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But it is not true for the case � < � � �/� in the setting of several complex variables. For

example (see [� ]), when � < � < �/�, f � B� if and only if supz� Bn (� …|z|� )� …�Gf (z) < � ,

where

Gf (z) = sup

�
(� …|z|� )|�� f (z),w�|

�
(� …|z|� )� � |w|� + |� z,w�| �

: � �= w � Cn
�

.

Thus an interesting question arises naturally: what is the property for a holomorphic func-

tion f on Bn satisfying (� ) when � < � � �/�. Below we de“ne the space

T� =



f � H(Bn) : sup
z� Bn

�
� …|z|�

� � …�Qf (z) < �
�
.

In Section� of this paper, we prove thatf � T�/� if and only if the directional derivatives

of f in the directions perpendicular to the radial direction are uniformly bounded. In par-

ticular, T� is a trivial space consisting of constants for� < �/�.

In ���� Holland and Walsh [ � ] gave another characterization for the Bloch space on the

unit disc D, namely,f belongs to the Bloch space if and only if

sup
z,w� D

z�=w

�
� …|z|�

� �/� �
� …|w|�

� �/� |f (z) …f (w)|
|z …w|

< � .

Ren and Tu [	 ] extended the above form to the unit ballBn. Zhao [
 ] generalized these

results as follows.

Theorem A Let � < � � �. Let � be any real number satisfying the following properties:
() � � � � � if � < � < � ;
() � < � < � if � = � ;
() � … �� � � � if � < � � � .

Then a holomorphic function f on Bn is in B� if and only if

sup
z,w� Bn

z�=w

�
� …|z|�

� � �
� …|w|�

� � …� |f (z) …f (w)|
|z …w|

< � . (�)

Zhao gave some examples showing that the conditions on� and� in TheoremA cannot

be improved.

Motivated by TheoremA, we denote the following function space:

S� ,� =
�

f � H(Bn) : sup
z,w� Bn

z�=w

�
� …|z|�

� � �
� …|w|�

� � …� |f (z) …f (w)|
|z …w|

< �
�

,

where� and � are real numbers. Our purpose is to characterize the spaceS� ,� for � and

� without satisfying those conditions in TheoremA. If � < � or � > � , by the maximum

modulus principle, it is easy to see thatS� ,� consists of constants. So we always assume

� � � � � . In Section� we showS� ,� 	 B� when � and � do not satisfy the conditions of

TheoremA. More explicitly, S� ,� coincides with the bounded spaceH � , or the Bloch type
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spaceB� +� or B� …� +� in terms of di�erent numbers � and � . Our results reveal in theory

instead of examples that the conditions on� and � in Theorem A cannot be improved.

Throughout this paper, constants are denoted byC, and they are positive “nite quantities

and not necessarily the same in each occurrence.

2 Characterizations of Tα

Theorem . The following statements are equivalent:
(i) f � T�/� ;

(ii) There exists a constant C > � such that

	
	�� f (z),�


		 � C (�)

for all z � Bn and � � � Bn with �z, � � = � ;
(iii) For all � � i, j � n,

sup
z� Bn

	
	
	
	zi

� f
� zj

(z) …zj
� f
� zi

(z)

	
	
	
	 < � . (	)

Proof (i) 
 (ii): For z � Bn and � � � Bn with �z, � � = �, we have

�
� …|z|�

� …�/� Qf (z) �
(� …|z|� )�/� |�� f (z),� �|

�
(� …|z|� )|� |� + |� z, � �| �

=
	
	�� f (z),�


		. (
)

This shows that (i)� (ii).

For the converse, if (ii) holds, we have (� …|z|� )�/� |�� f (z),z�| � C for all z � Bn (see [� ]).

When �/� � | z| < � and � �= w � Cn, by the projection theorem, there exists� � � Bn such

that � � ,z� = � and

w = w� z + w� � ,

wherew� = �w,z� / |z|� and |w|� = |w� |� |z|� + |w� |� . Thus,

	
	�� f (z),w


		 �
	
	w�

�
� f (z),z


		 +
	
	w�

�
� f (z),�


		

� C
	
	 �z,w�

	
	 � � …|z|�

� …�/�
+ C|w|.

