponent of p, i.e. g is defined by means of

1<g<oo and 1l/p+1l/g=1.
In the sequel, we use the function d: K” — R” defined by d(x) = (d1(x), ..., d,(x)) with
di(x) =min |x; —x;| (i=1,...,n).
J#i

Let a > 0 and b > 1. We define the real function ¢ by

$(t) = ar (110)
T A-8)(1-bt) - at? ’
and the real number R as follows:
2
1.11)

R= .
b+l1+(b-1)?%+8a

Theorem 1.1 (Proinov [11]) Let f € Kl[z] be a polynomial of degree n > 2 which has only

simple zeros, & € K" be a root vector of f and 1 < p < oc. Suppose x*) € K" is an initial

guess satisfying
0 _g 2
E(x©) = |2 <R= , (1.12)
&%) aeg) |, b+1+,/(b-1)2+8a
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where a = (n—1)"9 and b = 2V4. Then the Ehrlich iteration (1.7) is well defined and con-
verges cubically to & with error estimates

] 0 o e amd ] <0
for all k > 0, where ) = ¢(E(x?))) and the function ¢ is defined by (1.10).

Theorem 1.2 (Proinov [11]) Letf € K|z] be a polynomial of degree n > 2, & € K" be a root
vector of f and 1 < p < 00. Suppose x©) € K" is a vector with distinct components satisfying

%0 _ £ 2

<R-= s
d(x©) Hp T b+l+/(b-1)2+8a

where a = (n—1)"9 and b =24, Then f has only simple zeros in K and Ehrlich iteration

E(x©) = (1.13)

(1.7) is well defined and converges to & with error estimates
460 6] <07 |9 —€] and [ 5] <652 g]

forall k > 0, where & = p(E(x?)), 0 = Y (E(x?)) and the function ¢ is defined by (1.10) and
the function by

1-6(Q1-bt)—at®

vO=——7_".

(1.14)

Moreover, the method converges cubically to & provided that E(x©) < R.

1.3 A family of high-order Ehrlich-type methods
In the following definition, we define a sequence (T ))1?10:0 of iteration functions in the
vector space K”. In what follows, we define the binary relation # on K” by

x#y <& wi#y forallijel, withi#j. (1.15)

Definition 1.3 Let f € K[z] be a polynomial of degree n> 2. Define the sequence
(TW)2, of functions T™): Dy € K" — K" recursively by setting 7 (x) = x and

S x:) ‘
‘ T =1,...,n), 116
) =x Sr) =) X m (i ) (L16)

where the sequence of domains (Dy)S7., is also defined recursively by setting Dy = K” and

Dy = {x €Dy :x# TN @), f/ () —f(x:) Y % #0foric 1,,}. 1.17)
7 %= T )

Given N € N, the Nth method of Kjurkchiev-Andreev’s family can be defined by the
following fixed point iteration:

KU+D () (x(k)), k=0,1,2,.... (1.18)
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It is easy to see that in the case N =1 the Ehrlich-type method (1.18) coincides with the
classical Ehrlich method (1.7). The order of convergence of the Ehrlich-type method (1.18)
is2N +1.

Kjurkchiev and Andreev [16] established the following convergence result for the
Ehrlich-type methods (1.18). This result and its proof can also be found in the monographs
of Sendov, Andreev and Kjurkchiev [2], Section 19 and Kyurkchiev [3], Chapter 9.2).

Theorem 1.4 (Kjurkchiev and Andreev [16]) Let f € C[z] be a polynomial of degree n > 2
which has only simple zeros, & € C" be a root vector of f and N > 1. Let O <h<1landc>0
be such that

nc?

G0 —2c—2ch) - 31— D2 =

§>2c(1+(@2n-1)h) and 1, (1.19)
where § = sep(f) defined by (1.4). Suppose x© € C" is an initial guess satisfying the condi-
tion

|« -&||  <ch. (1.20)
Then the Ehrlich-type method (1.18) converges to & with error estimate
||x(k) - & HOO < N+ forallk > 0. (1.21)

1.4 The purpose of the paper

In this paper, we present two new local convergence theorems as well as a semilocal con-
vergence theorem (under computationally verifiable initial conditions and with an a pos-
teriori error estimate) for Ehrlich-type methods (1.18). Our first local convergence re-
sult (Theorem 4.6) generalizes Theorem 1.1 (Proinov [11]) and improves Theorem 1.4
(Kjurkchiev and Andreev [16]). Our second local convergence result (Theorem 5.4) gen-
eralizes Theorem 1.2 (Proinov [11]), but only in the case p = co. Furthermore, several nu-
merical examples are provided to show some practical applications of our semilocal con-

vergence result.

2 A general convergence theorem
Recently, Proinov [17-19] has developed a general convergence theory for iterative pro-
cesses of the type

Xkl = Txk: k = O; 1: 2;“'; (21)

where T': D C X — X is an iteration function in a cone metric space X. In order to make
this paper self-contained, we briefly review some basic definitions and results from this
theory.

Throughout this paper J denotes an interval on R, containing 0. For an integer k > 1,
we denote by S(¢) the following polynomial:

Se@) =1+ t+---+£50

If k = 0 we assume that Sg(¢£) = 0. Throughout the paper we assume by definition that
0°=1.
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Definition 2.1 ([18]) A function ¢: J — R, is called quasi-homogeneous of degree r > 0
on J if it satisfies the following condition:

o(At) <A o(t) forallde[0,1]andte]. (2.2)

If m functions ¢, ..., ¢, are quasi-homogeneous on J of degree ry,...,r,,, then their
product ¢; - - - ¢, is a quasi-homogeneous function of degree r; + - - - + r,,, on J. Note also
that a function ¢ is quasi-homogeneous of degree 0 on J if and only it is nondecreasing
on/.

Definition 2.2 ([17]) A function ¢: J — ] is said to be a gauge function of order r > 1 on J
if it satisfies the following conditions:

(i) ¢ is quasi-homogeneous of degree r on J;

(i) o) <tforallte].
A gauge function ¢ of order r on J is said to be a strict gauge function if the inequality in
(ii) holds strictly whenever ¢ € J\{0}.

