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Abstract
Based on Wu (J. Appl. Math. 2012:104390, 2012), the complete convergence for
weighed sums of pairwise negative quadrant dependent (PNQD) random variables is
further studied under weaker weighted condition. Sufficient and necessary
conditions of complete convergence for weighted sums of PNQD random variables
are obtained. Our results generalize and improve those on complete convergence
theorems previously obtained by Baum and Katz (Trans. Am. Math. Soc. 120:108-123,
1965), Wu (J. Appl. Math. 2012:104390, 2012) and Zhang (J. Inequal. Appl. 2014:353,
2014).
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1 Introduction and lemmas
Random variables X and Y are said to be negative quadrant dependent (NQD) if

P(X ≤ x, Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y) (.)

for all x, y ∈ R. It is important to note that (.) and

P(X > x, Y > y) ≤ P(X > x)P(Y > y) (.)

for all x, y ∈ R are equivalent. Obviously, if f and g are Borel functions both of which are
monotone increasing (or both are monotone decreasing), then f (X) and g(Y ) are NQD.
A sequence of random variables {Xn; n ≥ } is said to be pairwise negative quadrant de-
pendent (PNQD) if every pair of random variables in the sequence is NQD. This definition
was introduced by Lehmann []. Obviously, PNQD sequence includes many negatively
associated sequences, and NA and pairwise independent random sequence are the most
common special cases.

In many mathematical and mechanical models, a PNQD assumption among the random
variables in the models is more reasonable than an independence assumption. PNQD se-
ries have received more and more attention recently because of their wide applications
in mathematical and mechanical models, percolation theory and reliability theory. Many
statisticians have investigated PNQD series with interest and have established a series of
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useful results. For example, Matula [], Li and Yang [] and Wu and Jiang [] obtained the
strong law of large numbers; Wang et al. [] obtained Marcinkiewicz’s weak law of large
numbers; Wu [] obtained the strong convergence properties of Jamison weighted sums,
the three series theorem and complete convergence theorem; and Li and Wang [] ob-
tained the central limit theorem. It is interesting for us to extend the limit theorems to the
case of PNQD series. However, so far there has not been the general moment inequality
for PNQD sequence, and therefore the study of the limit theory for PNQD sequence is very
difficult and challenging. In the above-mentioned conclusions, only the Kolmogorov-type
strong law of large numbers obtained by Matula [], Theorem , and Baum and Katz-type
complete convergence theorem obtained by Wu [], Theorem , achieve the correspond-
ing conclusions of independent cases, and the rest did not achieve the optimal results of
independent cases.

Complete convergence is one of the most important problems in probability theory. Re-
cent results of the complete convergence can be found in Wu [], Chen and Wang [] and
Li et al. []. In this paper, based on Wu [], we establish the complete convergence theo-
rem for weighted sums of PNQD sequence, which extend and improve the corresponding
results of Baum and Katz [], Wu [] and Zhang [].

2 Main results and the proof
In the following, the symbol c stands for a generic positive constant which may differ from
one place to another. Let an � bn (an � bn) denote that there exists a constant c >  such
that an ≤ cbn (an ≥ cbn) for all sufficiently large n, and let Xi ≺ X (Xi � X) denote that
there exists a constant c >  such that P(|Xi| > x) ≤ cP(|X| > x) (P(|Xi| > x) ≥ cP(|X| > x))
for all i ≥  and x > .

Theorem . Let {Xn; n ≥ } be a sequence of PNQD random variables with Xi ≺ X. Let
for αp > ,  < p < , α > , and EXi =  for α ≤ . Let {ank ; k ≤ n, n ≥ } be a sequence of
real numbers such that

n∑

k=

|ank|p′ � n–αp′
for some p′ > p. (.)

If

E|X|p < ∞, (.)

then

∞∑

n=

nαp–P
(

max
≤k≤n

|Snk| > ε
)

< ∞, ∀ε > , (.)

where Snk =
∑k

i= aniXi.

