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1 Introduction
If f(x),g(y) > 0, satisfying 0 < [~ f(x)dx < 0o and 0 < [, g*(y) dy < 0o, then we have
(¢f 1)

/ /wfx+y xdy<n(/owa(x)dx/Owgz(y)dy>%’ @

where the constant factor 7 is the best possible. Inequality (1) is known as Hilbert’s integral
inequality, which is important in analysis and its applications (cf. [1, 2]).

In recent years, by using the way of weight functions, a number of extensions of (1) were
given by Yang (cf [3]). Noticing that inequality (1) is a homogeneous kernel of degree —1,
in 2009, A survey of the study of Hilbert-type inequalities with the homogeneous kernels
of degree negative numbers and some parameters is given by [4]. Recently, some inequal-
ities with the homogeneous kernels of degree 0 and non-homogeneous kernels have been
studied (cf [5-10]). All of the above integral inequalities are built in the quarter plane.

In 2007, Yang [11] first gave a Hilbert-type integral inequality in the whole plane as fol-

lows:
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where the constant factor B(%, %) (A > 0) is the best possible, and

o] tu+1
B(u,v) := —dt (u,v>0 3
() /0 Tt w20 3)
is the beta function (c¢f. [12]). He et al. [13-24] also provided some Hilbert-type integral
inequalities in the whole plane.

In this paper, by using the way of real analysis and estimating the weight functions, we
build a new Hilbert-type integral inequality in the whole plane with the non-homogeneous
kernel and a few parameters. The constant factor related to the beta function is proved
to be the best possible. We also consider the equivalent forms, the reverses, and some
particular cases.

2 Some lemmas
Lemma 1 Suppose that 0 <oy <ay <7, 1,0 >0, u+0 =X,y € {ﬁ,Zk -1 (ke N)},
8 € {-1,1}. We define weight functions w(o,y) (y € R), and @w (0,x) (x € R) as follows:

00 o So—1
w(o,y) :=f min 171 dx (4)

o i€(12) [|2%y]” + (x%y)Y cosay + 1]Y

w(0,x):= /00 min Il 17 dy. (5)
oo 112} [|&%y]Y + (x%y)7 cosa; + 1]MY

Then for y,x € R\{0}, we have

w(o,y) = w(o,x)=K(o)

20 20
1 v v
= W|:<sec %) + <csc (%2) :|B<ﬁ,z> €R,. (6)
Y yv

Proof (i) For § =1, y € R\{0}, setting u = xy, we find

o0
1
wlo,y) = min 4oL du
( )’) /:oo ie{1,2} (|u|” + u¥ cosa; + 1)}‘/? |u]

o 1
= / min uldu
o i€L2) [u¥ (1 +cosa;) + 1]+

0
+ / 1 ()" Vdu

min
oo i€lL2) [u¥ (=1 + cos a;) + 1]*Y

o 1
= / min uldu
o €2 [u¥ (1 +cosa;) +1]*7

o0
1
+ / min v ldy
o i€lt2) [vr (1 —cosay) + 1]MY
fw ua—l du /oo Vo—l dv (7)
= + .
o |ur@+cosay)+1]*r — Jo [vw(1 -=cosay)+1]M7

Setting ¢ = u” (1 + cosa) (£ = u” (1 — cosay)) in the above first (second) integral, by (3), it
follows that

1[ [ sec* i csc? 2 1o v lge
) == — =K(0).
won=2| (552) (55) | [ ke
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(ii) For § = -1, setting %, we still can obtain w(o,y) = K(o).
Setting u = x°y, we also find

. 1
w(a,x):/ min o
_oo €12} (|ul? + u? cosa; + 1)Mv

lu|” " du = K(o).

Hence we have (6). a

Note If we replace min;e(1,2; by max;eq 2y in (4) and (5), then we may exchange «; and «;
in (6).