The following is a sufficient condition for a gauge function of order .

Lemma 2.3 ([18]) If ¢: ] — R, is a quasi-homogeneous function of degree r > 1 on an
interval ] and R > 0 is a fixed point of ¢ in ], then ¢ is a gauge function of order r on [0, R].
Moreover, if r > 1, then function ¢ is a strict gauge of order r on J = [0, R).

Definition 2.4 ([17]) Let T: D C X — X be a map on an arbitrary set X. A function
E: D— R, is said to be a function of the initial conditions of T (with a gauge function
@ on J) if there exists a function ¢: ] — J such that

E(Tx) < (p(E(x)) for all x € D with Tx € D and E(x) € J. (2.3)

Definition 2.5 ([17]) Let 7: D C X — X be a map on an arbitrary set X, and £: D — R,
be a function of the initial conditions of T with a gauge function on /. Then a point x € D
is said to be an initial point of T (with respect to E) if E(x) € J and all of the iterates T*x
(k=0,1,2,...) are well defined and belong to D.

The following is a simple sufficient condition for initial points.

Theorem 2.6 ([18]) Let T: D C X — X be a map on an arbitrary set X and E: D — R,
be a function of the initial conditions of T with a gauge function ¢ on J. Suppose that x € D
with E(x) € ] implies Tx € D. Then every point xy € D such that E(xo) € ] is an initial points
of T.

Definition 2.7 ([19]) Let T: D C X — X be an operator in a cone normed space (X, || - ||)
over a solid vector space (Y, <), and let E: D — R, be a function of the initial conditions
of T with a gauge function on an interval /. Then the operator T is said to be an iterated
contraction at a point & € D (with respect to E) if E(§) € ] and

[Tx - & < ,B(E(x)) lx =& forall x € D with E(x) €/, (2.4)

where the control function 8: ] — [0, 1) is nondecreasing.
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The following fixed point theorem plays an important role in our paper.

Theorem 2.8 (Proinov [19]) Let T: D C X — X be an operator of a cone normed space
(X, Il - II) over a solid vector space (Y,<), and let E: D — R, be a function of the initial
conditions of T with a gauge function ¢ of order r > 1 on an interval J. Suppose T is an
iterated contraction at a point & with respect to E with control function B such that

tB(t) is a strict gauge function of order r on J (2.5)
and there exists a function : ] — R, such that

B(t) =)W (t) forallte], (2.6)
where ¢: ] — R, is a nondecreasing function satisfying

o(t) =tp(t) forallte]. (2.7)

Then the following statements hold true.
(i) The point & is a unique fixed point of T in the set U = {x € D: E(x) € J}.
(ii) Starting from each initial point x© of T, Picard iteration (2.1) remains in the set U
and converges to & with error estimates

e <0a [ -e] and |0 -e] <000 -] @9
for all k > 0, where ) = p(E(x?)) and 6 = v (E(x?)).
In the case 8 = ¢, Theorem 2.8 reduces to the following result.

Corollary 2.9 ([19]) Let T: D C X — X be an operator in a cone normed space (X, || - ||)
over a solid vector space (Y, <), and let E: D — R, be a function of the initial conditions of
T with a strict gauge function ¢ of order r > 1 on an interval J. Suppose that T is an iterated
contraction at a point § with respect to E and with control function ¢ satisfying (2.7). Then
the following statements hold true.

(i) The point & is a unique fixed point of T in the set U = {x € D: E(x) € J}.

(ii) Starting from each initial point x© of T, Picard iteration (2.1) remains in U and

converges to & with order r and error estimates

o] < g and [-g| O] )
for all k > 0, where ) = p(E(x(?)).

3 Some inequalities in K"
In this section, we present some useful inequalities in K” which play an important role in
the paper.

Lemma 3.1 ([20]) Let u,v € K", v be a vector with distinct components and 1 < p < oco.
Then for all i,j € I,

lwi —vjl > [ 1- i
d(v)

)|V,‘—Vj ’ (31)
p
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u_
|u; — uj| = (1_21/q —

>|Vi - vil. (3.2)
»

Lemma 3.2 ([19]) Letu,v € K" and 1 < p < oo. If the vector v has distinct components and

1

<_
2

u-—-v

d(v)

then the vector u also has distinct components.
Lemma 3.3 ([21]) Let u,v,& € K", & be a vector with distinct components, 1 < p < 0o and
lv-&ll < llu-§l. (3.3)

Then for all i,j € I,

|lui —vjl = ( ]

d(g) )I& &l. (3.4)

Lemma3.4 Letu,v,§ e K", o > 0,and1 < p < co. Ifvis a vector with distinct components
such that

lu—&ll =allv-£l, 3.5)

then for all i,j € I,,,

V_
luj —vil = (1—(1+Ol) a0
»

>|Vi - vil. (3.6)

Proof By the triangle inequality of cone norm in K” and (3.5), we obtain

lw—vil < llu=&ll+Ilv-§ll = @+a)llv-£&l,

which yields
u—v v-§&
1 — .
aw | =" ”

Taking the p-norm, we get

u-
3.7
o PR s (7)
From (3.1) and (3.7), we obtain (3.6), which completes the proof. O

Lemma3.5 Letu,v,§ e K",a > 0,and1 < p < oco. Ifvis a vector with distinct components
such that (3.5) holds, then for all i,j € I,,,

V_
|u; — uj| > (1—21/q(1+a) —_—
’ aw) |,

>|Vi - V,‘|. (38)

Proof From (3.2) and (3.7), we get (3.8), which completes the proof. O
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4 Local convergence theorem of the first type

Let f € K[z] be a polynomial of degree n > 2 which has only simple zeros in K, and let
& € K" be a root vector of f. In this section we study the convergence of the Ehrlich-type
methods (1.18) with respect to the function of the initial conditions E: K” — R, defined
as follows:

x-§

E& =1 2@

(I<p=<o0). (4.1)

p

Leta > 0 and b > 1. Throughout this section, we define the function ¢ and the real num-
ber R by (1.10) and (1.11), respectively. It is easy to show that R is the smallest positive
solution of the equation ¢(¢) = 1. Note that ¢ is an increasing function which maps [0, R]
onto [0,1]. Besides, ¢ is quasi-homogeneous of degree 2 on [0, R]. In the next definition,

we introduce a sequence of such functions.

