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Abstract
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1 Introduction

1
Ifp>1, 5+ 5 =1, @by >0,a={a,)5, €W, b=1{b,)2 €l |al, =5 am)? >0,
&1, >0, then we have the followmg well-known Hardy-Hilbert’s inequality with the best

possible constant factor (cf [1], Theorem 315):
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Also we have the following Mulholland’s inequality similar to (1) with the same best pos-
(cf. [2] or [1], Theorem 343, replacing “, h” by a,,, b,):

sible constant factor —Z=
sin( /p)
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Inequalities (1) and (2) are important in analysis and its applications (cf [1, 3-8]).
In 1998, Gao and Yang [9] gave a strengthened version of (1) as follows:
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where 1 -y =0.42278433" (y is Euler constant).

[ele]
amby

D2 e

m=1 n=1 m+n

© 2015 Wang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13660-015-0852-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0852-8&domain=pdf
mailto:sxxmaths876@sina.com

Wang et al. Journal of Inequalities and Applications (2015) 2015:329 Page 2 of 16

Suppose that p;,v;>0 (i,j e N ={1,2,...}),

U, := Z i Vi = Z Yj (m,n € N), (4)
i=1 =1

we have the following Hardy-Hilbert-type inequality (¢f. [1], Theorem 321):

[cle ] 1/q_ 1/p
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For p1; = vj =1 (i,j € N), inequality (5) reduces to (1). Replacing uiﬁqam and u,i“’bn by a,

and b, in (5), respectively, we obtain the equivalent form of (5) as follows:

[ e mbn 00 ﬂlr?n }g 00 bz %
2.0 ua+v <sin7zl) (Z p_1> (Z q—l) : (©)
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In 2015, Yang [10] gave an extension of (6) as follows: For 0 < A1,Ap <1, A1 + A3 = A, we

have
oo o0
m=1 n=1 u + V
1 1
o0 p(1-21)-1 p[ q(1-22-1) 79 | a
u a, Vi by
o [ [
m=1 Hm n=1 n
where B(u, v) is the beta function indicated by (cf. [11])
00 tu—l
B(l/l, V) = /O W dt (M, V> O) (8)

In this paper, by using the way of weight coefficients, the technique of real analysis, and
Hermite-Hadamard’s inequality, a Mulholland-type inequality with the best possible con-
stant factor F is given as follows: For p; = v; =1, {i,,} 54 and {v,}72; are decreasing,

and Uy, = V4 = 00, we have
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which is an extension of (2) (Note: the series on the right-hand side of (9) are positive).
Moreover, a strengthened version of (9) and some extended Mulholland-type inequali-
ties with multi-parameters are obtained. The equivalent forms, the reverses, the operator

expressions and a few particular cases are considered.
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2 Some lemmas

In the following, we make appointment that p #0,1, }7 + % =1,0<Ap <1, A+ Ay =2,

Wi v; >0 (i,j € N), with u; = v; =1, Uy, and V,, are defined by (4), @, b, > 0, llallpe, =
1 1

(X ey @i (m)ah,)? and |1l g,u, = (3n2, Wa(n)b)7, where

(In U, )P0-2)-1

1-p p-1
Um M1

d>k(m) =

(10)
(In V,,)20-22)-1

1-g_g-1
V’l Upl

W, (n) := (m,n e N\{1}).

Lemmal Ifa €R,f(x) is continuous in [a — %, a+ %],f’(x) is strictly increasing in (a — %,a)
and (a,a + %), respectively, and

lim f'(x) =f'(a - 0) <f'(a+0) = lim f'(x),

X—>a— X—a+

then we have the following Hermite-Hadamard's inequality (cf. [12]):

a+%
f@< [ fwas )
a=3
Proof Since f'(a — 0) (< f'(a + 0)) is finite, we set a function g(x) as follows:

gw):=f(a-0)x—a)+fla), x€ |:a— %,a+ %:|

In view of f'(x) being strictly increasing in (a — %, a), then for x € (a — %, a), (f(x) —glx)) =

f'(x) —f'(a—0) <0. Since f(a) — g(a) = 0, it follows that f(x) — g(x) >0, x € (a — %, a). In the
same way, we can obtain f(x) — g(x) >0, x € (a,a + %). Hence, we find