It follows that

(� …|z|� )�/� |�� f (z),w�|
�

(� …|z|� )|w|� + |� z,w�| �
� C

for all �/� � | z| < � and � �= w � Cn. On the other hand, for � � | z| < �/�, we have

(� …|z|� )�/� |�� f (z),w�|
�

(� …|z|� )|w|� + |� z,w�| �
�

(� …|z|� )�/� |�� f (z),w�|
�

(� …|z|� )|w|�
=

	
	� f (z)

	
	 � C.

This proves (i).
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(ii) 
 (iii): Without loss of generality, we only need to show that

sup
z� BN

	
	
	
	z�

� f
� z�

(z) …z�
� f
� z�

(z)

	
	
	
	 < � .

If z� = z� = �, there is nothing to prove. If |z� |� + |z� |� �= �, put

� =
�

z��
|z� |� + |z� |�

,
…z��

|z� |� + |z� |�
, �, . . . , �

�
.

Obviously,� � � Bn and �z, � � = �. Therefore,

	
	
	
	z�

� f
� z�

(z) …z�
� f
� z�

(z)

	
	
	
	 =

�
|z� |� + |z� |�

	
	 �� f (z),�


		 � C.

Conversely, suppose (iii) holds. When|z| � �/�, it is clear that ( � ) holds. For |z| =�
|z� |� + · · · + |zn|� > �/�, there exists zi (� � i � n) such that |zi| > �/(�



n). We may as-

sume that|z� | > �/(�



n). Let V = {w � Cn : �z,w� = � }. Then V is a subspace ofCn and a
basis ofV is {v� , . . . ,vn…�}, where

vi = (…zi+� , �, . . . �� �� �
i…�

,z� , �, . . . , �� �� �
n…(i+�)

), i = �, . . . ,n … �. (�)

Therefore, for� = (� � , . . . ,� n) � � Bn with �z, � � = �, there exist scalarsk� , . . . ,kn…� such that
� is expressed as a linear combination ofv� , . . . ,vn…� in only one way. That is,

� = k� v� + k� v� + · · · + kn…�vn…�. (�)

By (� ) and (� ), we get

� � = …k� z� …k� z� …· · · …kn…�zn

and

� i+� = kiz� , i = �, . . . ,n … �. (�)

Note that |� | = � and |z� | > �/(�



n). Hence, it follows from (� ) that

|ki| =
|� i+� |
|z� |

< �



n, i = �, . . . ,n … �. (�)

Thus we have

�
� f (z),�



=

n…��

i=�

ki
�
� f (z),vi



=

n…��

i=�

ki

�
…zi+�

� f
� z�

(z) + z�
� f

� zi+�
(z)

�
.

The desired result follows from (	 ) and (� ). This “nishes the proof of Theorem�.� . �

From Theorem�.� and the result of [� ], we see thatT�/� 	 B�/� . Meanwhile, it is evident
that B� 	 T�/� for � < � < �/�. Below we give two examples to show that these inclusions
are strict.
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Example  Let

f (z� ,z� ) = (� …z� )�/� .

Note that |z� |� + |z� |� < � for z = (z� ,z� ) � B� . Then

	
	
	
	z�

� f
� z�

(z) …z�
� f
� z�

(z)

	
	
	
	 =

|z� |
� |� …z� |�/�

<
(� …|z� |� )�/�

�(� … |z� |)�/�
<



�

�
.

On the other hand, when � <� < �/� and z = (r, �) � (�, �) (� < r < �),

�
� …|z|�

� � 	
	 � f (z)

	
	 =

(� …|z|� )�

� |� …z� |�/�
=

(� …r� )�

�(� … r)�/�
� � .

Therefore f � T�/� by Theorem�.� , but f � B� (� < � < �/�).

Example  Let

g(z� ,z� ) = z� log(� …z� ).

Then, for z = (z� ,z� ) � B� ,

�
� …|z|�

� �/� 	
	 � g(z)

	
	 �

�
� …|z|�

� �/�
� 	

	
	
	

z�

� …z�

	
	
	
	 +

	
	log(� …z� )

	
	
�

�
�
� …|z|�

� �/�
�

(� …|z� |� )�/�

� …|z� |
+

	
	log(� …z� )

	
	
�

� C.