Lemma 2 Supposethatp>1,}lj+$ =1,0<y <o <m,u,0>0,u+0 =L,y € {ﬁ@k—

1(k e N)}, 8 € {-1,1}. IfK(0) is indicated by (6), f (x) is a non-negative measurable function
in (—o00, 00), then we have

1 p
po—1
/= /1'” {/ éﬁzﬂﬁﬂy+@%chaﬁ4ﬁwf“”“}‘”

swm/|wH”Wmm (®)
Proof We set
K (x,) = ! (x,y €R). ©)

et b [ldy]” + (x8y) cosa; + 1]MY

By Hélder’s inequality (cf. [25]), we have

( / ~ KD (x, y)f (x) dx)p
00 | |(1 So)lq |y|(1—a)/p p
:{/ K (x,5) [I o/ ][ |(1_50)/q]dx}

(1-80)(p-1)
/ K (x,5) I P (x)dx

| |1 o
|y|(1 o)(g-1) p-1
U‘kw IP“ =
_posl | |(1 8o)(p-1) »
= (w(o,9)" "yl k JF—?rf@W~ (10)

Then by (6) and the Fubini theorem (cf [26]), it follows that

. ) ) ®) |x|(1756)(p71)
J < KP~ (0)/ [/ k;; (x,y)wfp(x)dx} dy

= KP‘I(U)/OOw(a,x)|x|p(1"s")_lfp(x) dx.

Hence, still in view of (6), inequality (8) follows. O
3 Main results and applications

Theorem 1 Supposethatp>1,}7+%:1,0<a1§a2<n, nwo >0, u+o0=Ay €
{ﬁﬂk -1 (ke N)}, 86 € {-1,1}. If K(0) is indicated by (6), f(x),g(y) > 0, satisfying
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0 < [ |xPU=3)1fP (x) dx < 00 and 0 < [ |y|10=7)"1g4(y) dy < oo, then we have the fol-
lowing equivalent inequalities:

o0 o0 1
I:= i
/_oo /_oo ig{lllg} [|x8y|y T (xay)y cosa; + 1]A/yf(x)g(y) dx dy

< 1<(a>[ f " s dx] ’ [ / " yi-igagy) dy} " 1)
o -1 1 ?
Ji= f I {/ zg{112} [|xy]7 + (x%y)Y cosa; +1]'V7’f(x)dx} b
<Kp(0)/ lep(l_‘s")_lf"(x)dx, (12)

where the constant factors K(o) and K?(c) are the best possible.
In particular, for oy = oy = € (0,7), y =1 in (11) and (12), we find

20 20
K(o) = k(o) := 2% [(sec %) + (csc %) ]B(M,a), (13)

and the following equivalent inequalities:

00 poo 1
-/—oo -/—oo (|x8y| +x5ycom N l)kf(x)g@) dxdy

< k(a)[ [ e dx]p [ [ g dy] g (14)
o] - [e%e] 1 p

[m oy Uoo (|x®y] + Py cosa +1)*f(x) dx} i
<k’(o) / ~ [P (x) dix. (15)

Proof If (10) takes the form of equality for y € (—o00, 0) U (0, 00), then there exist constants
A and B, such that they are not all zero, and

|x|(1 do)(p-1) |y|1 o)(g-1) .
Aﬁf’”( x)=B——— P a.e. in (=00, 00).

lyl¢

We suppose A # 0 (otherwise B = A = 0). Then it follows that

B
x|PA-3)-16P () = |y170-9) _—_ g6 in (~00,00),
|| SP(x) = 1yl Al ( )

which contradicts the fact that 0 < [ |x[P1=5)-1£P(x) dx < co. Hence (10) takes the form

of a strict inequality. So does (9), and we have (12).
By Hélder’s inequality (cf. [25]), we find

- / (W‘ / ki”(x,yy(x)dx)(W” ) dy)

<Jr [ / N ly| 7= g4 () dy} " (16)
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Then by (12), we have (11). On the other hand, suppose that (11) is valid. Setting

00 p-1
g@%=MW1(/ k@@wvwﬁm) » VER

then it follows that J = [ [y|70=2)"1g4(y) dy. By (9), we have ] < 0c. If ] = 0, then (12) is
obviously of value; if 0 < J < 00, then by (11), we obtain

o0
/ 171 g4 () dy

=J=1<K(0) [ / " o) dx] ’ [ / T yir-rgr) dy} g (17)
| [ g
<K(0) [ / b |x[PU3)7L £ () dx] . (18)

Hence we have (12), which is equivalent to (11).
We set Es := {x € R;|x|° > 1}, and Ej := Es N R, = {x € R,;4° > 1}. For ¢ > 0, we define
functions f(x), (y) as follows:

F L
0, x € R\E;,

) = 0, y € (—00,-1) U (1, 00),
pIT el

Then we obtain

Z;[/wwwwﬂfwmml[/me”Hyumﬂq
1 1 1

9 -286-1 4 )p( 251d)q

([rmas) (7o

1
o

We find
|cr+ 7—1

1
ly

dy = h(-x).