[ s [ gt

namely (11) follows. 0

Example 1 If {§1,,}5; and {v,}}2; are also decreasing, we set ju(£) := fy, ¢ € (m — 1,m]
(m e N); v(t):=v,, t € (n—1,n] (n € N),

x Yy
U(x) := / wt)ydt (x=>0), V(y):= f v(t)dt (y=>0). (12)
0 0
Then it follows that U (m) = U,,,, V(n) = V,, (im,n € N), U(00) = Uy, V(00) = V5, and

U')=pu@x)=pm  (x€(m-1m)),
Vo) =vp) =us (e n-1m).
For fixed m, n € N\{1}, we also set a function f(x) as follows:

I v(x) . 1 . 1
, X€|n—=—,n+=|.
Vix)(InU,, +In V(x))* 2 2

fx) =
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Then f(x) in continuous in [n — %,n + %]. Forx e (n— %,n) (n € N\{1}), we find

oy [PV a2 Vi(x) 14
S _[ Vi) Il +n V@) ViR (x)]
Un
% Vx)An U, + In V(x)*

Since 1 — Xy > 0, it follows that f”(x) (< 0) is strictly increasing in (n — %, n) and

lim f'(x) = f'(n - 0)
In*27ly, A2V, 1-1,
- + +
V, Inl,+InV, vy

Uy
X .
V,(nl,, +1nV,)*

In the same way, for x € (1,1 + %), we find

2?1 v) Al V(v N 1- %o
+
Vi(x) Inl, +InV(x) V2% (x)

Up+l
Ve (nl, +In V@)

f’(x):—[

f'(x) (< 0) is strictly increasing in (1,7 + %). In view of v,,1 < vu,, it follows that

limy, ., f'(x) = f'(n+ 0) > f'(n — 0). Then by (11) we have -

n+% n+% lnAZ—I V(x)
) < /% fla)dx= /; Ve nt, +In V) 13)

Definition 1 Define the following weight coefficients:

= 1 Upa o U,

@(ha, m) = 22: U oy ™ N\{1}, (14)
> 1 Mm+1 lnAZ Vn

@ (M, n) = 2; UL Lo e N\{1}. (15)

Lemma 2 If {u,,}50, and {v,};°, are decreasing, and U, = Vo, = 00, then we have the

following inequalities:

Ay, m) < B(AI,A2)<1 __ )

In*2 U,
(0< iz =LA >0;m eN\{1}), (16)
A Bow ) 1- 2
@ (A1, 1) < B(A1,13) —m

(0<A <L,y >0;meN\(1}), 17)
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where

1 In*2(1 + vy/2)

In(1+vy/2)
B(A1,22) Ay [1 + In 1+u§/2 ])L

912

1 In* (1 + po/2)

In(1 /2)
B(A1,22) A[1+ 1?1 1:5;/2) o

922

Proof Since for x € (n - %,n + %)\{n}, U < V'(x), by (13) we find

1
" M U, Int2 T V()
)\, ,m n+
? Z” 1/% V)(In Uy, + In V()

o0 n+j ]nM um lnkzq V(x) /
< ;/-1 V(x)(In U, + In V(x))* V' (x) dx

> M U, IV
_/3 WU TV g

V(x)(In U, +In V(x))*

> M U, IV
:f n m AN (%) V' (x) dx
1

V(x)(In U, +In V(x))*

_/3 In* U, In*?>7 V() V() dx
1

V(x)(n U, +In V(x))*

In V(x)
Inl,, "’

3
| 2 In* U I V(%)
A2 27 dr - / = V' (x)d.
@(ha,m) < /0 1+ 1 (nl, +InV(x)* V(x) (c) dx

= B(A.],)\.Z)(l —9(}’}’1)), (20)

=InU,, dt and

Setting ¢ = we obtai

where

B 1 5 In* U, "2 Vix)
)= B sy Ve | O 1)