Definition 4.1 We define the sequence (¢n)3, of nondecreasing functions
¢n: [0,R] — [0,1] recursively by setting ¢o(¢) =1 and

at* (1)

1 -1 - bt)—at’pn(t)’ (4.2)

¢N+l(t) =

where a > 0 and b > 1 are constants.

Proof of the correctness of Definition 4.1 We prove the correctness of the definition by
induction. For N = 0 it is obvious. Assume that for some N > 0 the function ¢y is well
defined and nondecreasing on [0, R] and ¢x(R) = 1. We shall prove the same for ¢p.1. It
follows from the induction hypothesis that

1-0)A-bt)—at’pn(t) > A -t)A-bt)—at>>0 forallt e [0,R] (4.3)

which means that the function ¢y, is well defined on [0, R]. From (4.2) and the induction
hypothesis, we deduce that ¢y is nondecreasing on [0, R]. From (4.2) and ¢n(R) = 1, we

obtain
dr(R) = LRAT - ar - p(R) =1
N T 1-R(A-bR) - aR¢n(R) - 1-R)A-bR)—aRZ "~~~
This completes the induction and the proof of the correctness of Definition 4.1. d

Definition 4.2 For any integer N > 0, we define the function ¢y : [0,R] — [0, R] as fol-
lows:

on(t) = ton(2), (4.4)
where the function ¢y is defined by Definition 4.1.
In the next lemma, we present some properties of the functions ¢y and ¢x.

Lemma 4.3 Let N > 0. Then:



Proinov and Vasileva Journal of Inequalities and Applications (2015) 2015:336 Page 10 of 25

(i) ¢n is a quasi-homogeneous function of degree 2N on [0, R];
(ii) dn+1(2) < d(B)pn(2) for every t € [0, R];

(ili) @n+1(2) < Pn(t) forevery t € [0,R];

(iv) on(t) < ()N foreveryt € [0,R];

(V) @n is a gauge function of order 2N +1 on [0, R].

Proof Claim (i) can easily be proved by induction. From (4.2) and (4.3), we get

at’pn(t) - at*on(t)
1-6)A-bt) —at>pn(t) — A -t)A - bt) — at?

dn(t) = = ¢(H)pn (1),
which proves (ii). Claim (iii) is a trivial consequence from (ii). Claim (iv) follows from (ii)
by induction. Claim (v) follows from (i) and the definition of ¢y. O

Lemma 4.4 Let f € K[z] be a polynomial of degree n > 2, & € K" be a root vector of f and
N > 0. Suppose x € Dy is a vector such that f(x;) # 0 for some i € I,.
(i) Ifx# TN (x), then

f'(x:) 1 B 1-o0;
f(xi) - Z (N)(x) - X — &‘, (4'5)

i %= T

where o; € K is defined by

TN (x) - &
0; = (- &) ’ T (4.6)
%; (i — &) (x; — Tj(N) *))
(i) Ifx € Dny1, then
TN (@)~ & = ——— (i~ &). (4.7)
1- g;
Proof (i) Taking into account that £ is a root vector of f, we get
Sf) 1 w1 ~ 1
S (x:) ;: X — T}.(N)(x) ; xi—§ ; X - T].(N)(x)
1 1 1
e ’ %:(xz -§ - X — T-(N)(x)>
1 () - E,
Cx-g ; (i - s,)<x, TV )
_ 1- [oF]
- i~ Ei ’
which proves (4.5).
(ii) It follows from x € Dy, that
1
£ = f) Y ——— 0. (48)

j# KT 4
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Then from (1.16) and (4.5), we obtain

Ny g =g g (L) ;)1
T; () —&=x-§ (f(xz) Z ﬂN)(x)

i %= T

which completes the proof. O

Lemma 4.5 Let f € K[z] be a polynomial of degree n > 2 which has only simple zeros in
K, & € K" be a root vector of f, N > 0, and 1 < p < 0o. Suppose x € K" is a vector satisfying
the following condition:

2

S 1+ Jb 1284

where the function E: K" — R, is defined by (4.1), a = (n — 1)V, and b = 2V. Then

Ex) =

(4.9)

d(%‘)

xeDy, [|T™)-&| < ¢n(EW)llx £l and E(T™(x)) < on(E®).  (4.10)

Proof We shall prove statements by induction on N. If N = 0, then (4.10) holds trivially.
Assume that (4.10) holds for some N > 0.
First, we show that x € Dy,1, i.e. x# T™)(x) and (4.8) holds for every i € I,,. It follows
from the first inequality in (4.10) that the inequality (3.3) is satisfied with u# =« and
M)(x). Then by Lemma 3.3 and (4.9), we obtain

x_
|xi—Tj(N)(x)| = (1—b TE) )

)|sl & > (1-bE(x))d;(€) >0 (4.11)

for every j # i. Consequently, x # T™)(x). It remains to prove (4.8) for everyi € I,,. Leti € I,,
be fixed. We shall consider only the non-trivial case f(x;) # 0. In this case (4.8) is equivalent
to

fx) 1
- 0. 4.12
I S i )

We define o; by (4.6). It follows from Lemma 4.4(i) that (4.12) is equivalent to o; # 1. By
Lemma 3.1 with 4 = x and v = & and (4.9), we get

x_
lx; — & = (I_HTS) )

for every j #i. From the triangle inequality in K, (4.11), (4.13), the induction hypothesis

>|§i -§l = (1-E@)di(§) >0 (4.13)

and Holder’s inequality, we get

- g
o1l < |xi =&Y :

N
T lxi— é,nxl TV ()|

TN () - &1

1 |xi — &il
= I-E@)1-bE®) di(8) ; d;i(§)
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aE(x)en (E(x))
~ (1-E@))(1-bE(x))

| aE@en(EW)
(I~ E@)(1 - DE@)’