Meanwhile, letz = (r, �) � (�, �) (� < r < �), we have

	
	
	
	z�

� g
� z�

(z) …z�
� g
� z�

(z)

	
	
	
	 = …r log(� …r) � � .

Thus g � T�/� but g � B�/� .

Lemma . Let n > �, � � i, j � n and i �= j. Suppose that f � H(Bn), g � H(Bn) and

lim
|z|� �

	
	zif (z) …zjg(z)

	
	 = �.

Then f � � and g � �.

Proof We may assumei = �, j = � without loss of generality. Leth(z) = z� f (z) …z� g(z). For
each “xed � = (� � , . . . ,� n) � � Bn, de“ne the slice functionh� (� ) = h(�� ) on the unit disk
D = {� : |� | < � }. Then

lim
|� |� �

	
	 �� � f (�� � , . . . ,�� n) …�� � g(�� � , . . . ,�� n)

	
	 = �.

That is,

lim
|� |� �

	
	 � � f (�� � , . . . ,�� n) …� � g(�� � , . . . ,�� n)

	
	 = �.
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Since the function � � f (�� � , . . . ,�� n) …� � g(�� � , . . . ,�� n) is holomorphic on the unit disk
|� | < �, by the maximum modulus principle of one complex variable, it follows that

� � f (�� � , . . . ,�� n) …� � g(�� � , . . . ,�� n) = �

for all � � D. Therefore, for any� � � Bn and � � D,

h(�� ) = �� � f (�� � , . . . ,�� n) …�� � g(�� � , . . . ,�� n) = �.

When � �= z � Bn, let � = |z| and � = z/ |z|. Then we get

h(z) = h(�� ) = z� f (z) …z� g(z) = �.

Hence, for allz � Bn,

z� f (z) = z� g(z).

Sincef and g are holomorphic onBn, we can concludef (z) = g(z) � �. The proof is “n-
ished. �

An immediate consequence of Lemma�.� is the following theorem.

Theorem . Let n > � and � < �/�. If f � T� , then f is constant.

Proof By (
 ) it follows that |�� f (z),� �| � C(� …|z|)�/�…� for z � Bn and � � � Bn with
�z, � � = �. Since � < �/�, we get lim|z|� � |�� f (z),� �| = �. Using a similar argument as in
the proof of Theorem�.� , we havelim|z|� � |zj

� f
� zi

(z) …zi
� f
� zj

(z)| = � for all � � i, j � n. Thus
the desired result follows from Lemma�.� . �

3 Characterizations of Sα,λ

In the section we will characterizeS� ,� explicitly for real numbers� and� in several cases.
For this, we need the following lemma which plays an important role in the proof of The-
orem �.� .

Lemma . Let � > �. Let � be any real number satisfying the following properties:
() � < � < � … �if � < � � � ;
() � < � � � /� if � > � .

Let

H(x,y) =
x� y� …�

y …x

� y

x

d�
� � +�

.

Then there exists a constant C > � such that H(x,y) � C for any x and y satisfying
� < x,y � � and x �= y.

Proof Let t = x/y. Then t � (�, �) � (�, � ), and

H(x,y) = H(ty,y) =
t� y� …�

(� …t)

� y

ty

d�
� � +�

.
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Let s = � /y, we have

H(x,y) =
t� y� …(� +�)

(� …t)

� �

t

ds
s� +�

= y� …(� +�) G(t),

where

G(t) =
t�

(� …t)

� �

t

ds
s� +�

=
� …t�

� (� …t)
.

It is evident that G(t) is continuous on (�, �) � (�, � ), and

lim
t� �

G(t) =
�
�

, lim
t� �

G(t) = �.

For the case (�), since � <� < �, we get

lim
t��

G(t) = �.

Noticing that y� …(� +�) � � for y � (�, �], we conclude that H(x,y) is bounded in this case.
For the case (�), we easily see that � <� < � … �. Write

H(x,y) = H(x,x/t) =
x� …(� +�)

t� …(� +�)
G(t).

It is clear that

lim
t��

G(t)
t� …(� +�)

= lim
t��

t� � …�

�
.

The above limit is �/� for � = � /� and � for � < � < � /�. Therefore H(x,y) is also bounded
in the case (�) sincex� …(� +�) � � for x � (�, �]. The proof is complete. �

Theorem . Let � > �. Let � be any real number satisfying the following properties:
() � < � < � … �if � < � � � ;
() � < � � � /� if � > � .