We find
1 In* U, 3ty
0(m) > 1 3 / - () V'(x) dx
B(A,42) (InU,, + In V(5))* )y V(x)
1 In* U, e
= — 2 V(2
B(A,42) Ap(In Uy, + In V(5))* 2
~ 1 In*2(1 + vy/2) 1
B(h1,22) A1 + %)* In*2 U,
1 In*2(1 + vy/2) 16
T B(A1,A2) 2o(1 + %)x In* u, U,
Hence, by (20), we have (16) and (18). In the same way, we obtain (17) and (19). O

Note For example, u,, v, = n%, (0 <o <1) are satisfied the assumptions of Lemma 2.
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Lemma 3 With the assumptions of Lemma 2, (i) for m,n € N\{1}, we have

B(A1,22) (1= 0(ha,m)) <w(ha,m) (0 <hy <1,41>0),

B(r, M) (L= #(h,m)) < (A,m) (0 <Ay <Ly >0),

where
1 In*2(1 + vy) 1
9()»2:”’1) = B()» N ) ln(1+0(m2)U2) | A2 U
LA2) Ao[l + =522 )M In2 Uy,
o( ! )e<o 1) (600m) € (0,1))
— - , m ) )
In*2 u,
1 In*1(1 1
B0 = (1 + o)

B, 1) g1 + B2 1V,
o( ! )e(o 1) (9(n)€(0,1)
= Parva— ) n ) 5
In"1 Vv,

(ii) for any a > 0, we have

o0

o e 1 L 00
U, " U, alIn®(1+ o) ’
i Ut _1 L 00
— Vv, IV, alln®(1+v,) '

Proof Since by Example 1, f(x) is strictly decreasing in [#, # + 1], then we find

oo n+l A Aa-1
In*t U,,, In*?™ V' (x)
A2, n+
(k) > XZ:/ Uy G (n t,, + In V(x))*

~ /°° In*! U, In*27! V()
), Vx)nlU, +1nV(x)*

B /‘ © 1M U, 10" Vix)
i V@UnU, +InV(x)*

/2 In* U, In*27! V(x)
1 Vx)(Inl,, +1nV(x))*

= B()‘-lﬁ }\.2)(1 - 9()‘-27 m))’

V(%) dx

V' (x)dx

V(%) dx

where

O(Ay, m) := dx € (0,1).

1 2 V' (x) In™ U, 1" V(%)
B(A1,A2) _/1 Vx)(InlU,, +1In V(x))*

There exists 0 (m) € (0,1) such that

1 In* U,
B, Ao) [InU,, + n V(1 + 0(m))]*

2 o' V()
* /1 V)

9()\.2,1’]’[) =

V'(x)dx

Page 6 of 16

(25)

(26)

(27)
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~ 1 In™ U, In*2 (1 + vy)
"~ B(A,A2) Aa[InU,, + In V(1 + 6 (m))]*
1 In*2(1 + vy) 1

" B(h1,22) Aall+ %] In*2 U,

Since we obtain

21 +vy) 1
T XoB(A, ko) In*2 U,

0 <0()‘-2) )

namely 6(Aq, m) = O(
For a > 0, we find

1
In*2 U,

0 m [}
m+1
,; Um 1n1+a U Z 1+a U

o]

H2 Mm
= +
Uy In'* Uy % Uy 10" U,

U'(x)
= 1+au Z/ 3 u 1n1+au dx

U'(x)
“ﬂ i, Z/ LU um

M2 °° U'(x)
= ot L T X
UyIn™U, J, Ul)In™U(x)
Mo 1
= l+a + a
@+ p2) I (1 + pg)  aln®(1+ po)

1 ( 1 apy )
= a + 1+a ’
a\In“(1+u2) (14 pa) I (1 + )

i sl _i/”*l U'(x) dx
= Uy I U, U, In*** U,

m=2Y M
o0 m+1 u/(x)
g Y; /m U@t
B f *° Uwxdx 1
) U™ UE)  aln®(1+ po)

Hence we have (26). In the same way, we have (27).

3 Main results and operator expressions
We also set

(1-21)
B1m) = (g, ) L

_ 1 ’
Wlp“fnﬂ
~ (In V,,)20-*2)-1
\I’)L(I’l) = W()\,l, H)ﬁ (I’I’l,}’l € N\{l})
V” Upl

), we have (22). In the same way, we obtain (23).