) = /ze 12} [a8y|” + (x%y)” cosa; + 1]MY y = h(=x)

In fact, setting ¥ = —y, we obtain

+——1

1
lyl”
B(—x) =
(=) = / ie 12) [| = x8y|” + (—x%y)” cosa; + 1]

1 a+7—1
_ / min Y AY = h(x).

1ie2) [|8 Y)Y + (8 Y)Y cosay + 1]4Y

dy
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It follows that

1

/ f KO (e, )F (0)3() dx dy

) () dx = 2 / L ) dx

Es Eg

) 2e 7
_— * ul®ta
MﬁyZ/ K201 f min [ul du ¢ dx.
Ef _ €12} [|u]” + u? cosay + 1]*7

Setting v = x° in the above integral, by the Fubini theorem (cf. [26]), we find

2¢e
00 y o+%--1
. ) ul®*a
1=2 / y2ed / min ] du ¢ dv
1 _yieL2) [|u]” + u” cosay + 1]

o0 v 1
= 2/ y2et / min
1 o Lieln2) [u¥ (1 +cosey) + 1147

: 1 a+§—1
min u 4 dutdv
ie{L2) [u¥ (1 = cosa;) + 1]*v

:2/001/‘25‘1 /V 1 + 1 W du b dy
1 o Llwr@+cosay) +1]M7  [ur(1 —cosay) +1]M7

2¢ -1

1) 1 U+7—1 o+
:2/ v‘zg_l{f |: “ — + “ - ]du}dv
1 0 L{ur(1+cosay)+1]r  [u¥(l—cosay) +1]7
o+2-]

o0 v o+=--1
+2/ Vzgl{/ |: Gl 1 Gl A:|du}dv
1 L L{ur(Q+cosag) +1]7  [u’(1 —cosap) +1]7

2¢e

1 1 u0+7—1 u0+7—1
= —/ + du
eJo | [ur@ +cosay) +1]*7 ~ [u¥(1-cosay) +1]*Y

+2/ (/ y2e-1 dv)
1 u

MO'+27€—1 M(7+7—1
X + du
[u¥ (1 +cosay) +1]*7  [u¥(1 - cosay) + 1]

2e

1

1 um—?—l ua+7,1
- + du
8{,/(; |:[u7(1+cosa1)+1]“1’ [ul’(l—cosag)+1]“7:|

2¢

o0 Ma—%—l ua—?—l
+/ + duz.
1 Ller(@+cosay) + 1177 [u¥ (1 —cosay) +1]M7

If the constant factor K (o) in (11) is not the best possible, then there exists a positive
number k, with K(o) < k, such that (11) is valid when replacing K(o') by k. Then we have
el < ekL, and

o+2-1

1 ua+%5—1 u’ta
/ + du
o | [w(@ +cosay) +11*7  [u” (1 —cosay) + 1]M7

00 o-2 o-2
u u
+/ + du
1 { [u¥ (1 +cosay) + 1147 [ur (1 —cosay) + 1]*Y }
=¢el <ekL = k. (19)
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By (7) and the Levi theorem (cf. [26]), we have

I((J) ~ /oo o ldu +/OO o ldu
“Jo [wr@+cosay)+1127 Sy [ur(1—cosay) + 127

1 o+=-1 o+=--1
/ lim v’ + v’ du
o e=0+ | [u¥ (1 +cosay) + 1147 [u¥ (1 —cosay) + 1]*Y

oo i ua—7—1 ua—F—l p
+ im +
/1 e—0* | [u¥ (1 +cosay) +1]M7  [u’(1 —cosay) + 1]*7 "

1 M0+7_1 U +7—1
lim + du
£—0* {/0 |: [u¥ (1 +cosay) +1]M7  [ur(1 —cosay) + 1]*Y :|

o9 u(T—?—l M0_7_1
+ / + duy <k,
1 L@ +cosay) + 1177 [ur(1 —cosay) + 1]*Y

which contradicts the fact that k < K(o). Hence the constant factor K(o) in (11) is the best

possible.
If the constant factor in (12) is not the best possible, then by (16), we may get a contra-
diction: that the constant factor in (11) is not the best possible. O

Theorem 2 As the assumptions of Theorem 1, replacing p >1 by 0 < p < 1, we have the

equivalent reverses of (11) and (12) with the same best constant factors.