Then S� ,� = B� +� .

Proof Let f � B� +� . For anyz,w � Bn, since

f (z) …f (w) =
� �

�

d[f (tz + (� …t)w)]
dt

dt

=
n�

k=�

(zk …wk)
� �

�

� f
� zk

�
tz + (� …t)w

�
dt,

we get

	
	f (z) …f (w)

	
	 � C|z …w|

� �

�

	
	(� f )

�
tz + (� …t)w

� 		 dt

� C|z …w|
� �

�

dt
(� …|tz + (� …t)w|)� +�
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� C|z …w|
� �

�

dt
(� …t|z| … (� …t)|w|)� +�

= C|z …w|
� �

�

dt
[t(� …|z|) + (� …t)(� …|w|)]� +�

.

If |z| = |w|, noting that � + � < � , we get

� �

�

dt
[t(� …|z|) + (� …t)(� …|w|)]� +�

=
�

(� …|z|)� +�
�

C
(� …|z|� )� +�

�
C

(� …|z|� )� (� …|w|� )� …�
.

If |z| �= |w|, let � = t(� …|z|) + (� …t)(� …|w|). By Lemma�.� , we have

� �

�

dt
[t(� …|z|) + (� …t)(� …|w|)]� +�

=
�

(� …|z|) … (� …|w|)

� �…|z|

�…|w|

dt
� � +�

�
C

(� …|z|� )� (� …|w|� )� …�
.

Therefore,

	
	f (z) …f (w)

	
	 �

C|z …w|
(� …|z|� )� (� …|w|� )� …�

,

which shows thatf � S� ,� .

Conversely, iff � S� ,� , it follows that

sup
z� Bn
z�=�

�
� …|z|�

� � |f (z) …f (�) |
|z|

< � .

Thus we get

sup
z� Bn

�
� …|z|�

� � 	
	f (z)

	
	 < � ,

namely,f � H �
� and sof � B� +� . This “nishes the proof of the theorem. �

Theorem . Let � > �. Let � be any real number satisfying the following properties:
() � < � < � if � < � � � ;
() � /� < � < � if � > � .

Then S� ,� = B� …� +� .

Proof If � < � < � for � < � � �, then � < � …� < � … �. If � /� < � < � for � > �, then � <

� …� < � /�. Applying Theorem �.� , we immediately conclude thatS� ,� = B� …� +� . �

For any pointw � Bn …{� }, we recall that the bi-holomorphic mapping� w of Bn, which

interchanges the points � andw, is de“ned by

� w(z) =
w …Pw(z) …swQw(z)

� …�z,w�
, z � Bn,
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wheresw =
�

� …|w|� , Pw(z) = �z,w�
|w|�

w andQw(z) = z …Pw(z). Whenw = �, let � w(z) = …z. The

pseudo-hyperbolic distance betweenw and z is denoted by� (w,z) = |� w(z)|.

Theorem . Let � � �. Then S� ,� = H � for � = � or � = � .

Proof It su
ces to prove for � � � and � = �. If f � S� ,� , that is,

sup
z,w� Bn

z�=w

�
� …|w|�

� � |f (z) …f (w)|
|z …w|

< � . (��)

Then

sup
z� Bn
z�=�

|f (z) …f (�) |
|z|

< � ,

which implies that f � H � .

Conversely, assumef � H � . Then we have (see Lemma � in [� ])

	
	f (z) …f (w)

	
	 � C� (z,w) (��)

for all z,w � Bn. On the other hand,

	
	w …Pw(z) …swQw(z)

	
	 �

= |z …w|� +
	
	�z,w�

	
	 �

…|z|� |w|� � | z …w|� ,

and so

� (w,z) �
|z …w|

|� …�z,w�|
�

|z …w|
� …|w|

. (��)

By (�� ) and (�� ), we get (�� ) since� � �. Thus f � S� ,� . The proof is complete. �

Remark . We easily see that� + � < � in Theorem �.� , and� > � in Theorem �.� . Com-

bining with Theorem �.� , we conclude thatS� ,� 	 B� and the inclusion is strict for real

numbers� and � which do not satisfy the conditions of TheoremA.
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