Page 7 of 16

(28)
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Theorem 1 (i) For p > 1, we have the following equivalent inequalities:

o olNe o]

= ZZ < lal,z, 16ll,3, (29)
n=2 m= )
L v P2y, [ & a "
= s - - <lal,s, - 30
/ ;(w(xl,n))p-lvn ,;mk(umvn) =3, o

(ii) For 0 < p <1 (or p < 0), we have the equivalent reverses of (29) and (30).

Proof (i) By Holder’s inequality with weight (cf [12]) and (15), we have
i am | i 1 <u},§q (In U,,) -+l 12 >
| = a
= ™ (U Vy) = (U Vi) \ (In V) 0-22py e "
(In V)02 e N\
) ( Uy (In U,,)-+)lay P )

oo

< Z 1 uﬁ’l_l (111 um)(l_kl)p/qUnJrl ﬂp
- lnk(um Vi) (In V,,)1-*2 MI;ZI ”

-1
i 1 (nv,) ey, 17
X
m=2 lnk(um Vn) -

U, (In Uy, 107

(@ (m), i Ut Uy (In U,) 100D aﬁq

= (31)
(In VP27 1u, 0 &=k (U, V,) V,,(In V)12 2]
Then by (14) we find
_ 1
X ® - up—ll U.)-A) -1 r
12| 2 i e
| W (U Vi) V(i V)il
_ 1
ii v (In U™ Uy (I U207 7
= a
| 2 s I (UnVy)  V,(In V)2l "
_ 1
00 In 11,,)P-+)-1 »
S gy T 1 (32)
1-p p-1 m
Lm=2 Um Mmﬂ
and then (30) follows.
By Holder’s inequality (cf [12]), we have
I_i[(ln\/'))\2 iipl > A i|
= : -
w2 L (e Gy, )i v et 10 (U V)
1(InV, )__}‘2
x [(mxl,n))qﬁ ] < iet 63)
VnP p

Then by (30) we have (29).
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On the other hand, assuming that (29) is valid, we set

(ln Vn)p)L271 Un+l > am r
b= (@ (A, m))P1V, |:r§ lnk(um Vn):| o e (34)

Then we find J? = ||b||Z%. If ] = 0, then (30) is trivially valid; if ] = oo, then, by (32), (30)
takes the form of equality. Suppose that 0 < J < co. By (29), it follows that

16175 =" =1<lall,s, 15ll,3,, (35)

-1
16175, =7 < llal,z,, (36)

and then (30) follows, which is equivalent to (29).

(i) For 0 < p <1 (or p < 0), by the reverse Holder’s inequality with weight (c¢f [12]) and
(15), we obtain the reverse of (31) (or (31)), then we have the reverse of (32), and then the
reverse of (30) follows. By Holder’s inequality (c¢f [12]), we have the reverse of (33) and
then by the reverse of (30), the reverse of (29) follows.

On the other hand, assuming that the reverse of (29) is valid, we set b, as (34). Then
we find J? = IIbIIZ’%. If ] = oo, then the reverse of (30) is trivially valid; if / = 0, then, by
the reverse of (32), (30) takes the form of equality (= 0). Suppose that 0 < J < co. By the
reverse of (29), it follows that the reverses of (35) and (36) are valid, and then the reverse

of (30) follows, which is equivalent to the reverse of (29). O
Setting
e} 1 u (1-A1)-1
Q)= (1- ) It
In*? U, U, o,
q1-12)-1 (87)
92 (1[1 V, ) 2)
F,(n):=(1- m,n € N\{1}),
}»( ) ( ln)LI Vn) Vl qUZ+11 ( \{ })

we have the following.

Theorem 2 Ifp>1, {iu}., and {v,};2, are decreasing, Us, = Voo = 00, |lallpe, € R, and
I6llgw, € R,, then we have the following equivalent inequalities:

(o) o0 ﬂm Y
<B(A1, A0)||la b , 38
;X;hﬂ(u vy <BOwrlalsg, Wbl (38)
ra-1y, p Ilv
= Up+l lnP 2 = Am
= < B(A, M) lall e, (39)
{;(I-mﬂp v, [Zln*(umvn)} } P

where the constant factor B(A1, Ly) is the best possible.