Proof By the reverse Holder’s inequality (c¢f [25]), we have the reverses of (9) and (16).
It is easy to obtain the reverse of (12). In view of the reverses of (12) and (16), we ob-
tain the reverse of (11). On the other hand, suppose that the reverse of (11) is valid. Set-
ting the same g(y) as Theorem 1, by the reverse of (9), we have / > 0. If J = oo, then the
reverse of (12) is obviously value; if J < 0o, then by the reverse of (11), we obtain the re-
verses of (17) and (18). Hence we have the reverse of (12), which is equivalent to the reverse
of (11).

If the constant factor K(o') in the reverse of (11) is not the best possible, then there exists
a positive constant k, with k > K(o), such that the reverse of (11) is still valid when replacing
K(o) by k. By the reverse of (19), we have

1 o+=-1 o+2--1
u q u 4
/ + du
o | [# (@ +cosay) +1]47  [ur (1 -cosay) +1]M7

h W W du >k 20
+/1 {[uV(1+cosa1)+1]*/V+[uV(1—cosa2)+1]”V} w>n (20)

For ¢ — 0%, by the Levi theorem (cf. [26]), we find that

00 o-=--1 o-=-1
/ U u du
+
1 | [wr@ +cosay) + 1] [w’ (1 —cosay) + 1]47

u’- -1 I 1
. 21
- _/ { [u¥ (1 +cosay) + 1]“1’ [u¥ (1 —cosas) +1]Mr } du @1)

Page 7 of 9
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There exists a constant 8y > 0, such that o — %80 > 0, and then K(o — 570) < 00. For 0 <

s . 2 1 _% _
e <% (7<0),since u” 7 <u’"2"L, ue(0,1],and

1 o1 o1 p
0< + u
/(; { [u¥ (1 +cosay) + 1]MY  [ur(1 —cosay) + 1]*Y }

do
<Klo-—)<oo
2

then by the Lebesgue control convergence theorem (cf. [26]), for ¢ — 0%, we have

2¢

1 u0+7—1 uo+%—l p
+ u
/0 [u¥ (1 +cosay) + 1]MY ~ [ur (1 —cosay) + 1]*Y

1 ua—l uo—l
— f + du. (22)
o | [7@ +cosay) + 1147 [u’(1 —cosay) + 1]*¥

By (20), (21), and (22), for ¢ — 0%, we find K(o) > k, which contradicts the fact that k >
K (o). Hence, the constant factor K(o) in the reverse of (11) is the best possible.

If the constant factor in reverse of (12) is not the best possible, then by the reverse of
(16), we may get a contradiction that the constant factor in the reverse of (11) is not the
best possible. d

Remarks For § = —1 in (11) and (12), replacing |x|*f(x) by f(x), we obtain the following
equivalent inequalities with the homogeneous kernel and the best possible constant fac-

tors:
oo o0 1
i dxd
f_oo /_oo i) (Iyl” + sgn(x)y” cosa; + IxIV)Wf (rlg0) ey
1o 1
< 1<(a)[ / PP () dx}p [ / 190" g(y) dy] " (23)
o0 ) o0 1 p
po - i dx| d
/_oo v Uoo 20 (1 + sen@y? cosas + ey x} Y
o0
<K*(o) / PP (i) ., (24)

In particular, for a; = @y = @ € (0,7), y =1 in (23) and (24), we obtain the following
equivalent inequalities:

oo o0 1
/_oo /—oo (lyl + sgn(x)ycos o + |x|))\f(x)g(y) dxdy

< k(o)[ / " 0 ) dx}” [ f T ppei-o-1g1(y) dy] ’ (25)
e} - [e%e) 1 P

f,oo o Uoo (] +sentelycose+ ) ) dx] Y
<k(o) / N |x[P7LfP (x) dlx, (26)

where k(o) is indicated by (13).
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