(4.14)

From this, ¢n(E(x)) <1 and (4.9), we obtain

aE(x)?
(1- E()(1 - bE(x))

log| <

which yields o; #1, and so (4.8) holds. Hence, x € Dy;.
Second, we show that the inequalities in (4.10) hold for N + 1. The first inequality for
N +1is equivalent to

| TN () - &] < not (E®) i — & foralli € I, (4.15)

Let i € I, be fixed. If x; = &;, then Ti(N“)(x) = §; and so (4.15) becomes an equality. Suppose
x; # &. By Lemma 4.4(ii), the triangle inequality in K, and the estimate (4.14), we get
|oil |oil

~&| <
|1—| ’ 1|,|

ak(x)*¢n (E())
~ (1-E@))(A - bE(x)) - aE(x)*pn (E(x))

= dni1 (E®)) % — &1,

TN () - & =

- &l

i — &l

which proves (4.15). Dividing both sides of the inequality (4.15) by d;(§) and taking the
p-norm, we obtain

E(TND(x)) < oni1 (E(x))

which proves that the second inequality in (4.10) holds for N + 1. This completes the in-
duction and the proof of the lemma. d

Now we are ready to state the main result of this section. In the case N =1 this result
coincides with Theorem 1.1.

Theorem 4.6 Let f € K([z] be a polynomial of degree n > 2 which has only simple zeros in
K, & € K" be a root vector of f, N > 1, and 1 < p < 00. Suppose x € K" is an initial guess

satisfying
0 _¢ 2
E(x©) = X <R= , (4.16)
%) aeg) |, b+1l+/(b-1)2+8a

where the function E: K" — R, is defined by (4.1), a = (n —1)V4, and b = 2Y4. Then the
Ehrlich-type iteration (1.18) is well defined and converges to & with error estimates

||x(k+1) _ %. “ < A(2N+1)k ”x(k) _ %- ” and ”x(k) _ %. H =< )\.((ZNH) 1)/(2N) ”x S” (417)

forall k > 0, where ) = pn(E(x?))) and the function ¢y is defined by Definition 4.1.
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Proof We apply Corollary 2.9 to the iteration function T™): Dy C K” — K” defined by
Definition 1.3 and to the function E: K” — R, defined by (4.1). Let J = [0, R). It follows
from Lemma 4.5, Lemma 4.3(v), and Lemma 2.3 that E is a function of the initial con-
ditions of T™) with a strict gauge function gy of order r=2N +1 on J. Since £ is a
root vector of f, then E(§) =0 €. It follows from Lemma 4.5 that TW) is an iterated
contraction at a point & with respect to E and with control function ¢y. The fact that
%9 is an initial point of 7™ follows from Lemma 4.5 and Theorem 2.6. Hence, all the
assumptions of Corollary 2.9 are satisfied, and the statement of Theorem 4.6 follows
from it. O

Corollary 4.7 Let f € Kl[z] be a polynomial of degree n > 2 which has only simple zeros in
K, & € K" be a root vector of f, N > 1, and 1 < p < 00. Suppose x© € K" is an initial guess
satisfying (4.16). Then the Ehrlich-type iteration (1.18) is well defined and converges to &
with error estimates

Hx(k+1) _ 5 || < AN(2N+l)k ”x(k) _ E || and

. (4.18)
Hx(k) _E H < p(eNwfn ”x(o) _E ”
for all k > 0, where ) = p(E(x?)) and ¢ is a real function defined by (1.10).
Proof 1t follows from Theorem 4.6 and Lemma 4.3(iv). d

Let 0 < 4 <1 be a given number. Solving the equation ¢(¢) = #? in the interval (0, R), we
can reformulate Corollary 4.7 in the following equivalent form.

Corollary 4.8 Let f € K[z] be a polynomial of degree n > 2 which has n simple zeros in K,
& e K" bea root vector of f, N >1,1 <p < 00,and 0 < h < 1. Suppose 29 e K" is an initial

guess which satisfies

2

x(O)_g’:
<Ry = ,
» b+1++/(b-1)+4a(l +1/h2)

(&)

(4.19)

E (x(o) ) =

where a = (n—1)V9 and b = 2V4. Then the Ehrlich-type method (1.18) is well defined and
converges to & with error estimates
k
k) g < 2NONVH |10 g g

4.20
) - ] <2510 - "

forall k> 0.
Remark 4.9 Corollary 4.8 is an improvement of the result of Kjurkchiev and Andreev [16]

(see Theorem 1.4 above). Suppose that a vector x¥) € K” satisfies (1.20). It is easy to show
that condition (1.19) is equivalent to the following one:

) { 1) 28 }
0 < c<min .

200+ (2n-1h)" 3+ 20+ /4Bn - 2)k2 + dh + 4n + 1
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From this, the initial condition (1.20) and 0 < % < 1, we obtain

0) _ 0) _
x sH 0l _ ch
oo 1)

d(§) ) -
- 2h
T 3420+ /ABn-2)M2 +4h+4n+1
2
<
3+/4(Bn-2)+ @n+1)/h?
2

< .
T 3+/4n-3+4(m-1)/n?

Therefore, x satisfies (4.19) with p = co. Then it follows from Corollary 4.8 that the
Ehrlich-type method (1.18) is well defined and converges to & with error estimates (4.20).
From the second estimate in (4.20) and (1.20), we get the estimate (1.21), which completes
the proof.

5 Local convergence theorem of the second type
Letf € K[z] be a polynomial of degree # > 2. We study the convergence of the Ehrlich-type
method (1.18) with respect to the function of the initial conditions E: D — R, defined by

E(x) = H x-£

i) (1<p=<o0). (5.1)

p

In the previous section, we introduce the functions ¢y, ¢x, and the real number R with
two parameters a > 0 and b > 1. In this section, we consider a special case of ¢, ¢n, and
R when b = 2. In other words, now we define R by

2

R= —+—. 52
3++V1+8a 5:2)
Furthermore, we define the functions ¢y and gy by Definitions 4.1 and 4.2, respectively,
but with
at*gn(t)
P (t) = - (5.3)

1 -8)(1-2¢) - at?>Pn(2)
instead of (4.2), where a > 0 is a constant.