Proof Using (16) and (17) in (29) and (30), since

(w(}vz»m))’l’ (B ()»1,)»2))}’ < n xflum)p (p>1),
1 1 0, \i
(@ (0, )7 < (B(hi, 1)) (1 - IHMZVM) (q>1)
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and

1 1

Bl 2P 1= 2 (@ G

p>1),

we obtain equivalent inequalities (38) and (39).
For ¢ € (0, p)1), we set M= — (e (0,1)), dp =yt & (> 0), and

5 .o Hme Mom+1 In - 1u MWHI IIIM_I%_I u,,

e AL S N R
.

n n

B
Then, by (26), (27) and (23), we have

@llp, 161lq.F ,

< ll@llp,e, 16llg,,

1 1
_ i Mm+1 ’ i Un+l !
—~ U, " U, | \“= V,In'"V,

1 1

_1 1 ol » 1 Ba q
[W o] [ <00

Z Z In* L[ V )
_ | 1 Mm+1 111}2 Vi Un+l
-2 [Z In*(U,, % } V,Inf*1 v,

Vn) L[mll’l1 M Um

n=2 Lm=2
oo
- Loy,
=2 n n
=07 Y (1-0( ) )y
2 v,/ VaIn*" v,

:B(xl,xz)[gﬁ >o (v—m)}
LG —2 oM - o
—g (A1 2|:m+8( (1 - ))]

If there exists a positive constant K < B(A;,A2) such that (38) is valid when replacing
B(A1,)3) by K, then, in particular, we have el < eK|d|lp,0, ||f1;||q,F.A, namely

~ o~ 1 ~
B(M,Az)[m +£(0Q) - 0(1))}

KL veow] [+ et0)]
< [ln’s(lﬂn)-'-(E } [ln£(1+vz)+8 :| '
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It follows that B(A1,A2) < K (¢ — 0%). Hence, K = B(A1, A;) is the best possible constant
factor of (38).
Similarly to (33), we still can find that

I<1libllg.r ;- (41)

Hence, we can prove that the constant factor B(A;, A) in (39) is the best possible. Other-
wise, we would reach a contradiction by (41) that the constant factor in (38) is not the best

possible. O

Remark 1 (i) It is evident that (38) and (39) are strengthened versions of the following

equivalent Mulholland-type inequalities:

00 00 ﬂmbn

0 ity < Boviale Wy, ()

:i Ty, [i N ]p}; <B(h, 22)lal (43)
n=2 Vn ’ m=2 ln)h(umvn) ’ p®u

where the constant factor B(A, A;) is still the best possible.

(ii) For A =1, A1 = %,AZ :117,

_ psin(z/p) In2(1 + vy/2)

In(1+vy/2) ] ’
In(1+wug/2)

91:191Z

[l +

_gsin(w/p) InY4(1 + pua/2)

In(1+p9/2) ] ’
In(1+vo/2)

9221922

w1+

(38) reduces to the strengthened version of (9) as follows:

1
0o 00 mbn 00 9 u, p-1 p
Inll,, v, sin(n/p)| = In"? U, ) \ Wt

m=2 n=2
1
00 -1 q
292 Vn >q
X E 1-——— b1 . 44
|:n—2 ( lnllq Vn) (UVHl " ( )

For u; = v; =1 (i,j € N), (44) reduces to the following strengthened Mulholland’s inequal-
ity:

1
ii ﬂmbn < i T B 111\/3/2 dfn ?
In mn “Lsin(r/p)  W'"m [m'>

m=2 n=2 m=
1
> T Inv/3/27 b |*
‘ Z[, e }1 , (45)
— sin(w/p)  InY"m |nl1

where In+/3/2 = 0.20275*.
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Forp>1, \I-’ifp (n) = %1 (In V,)P*>71, we define the following normed spaces:

byo, = {a={am}pyy; lallpe, <0},
lq,\IlA = { ={b, }ooz’ ”b”q\I/A < OO}

o — S
gtr = fe = lealai el y1v <00}

Assuming that a = {a,,},,_, € l,,0,, setting
oo

A
c={c,}%,,¢pi= ———, neN,
e %ln*(umm

we can rewrite (43) as follows:
IICllp,q,i—p <B(M, Aa)llallp,e; < 0o,

namelycel 1
Yy Y, 14

Definition 2 Define a Mulholland-type operator T : [, ¢, — l glv 25 follows: For any
={am};,s € lp0,, there exists a unique representation Tz = c € l y1-»- Define the formal
)»

inner product of Tz and b = {b,}2, € [, y, as follows:

(Ta,b) = Z[Z Mi’lm}”w (46)

n=2 |Lm=2

Then we can rewrite (42) and (43) as follows:

(Ta, b) < By, A2)llallpo, 161l q,, (47)

ITall , y1-» < Br1, Ao)llallp,o; - (48)

Define the norm of operator T as follows:

' I Tﬂllp’wi—p
T := sup ———.
a(#)elye, |alp;

Then by (43) we find || T'|| < B(A1,12). Since the constant factor in (48) is the best possible,

we have
1T = B(A1, A2). (49)

4 Some strengthened versions of the reverses

In the following, we also set

(In U, p0-)-1
—
u’"pl’(’an (50)
(In V,,)40-2)-1
(m,n € N\{1}).

1-q_q-1
n " Upyg

’

Q. (m) := (1= 6(ha, m))

)= (1 = (A1, ”’))
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For 0 < p <1 or p <0, we still use the formal symbols ||all,,0,, [16llqw,, |2llp0,, 16145,

lall,gs, and [1bll,7, -

Theorem 3 If0 < p <1, {m}or, and {v,};2, are decreasing, Us, = Voo = 00, ||allp,0, € R,
and ||b|lgw, € R,, then we have the following equivalent inequalities with the best possible
constant factor B(hy, 1):

oo 00 ﬂmbn

— > BOw, M)llall,z, 16l (51)
2w e
00 o —1 5] 12y
Upy1 IP270 V), am ’

> B(A, A)llall, s, - 52

{;(l_mhv)p o |:Zln*(umv,,):|} (M, 22)llall, g, (52)

Proof Using (22) and (17) in the reverses of (29) and (30), since

(w(xz,m))z% > (B(AI,AZ))}’ (1- Q(Az,m))% (0<p<l),

[2) q
( msz) (<0)

I

Q=
Q=

(w(A,m)) 7 > (B(r1, 42))

and

1 1
(BOw 1)y 11— ot (@ (o, mp

(0<p<l),

we obtain equivalent inequalities (51) and (52).
For ¢ € (0, pA;), we set k2, dm and by as (40). Then, by (26), (27) and (17), we find

lall,g, 16llq.r

> llallys, 12149,

1

[o¢] i o0
Mm+1 i Up+l !
= |:Z(1 - 9()\'2’ l’}’l)) Um 1111:8 umj| (; Vn 1111:8 Vn>

m=2
1
= Mm+1 d Mm+1 i
= - o ——7m
; Uy, 10" U, MX; (um Int+h2+e um>
1
= Un+1 !
X _—
(XZ: V,In'** v,

1 1
= g [m + 8(0(1) - Ol(l))}

Z:X:In (U, V)

n=2 m=2

= Shs 1 Mm+1 1113:2 Vi Ul
=2 Lm=2 lnk(um Vrz) Um ]nl—)hl Um Vn 1n8+1 Vn

n

1

p 1 5(1) %
|:1n8(1+vz) te ] ’
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Un+l Un+l
_Zw()\'l;n)v In €+1V B()"I:AZ)ZV In E+1V

LB ) ! 0Q)

=- , —— t¢ .

PRt In®(1 + vy)

If there exists a positive constant K > B(1,A) such that (51) is valid when replacing

B(A1,12) by K, then, in particular, we have el > eK||all,g, IIZIIq,,L .» hamely

B(mz)[ +85(1)}

1
In°(1 + vy)

1 1% 1 ~ %

It follows that B(A1,4;) > K (¢ — 0%). Hence, K = B()A1, 1) is the best possible constant
factor of (51).