Definition 5.1 For a given integer N > 1, we define the increasing function

at*Pn-1(t)

1-t—at?pn(t) G4

Bn(t) =
and we define the decreasing function ¥ : [0,R] — (0,1] as follows:

_ _ ey
() =1-26(1+ ) = L0020 ¢f{:‘f§'l(t)~ 55)
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Proof of the correctness of Definition 5.1 The functions By and ¥y are well defined on
[0, R] since

1-t—at’pnya(t)>1—t—at*>0 forallte[0,R]. (5.6)

The monotonicity of By and Yy is obvious. It remains to prove that Sy(R) <1 and
YN (R) > 0. Since ¢y (R) =1, we obtain

aR? (1-R)(1-2R) - aR?
R)=—«<1 d R) = ,
Bn(R) T R <P o Yn(R) IR 2R
which completes the proof of the correctness of Definition 5.1. d

Lemma 5.2 Let N > 1. Then:
(i) Bw is a quasi-homogeneous of degree 2N on [0, R];
(i) Bn(t) = o (D) Yn(2) for every t € [0, R];
(iii) Bn+1(2) < Bn(2) for every t € [0, R];
(iv) ¥ (t) = Y (t) for every t € [0, R].

Proof The function By can be presented in the form By/(t) = t2¢n_1(t) P(¢t), where ®(¢) =
al(1 -t —at?pn_1()). Therefore, By is quasi-homogeneous of degree 2N on [0, R] since it
is a product of three quasi-homogeneous functions on [0, R] of degree 2, 2N — 2, and 0.
From the definitions of the functions ¢u, ¥, and By, we get

at* gy (t) 1 - 1)1 -2t) - at’ Py (t)
(1 -1 -2t) - at?>Pn1(2) 1—t—at’>pn(2)

dn(@)Yn(E) = = Bn(2).
Claim (iii) follows from Lemma 4.3(iii) and (5.4). Claim (iv) follows from (iii) and (5.5).
O

Lemma 5.3 Letf € K[z] be a polynomial of degree n > 2 which splits over K, & € K" a root
vector of f, N > 1,and 1 < p < co. Suppose x € K" is a vector with distinct components such
that

2

_[x=E 2
Elx) = d(x) 3++1+8a 67

<R-
p

where the function E: D — R, is defined by (5.1) and a = (n — 1)V4. Then f has only simple
zeros in K,

xeDy, [T™@ & <pn(E@)Ix-¢l and E(T™@) <en(EW).  (58)
Besides, the vector T™)(x) has pairwise distinct components.

Proof 1Tt follows from (5.7) and R < 1/2 that E(x) < 1/2. Then it follows from Lemma 3.2
that the vector £ has distinct components, which means that f/ has only simple zeros in K.
We divide the proof into two steps.

Step 1. In this step, we prove x € Dy and the first inequality in (5.8) by induction on N.
If N =1, the proof of the claims can be found in [11]. Assume that x € Dy and the first
inequality in (5.8) hold for some N > 1.
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First we show that x € Dy, 1, i.e. x # T™)(x) and (4.8) holds for every i € I,,. It follows from
the first inequality in (5.8) that (3.5) holds with v = x, u = T™)(x), and « = 1. Therefore by
Lemma 3.4, (5.7) and R < 1/2, we obtain

TN 1-2|X =5
% — T, (x)|>( ” i |,

for every j # i. Consequently, x # T™)(x). It remains to prove (4.8) for every i € I,.. Let i € I,

) lxi — %] = (1-2E(x))d;(x) > 0 (5.9)

be fixed. We shall consider only the non-trivial case f(x;) # 0. In this case (4.8) is equivalent
to (4.12). On the other hand, it follows from Lemma 4.4(i) that (4.12) is equivalent to o; # 1,
where o; is defined by (4.6). By Lemma 3.1 with z = £ and v = x and (5.7), we get

x-§
eusfof

for every j # i. Hence, we obtain x # £. From the induction hypothesis, we get

>|xi —x| = (1 —E(x))|x,- — x| > (1 - E(x))d,'(x) >0 (5.10)
p

1T (%) - & < By (E@)) |2 - &l. (5.11)

Combining the triangle inequality in K, (5.10), (5.9) and (5.11), we obtain

TN (%) - &
]
loi| < |x; =&l
Z;kn gllxi— TV ()|
1 1T () - &1

(1 E(x))(1 - 2E(x)) d x) Z d(x)
BNn(E(x)) i — &l Z e — &l

T A-E@)A-2EW) dilx) = dix)
which, using Hélder’s inequality, yields
2
o] < _AEQPBy(E) 512

(1-E()(1-2E(x)
From this and (5.7), we deduce

aE(x)?
(1- E()(1 - 2E(x))

loj] <

which yields o; # 1, and so (4.12) holds. Thus we prove that x € Dy.;.
Now we have to prove that the first inequality in (5.8) is satisfied for N + 1, which is

equivalent to
TNV () - &] < By (E®)) 1w — &I foralli€ I, (5.13)

Leti € I, be fixed. If x; = &;, then Ti(N“)(x) = §; and the inequality (5.13) becomes an equal-
ity. Suppose x; # &;. It follows from Lemma 4.4(ii), the triangle inequality in K, and the
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estimate (5.12) that

o o
—xi-&l <

T.(Nﬂ)x _el =
T 8] = el = o

T loe; — &l
aE(x)?Bn(E(x))

= - EW)(1 - 2E(x)) — aE)2pn(ER))

o — &il.
From this inequality, Lemma 5.2(ii), ¥ (¢) <1, (5.3) and Lemma 5.2(iv), we obtain

aE(x)*pn(E(x)¥n(E(x))
(1-E(x))(1 - 2E(x)) — aE(x)*¢n(E(x))
< oo (E@) ¥n (E@)) |xi — &