The constant factor B(A, A,) in (52) is still the best possible. Otherwise, we would reach
a contradiction by the reverse of (41) that the constant factor in (51) is not the best possi-
ble. O

Remark 2 Itis evident that (51) and (52) are strengthened versions of the following equiv-

alent inequalities:

[cslNee] ﬂmbn
— s B, M) el 18]l gw, (53)
P AR e
00 v 00 a P }7
n+1 Ao —1 m
InP*274 Vv, P e —— > B(A, M) all, s, 54
:Z; 7 [Z_Zlnk(umvn)] } (A1, 22)llall, g, (54)

where the constant factor B(A, A;) is still the best possible.

Theorem 4 If p < 0, {{iy};ey and {v,},2, are decreasing, Uy, = Voo = 00, |lallpe, € R,
and ||bllgw, € R, then we have the following equivalent inequalities with the best possible
constant factor B(hy, 13):

oo 00 ﬂmbn
>N s Bl )l 1l 7 (55)
n=1 m= 11 (u V) g
ha-1 Py 5
- Up+l In?*2~ V ad A p
= > B(A1, \2)|a . 56
" {nz(l O (y, M)V, L; ln}‘(UmVn):| } O do)lallp, (56)

Proof Using (16) and (23) in the reverses of (29) and (30), since

NI

(w(ho,m))? > (B()»l,)»z))’% (1 - %)p (»<0),

Q=

(@(m)® > (BOw,A2)) T (1-9(m)T (0<gq<D)
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and

1 Z 1 Z 0
[(B(M,kz))p‘l(l - 19()\1,”))”‘1] g [(W(Mrn))p‘l] <o

we obtain equivalent inequalities (55) and (56).
For ¢ € (0,gA;), we set M=+ g (>0), % = Ay — 2 (€ (0,1)), and

~ Mm+1 Mm+1 | p-£-1
= — 1“81[,[ =——In""?" U,,
m m

Un+l Un+l

2 el -

n n

By = iy,
Then, by (26), (27) and (16), we have

Iallp.0, 101147,

> lldllp,e, 161l,,7,

o0 M P o0 %
m+1 Un+1
= E E 1 Y(A,n) —————
( u 1n£+1 U ) |: ( 1 Vl) ] e+l V :|

n=2
00 1 00 00 1
’ q
Mm+1 Un+l Upsl
= 2 : Tr 1oe+lrr E _— = o ——
<m=2 u, In*t u,, ) |:n=2 V. In*t Va ; ( v, ]n1+(7~1+s) v, ):|

1

1 1 , 1 ~ !
i 00| [y @000

ZZ1n*(u Vi)

m=2 n=2
0 [ oo lxl U, v + -
:Z Z/\niv 1t v, Mill
m=2 | n=2 In* (U, V) Vi u,In*" U,
00 " i
oY m+1 el
= w(hg,m)—————— < B(A, A _ Mma
g ooy m) e < B Z)Z T
B(h1, %) 1 0Q1)
=~ ’ — < t+¢ .
P I (@t o)

If there exists a positive constant K > B(A1, A2) such that (55) is valid when replacing
B(A1,22) by K, then, in particular, we have el > eK|alp0, ”Z”q,?w namely

B(”xl,iz)[ + 80(1)}

In®(1+ o)

1

1 » 1 ~ 1
K 00 [y @000

It follows that B(A1,X2) > K (¢ — 0%). Hence, K = B()A1,A;) is the best possible constant
factor of (55).
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Similarly to the reverse of (33), we still find that

1= LlIbll, 7, -

Page 16 of 16

(57)

Hence the constant factor B(A1,1;) in (56) is still the best possible. Otherwise, we would

reach a contradiction by (57) that the constant factor in (55) is not the best possible.

O

Remark 3 Itis evident that (55) and (56) are strengthened versions of the following equiv-

alent inequalities:

00 0 ﬂmbn
DO s Bl M) lallpe, 1817,

A
n=2 m=2 In* (U, V)
00 Ao—1 00 12y
Ups1 IP27H V), A ’
> B(A, A2)lla ,
;(l—ﬂ(kl,n))l"lvn ;mk(umv,,) (i A2)lallp,o,

where the constant factor B(A, A;) is still the best possible.
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