< one1 (EW) Yt (E)) 1 — &l = Braa (E®)) 1% — &

TNV (w) - &] <

1

loe; — &l

which proves (5.13). This completes the induction.
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Step 2. In this step we prove the second inequality in (5.8) and that 7™ (x) has distinct

components. First inequality in (5.8) allow us to apply Lemma 3.5 with u = T (x), v = «,

and o = By (E(x)). By Lemma 3.5 and (5.5), we deduce
1TV @) - TN ()] = (1= 2Y1E@) (1 + By (E®)))) i = 351 = ¥ (E@)) i — 1.
By taking the minimum over all j € I,, such that j # i, we obtain

di(TN () > Y (EW))di(x) > 0

(5.14)

which implies that 7®)(x) has distinct components. It follows from (5.11), (5.14), and

Lemma 5.2(ii) that

Y@ -6l _ BvER) - &l
d(TNE) ~ Yn(EE) dilx)

|oe; — &l
d;i(x)

= ¢n(E())
By taking the p-norm, we obtain
E(T™(x)) < ¢n(E®))EW®) = on (E()),

which proves the second inequality in (5.8). This completes the proof.

O

Now we are able to state the main result of this section. In the case when N =1 and

p = oo this result reduces to Theorem 1.2.

Theorem 5.4 Let f € K[z] be a polynomial of degree n > 2 which splits over K, & € K" be

a root vector of f, N > 1, and 1 < p < oo. Suppose x\¥ € K" is an initial guess with distinct

components such that

X 2

(0)_5
E(x9) = H <R=—"—,
") dx®) |, 7 3+y1+8a

(5.15)
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where the function E is defined by (5.1) and a = (n —1)"4. Then f has only simple zeros in KK,
and the Ehrlich-type iteration (1.18) is well defined and converges to & with error estimates

R e
5.16
”x(k)_%-”5Qkk((2N+1)k—1)/2N”x(0)_é_-” ( )

for all k>0, where A = pn(E(x?)), 0 = Y (E(x)). Moreover, the method is convergent
with order 2N + 1 provided that E(x©) < R.

Proof We apply Theorem 2.8 to the iteration function TW): Dy c K" — K" together with
the function E: Dy — R, defined by (5.1).

It follows from Lemma 5.3 and Lemma 4.3(v) that E is a function of the initial conditions
of TW) with gauge function gy of order r = 2N + 1 on the interval J = [0, R].

From Lemma 5.3, we see that T) is an iterated contraction at £ with respect to E and
with control function By. Also, it is easy to see that the functions By, ¢, ¥n, and ¢y have
the properties (2.5), (2.6) and (2.7).

It follows from Lemma 5.3 that x®) € Dy. According to Theorem 2.6 to prove that x(©)
is an initial point of T®) it is sufficient to prove that

xeDy and Ex)eJ = TWN(x)eDy. (5.17)

From x € Dy, we have T™W(x) € K”. By Lemma 5.3, T™)(x) has distinct components
and E(T™)(x)) < gn(E(x)). The last inequality yields E(T™)(x)) € J since ¢y :J — J and
E(x) € J. Thus we have both 7™ (x) € D and E(T™)(x)) € J. Applying Lemma 5.3 to the
vector T™) (x), we get T™)(x) € Dy, which proves (5.17). Therefore, ) is an initial point
of T,

Now the statement of Theorem 5.4 follows from Theorem 2.8. O

6 Semilocal convergence theorem
In this section we establish semilocal convergence theorems for Ehrlich-type methods
(1.18) for finding all zeros of a polynomial simultaneously. We study the convergence of

these methods with respect to the function of the initial conditions Ef: D — R, defined
by

Wy (%)
d(x)

(1<p<o0). (6.1)

p

Ef(x) = ‘

Recently Proinov [22] has shown that there is a relationship between local and semilocal
theorems for simultaneous root-finding methods. It turns out that from any local conver-
gence theorem for a simultaneous method one can obtain as a consequence a semilocal
theorem for the same method. In particular, from Theorem 5.4 we can obtain a semilo-
cal convergence theorem for Ehrlich-type methods (1.18) under computationally verifiable
initial conditions. For this purpose we need the following result.

Theorem 6.1 (Proinov [22]) Let f € K[z] be a polynomial of degree n > 2. Suppose x € K"
is an initial guess with distinct components such that

R(1-R)
o 1+(a-1)R

‘ W) 6.2)

d(x)
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forsomel <p <ocoand0 <R <1/(1 + /a),wherea = (n—1)"1. Inthe case n = 2 and p = 00
we assume that inequality in (6.2) is strict. Then f has only simple zeros in K, and there
exists a root vector & € K" of f such that

llx - &l < a(Erx)) | Wr)|| and H 9;(;5 , <R, (6.3)
where the real function o is defined by
o) = (6.4)

Cl-(a-Dt+/A-(@a-1r2 -4t
If the inequality (6.2) is strict, then the second inequality in (6.3) is strict too.
Now, we are ready to state and prove the main result of this paper.

Theorem 6.2 Let f € K[z] be a polynomial of degree n>2, N >1, 1< p < oco. Suppose

x© e K" is an initial guess with distinct components such that

Wi (x?)
d(x©)

8
< 7
p (B++1+8a)?

Ep(x9) = ‘ (6.5)

where the function E; is defined by (6.1) and a = (n —1)"9. Then f has only simple zeros in
K, and the Ehrlich-type iteration (1.18) is well defined and converges to a root vector & of f
with order of convergence 2N + 1 and with an a posteriori error estimate

[ ] = a(E (=) [ w7 (=) | (6.6)
for all k > 0 such that Ef(x(k)) < 8/(3 + /1 + 8a)?, where the function o is defined by (6.4).
Proof Let us define R by (5.2). It is easy to calculate that R < 1/(1 + 4/a) and

R(1-R) 2(1+ /1 + 8a) 8

1+(@-1DR  (3++/1+8a)1+2a++/1+8a) B (B ++/1+8a)?

Therefore, (6.5) can be written in the form

R(1-R)
< .
1+(a-1)R

\/Vf(x(o))
|

p

Then it follows from Theorem 6.1 that f has only simple zeros in K and there exists a root
vector £ € K" of f such that

%0 _ £
d(x©) ‘

<R.
p

Now Theorem 5.4 implies that the Ehrlich-type iteration (1.18) converges to & with order

of convergence 2N + 1. It remains to prove the error estimate (6.6). Suppose that for some
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k>0,

R(1-R)
< .
1+ (a-1)R

®
’ Wi (x™) 67)

d(x®)

p
Then it follows from Theorem 6.1 that there exists a root vector n € K” of f such that

%0 _

-0l <ale N W] ana | <r (63)
p

d(x")

From the second inequality in (6.8) and Theorem 5.4, we conclude that the Ehrlich-type
iteration (1.18) converges to 7. By the uniqueness of the limit, we get n = &£. Therefore, the

error estimate (6.6) follows from the first inequality in (6.8). This completes the proof.
O

Setting p = 0o in Theorem 6.2, we obtain the following result.

Corollary 6.3 Let f € K[z] be a polynomial of degree n > 2 and N > 1. Suppose x© € K"
is an initial guess with distinct components such that

(
‘ Wila i (6.9)

0))
d(x0) Hoo NN

Then f has only simple zeros in K and the Ehrlich-type iteration (1.18) is well defined and
converges to a root vector & of f with order of convergence 2N + 1 and with error estimate
(6.6) for p = co.

Setting p = 1 in Theorem 6.2 we obtain the following result.

Corollary 6.4 Let f € K[z] be a polynomial of degree n > 2 and N > 1. Suppose x© € K"
is an initial guess with distinct components such that

‘ VVf(x(O))

2 (6.10)
d(x(o)) 1 < 9 .

Then f has only simple zeros in K and the Ehrlich-type iteration (1.18) is well defined and
converges with order 2N + 1 to a root vector & of f with error estimate (6.6) for p = 1.

7 Numerical examples
In this section, we present several numerical examples to show some applications of The-
orem 6.2. Let f € C[z] be a polynomial of degree # > 2 and let x(*) € C” be an initial guess.
We show that Theorem 6.2 can be used:

« to prove numerically that f has only simple zeros;

« to prove numerically that N'th Ehrlich-type iteration (1.18) starting from x© is well

defined and converges with order 2N + 1 to a root vector of f;
« to guarantee the desired accuracy when calculating the roots of f via the Nth

Ehrlich-type method.
In the examples below, we use the function of the initial conditions Ef: D — R, defined

by

W (x)
‘ —d(x) , (7.1)

Ef(x) = ‘

[ee]
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where W} is the Weierstrass correction defined by (1.6). We consider only the case p = oo,
since the other cases are similar.

Also, we use the real function « defined by

© 2 (7.2)
alt) = . .
1-(m=2)t+/(1-(n-2)t)> -4t
It follows from Theorem 6.2 that if there exists an integer m > 0 such that
m 8
Ef (x ) <Z= (7.3)

(3++/8n-7)

then f has only simple zeros and the Ehrlich-type iteration (1.18) is well defined and con-
verges to a root vector & of f with order of convergence 2N + 1. Besides, for all kK > m such

that
Er(xV) <% = 5 (7.4)
(3++/8n-7)?
the following a posteriori error estimate holds:
[0 €] <ot where e =a(E ()| W () | @5

In the examples, we apply the Ehrlich-type methods (1.18) for some N > 1 using the
following stopping criterion:

ex <107 and Ef(x(k)) <% (k>m). (7.6)

For given N we calculate the smallest 72 > 0 which satisfies the convergence condition
(7.3), the smallest k > m for which the stopping criterion (7.6) is satisfied, as well as the
value of g for the last k.

In Table 2 the values of iterations are given to 15 decimal places. The values of other
quantities (%, Ef(x(’”)), etc.) are given to six decimal places.

Numerical calculations are made using the software package Mathematica [23].

Example 7.1 We consider the polynomial
fle)=2*-1
and the initial guess
%9 = (0.5 + 0.5i,-1.36 + 0.42i,-0.25 + 1.28i,0.46 — 1.37i)

which are taken from Zhang et al. [24]. We have % = 0.125 and E(x?)) = 0.506619. The
results for this example are presented in Table 1. For example, we can see that for N = 10
at the first iteration we have proved that the Ehrlich-type method converges with order
of convergence 21 and that at the second iteration we have calculated the zeros f with
accuracy less than 10727, Moreover, at the next iteration we obtain the zeros of f with
accuracy less than 107282, Also, we can see that for N = 100 at the second iteration we
have obtained the zeros of f with accuracy less than 10711450,
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Table 1 Values of m, k, and & for Example 7.1 (# = 0.125)

N m  E(x™)  ep k ek k41
12 0010032 1457548 x 1072 4 4385760 x 10721 8919073 x 10793
21 0067725  1.242914 x 107! 3 1347060 x 10738 7.284576 x 107193
3 1 0015716 2300541 x 1072 3 1.825502 x 107" 5054741 x 107744
4 1 0002730 3.887455x 1073 2 1330837 x107% 3543773 x 107230
5 1 0001215 1722883 x 1073 2 4720064 x 1037 2.999643 x 10747
6 1 0000206 2927439 x 107 2 1.060096 x 109 5523501 x 107/
7 01 0.000081  1.155284 x 107* 2 6261239 x 109 3252761 x 1071092
8 1 0000014 1.986052 x 107 2 6080606 x 1078 3570038 x 107143
9 1 0.000005 7910775 x 107° 2 1309022 x 10719 1170454 x 1072002
0 1 0.000000 1366899 x 107° 2 4301615 x 10712 8477451 x 1072683
100 1 0.000000  1.820743 x 10~/ 1 1.820743 x 1077 3460397 x 1071141

Table 2 Numerical results for Example 7.1 in the case N=10

0.000000277962637 + 0.999999578393062i
0.000000000000000 + 1.000000000000000/

-0.000000314533436 - 0.999998669784542i
0.000000000000000 ~ 1.0000000000000007

k xgk) x;k)

0 05405 -136+042i

1 1.000000380419496 + 0.000000816235730/  —1.000000220051461 — 0.000000495915480/
2 1.000000000000000 + 0.000000000000000/  —1.000000000000000 + 0.000000000000000i
k xgk) X;k)

0 -0.25+1.28i 046-137i

1

2

Table 3 Values of m, k, and & for Example 7.2 (% = 0.043061)

N m Ex™)  ep k e Ek+1
1 6 0036897 3.187918 x 1072 9 3967908 x 1073° 5304009 x 1079
2 5 0000003 1.182714 x 107 6 6112531 x 1072 2230412 x 107134
3 4 0000064 2475020 x 107 5 2446120 x 1072 2722168 x 1071
4 4 0000000 1550670 x 107" 5 3838741 x 107%3 1.589981 x 10782/
5 3 0005793 2415745 x 1073 4 9532339 x 1072 8487351 x 107248
6 3 0000293 1.127450 x 107 4 9565008 x 1074 1725858 x 107>
7 3 0000005 2.173198 x 107 4 4018844 x 10777 6737932 x 1071138
8 3 0000000 1.562375x 1078 4 1162424 x 107123 1.291370 x 1072080
9 3 0000000 4.092421 x 107" 4 4245137 x 10718 1.373908 x 107330

10 3 0000000 3.904607 x 107 4 4643262 x 107270 2543247 x 107°64

30 2 0000055 2.129417 x 10~ 3 5721566 x 10724 2377023 x 10712106

In Table 2, we present numerical results for Example 7.1 in the case N = 10.

Example 7.2 We consider the polynomial

22+ 41

f(2) =

Page 22 of 25

and Aberth’s initial approximation x(*) € C” given by (see Aberth [8] and Petkovi¢ et al.
[25]):

3
x&o):_@ +roexp(ify), 0,= z<2v——),v=1,m,”, 7.7)
n n 2

where a; =1, ry = 2,and 1 = 15. We have Z = 0.043061 and E(x(?) = 0.179999. The results
for this example are presented in Table 3. For example, we can see that for N = 30 at the
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Table 4 Values of m, k, and &y for Example 7.3 (% = 0.033867)

Page 23 of 25

E¢(x(m)

N m €m k ek Eks1
1718 0000060 6.095859 x 107 20 1620028 x 10738 4276235 x 107114
2 12 0015335 2153155 x 1072 14 1.095084 x 10746 1.779476 x 107230
310 0018005  2.769333 x 1072 12 8917532 x 1078 4482714 x 107°%
4 9 0005514 6.130790 x 1073 10 4.221856 x 1072 7.250879 x 107184
5 9 0000000 1.159694 x 1071° 10 5021359 x 10719 5118016 x 1071808
6 8 0000237 2386016 x 107 9 8455240 x 1078 1280870 x 10762
7 8 0000000 2723047 x 1071/ 8 2723047 x 1077 8926059 x 107249
8 7 0018995  2.934241 x 1072 8  2885374x 1070 4152134 x 10703
9 7 0.002180 2274734 x 1073 8 3792876 x 107! 1.140751 x 10798

10 7 0000000 5185525 x 107/ 8 1620086 x 107132 2936276 x 1072768

30 5 0.000181  1.821419 x 107* 6 1395923 x 107220 1.902920 x 10713777

Figure 1 Trajectories of approximations for the
Wilkinson polynomial f(z) = ]'[]-2=°1 (z-j).

7 N =30(k=06)

20

third iteration we have obtained the zeros of f with accuracy less than 107248, Moreover,

at the next iteration we get the zeros of f with accuracy less than 1071519,

Example 7.3 We consider the Wilkinson polynomial [26]

229 —1202% + - -+ +2,432,902,008,176,64.0,000

~
=
S
_
I
:/-\
N
|
N~
=
I

and Aberth’s initial approximation (7.7) with a; = -120, ry = 20, and n =20. We have
% =0.033867 and E(x©) = 0.344409. The results for Example 7.3 are shown in Table 4.
For example, for N = 30 at the seventh iteration, we get the zeros of f with accuracy less
than 10713776,

In Figure 1, we present the trajectories of approximations generated by the method (1.18)
for N = 30 after 6 iterations.

Example 7.4 We consider the polynomial

flz)=2* -1
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Table 5 Values of m, k, and & for Example 7.4 (% = 0.018685)

Page 24 of 25

N m  Ex™) en k e k41
115 0007235 1588799 x 1073 17 1057241 x 10718 1.574672 x 1072
2 11 0000001 1.731641 x 107/ 12 2763909 x 10730 2863869 x 1074
3 9 0000026 4.171842 x 107° 10 5167701 x 10732 2328540 x 107213
4 8 0000032 5141616 x 107° 9 7830010 x 10740 3487627 x 10734
5 7 0010766 2954474 x 1073 8 1468181 x 10720 2.870206 x 107208
6 7 0000002 4201055 x 1077 8  7.096655 x 10771 6481892 x 107990
7 7 0000000 9445503 x 1071° 8 3169914 x 10719 2445585 x 1072918
8 6 0010675 2911647 x 1073 7 8218559 x 107 3.538870 x 1074
9 6 0000281 4462548 x 107 7 2324176 x 10°%* 1205364 x 1071190
10 6 0000000 1231259 x 107/ 7 1392265 x 107124 1840079 x 107280
30 5 0000000 2416285 x 10734 5 2416285 x 107* 1294365 x 107198/

|
1

!
14

Figure 2 Trajectories of approximations for the N =30 (k =5)

polynomial f(z) =20 - 1. oo o
I,
ot/
I/
o

In this example we use Aberth’s initial approximation (7.7) with a; = 0, ry =2, and n = 40.
We have Z = 0.018685, E(x?)) = 0.159318. The results for Example 7.4 can be seen in Ta-
ble 5.

In Figure 2, we present the trajectories of approximations generated by the method (1.18)
for N = 30 after 5 iterations.
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