Theorem . Let {Xn; n ≥ } be a sequence of PNQD random variables with Xi � X. Let
for α > , αp > ,  < p < . Let {ank ; k ≤ n, n ≥ } be a sequence of real numbers such that
∑n

k= |ank|p′ � n–αp′ for some p′ > p. If (.) holds, then (.) holds.
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Remark . Obviously, if |ank| � n–α (or |ank| � n–α) for all k ≤ n, n ≥ , then (.) (or∑n
k= |ank|p′ � n–αp′ ) holds. Hence, Theorems . and . in Wu [] are the particular

cases of our Theorems . and ..

Remark . Theorems . and . remain valid if we replace (.) by P(X ≤ x, Y ≤ y) ≤
MP(X ≤ x)P(Y ≤ y) for some M >  and all x, y ∈ R. Hence, our Theorems . and .
improve and extend Theorem . in Zhang [].

Proof of Theorem . For n ≥ , let a′
ni = ani, if |ani| ≤ n–α , a′

ni =  otherwise, and a′′
ni = ani,

if |ani| > n–α , a′′
ni =  otherwise. Then

∞∑

n=

nαp–P
(

max
≤k≤n

|Snk| > ε
)

≤
∞∑

n=

nαp–P

(
max

≤k≤n

∣∣∣∣∣

k∑

i=

a′
niXi

∣∣∣∣∣ > ε

)
+

∞∑

n=

nαp–P

(
max

≤k≤n

∣∣∣∣∣

k∑

i=

a′′
niXi

∣∣∣∣∣ > ε

)

:= I + I.

Since |a′
ni| ≤ n–α , by Theorem . in Wu [], we have I < ∞. Hence, in order to prove (.),

it suffices to prove I < ∞. For convenience, we still use the symbol ani said a′′
ni. Without

loss of generality, assume that ank > n–α for k ≤ n, n ≥ , and (.) is

n∑

k=

ap′
nk ≤ n–αp′

for some p′ > p. (.)′

Let q >  such that ( + /αp)/ < q < . For all i ≤ n, let

Yni = –a–
ni nα(q–)I(aniXi<–nα(q–)) + XiI(ani|Xi|≤nα(q–)) + a–

ni nα(q–)I(aniXi>nα(q–)),

Unk =
k∑

i=

aniYni.

Write

An =
n⋃

i=

(|aniXi| ≥ ε
)
,

Bn =
⋃

≤i<j≤n

((
aniXi > nα(q–), anjXj > nα(q–)) ∪ (

aniXi < –nα(q–), anjXj < –nα(q–))).

Using (.) in Wu [], in order to prove I < ∞, it suffices to prove that

∞∑

n=

nαp–P(An) < ∞, (.)

∞∑

n=

nαp–P(Bn) < ∞, (.)

∞∑

n=

nαp–P
(

max
≤j≤n

|Unj| ≥ ε
)

< ∞, ∀ε > . (.)
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For  ≤ j ≤ n –  and n ≥ , let

Dnj =
{

i;  ≤ i ≤ n, n–αp′
(j + )– < ap′

ni ≤ n–αp′
j–}.

Then {Dnj;  ≤ j ≤ n – } are disjoint, and
⋃n–

j= Dnj = {, , . . . , n} from (.)′ and ani > n–α ,
i ≤ n.

For  ≤ k ≤ n – , by (.)′,

n–αp′ ≥
n∑

i=

ap′
ni =

n–∑

j=

∑

i∈Dnj

ap′
ni

≥
n–∑

j=

∑

i∈Dnj

n–αp′ (j + )– ≥ n–αp′

k + 

k∑

j=

�Dnj,

where the symbol �A denotes the number of elements in the set A. We have

k∑

j=

�Dnj � k for  ≤ k ≤ n – . (.)

Let β– = α – /p′, by (.)′, (.), (.), Xi ≺ X, it follows that

∞∑

n=

nαp–P(An) ≤
∞∑

n=

nαp–
n∑

i=

P
(|aniXi| ≥ ε

)

=
∞∑

n=

nαp–
n∑

j=

∑

i∈Dnj

P
(|Xi| ≥ εa–

ni
)

≤
∞∑

n=

nαp–
n∑

j=

P
(|X|β ≥ εnjβ/p′)

�Dnj

=
∞∑

n=

nαp–
n∑

j=

�Dnj
∑

k≥njβ/p′
P
(
εk ≤ |X|β < ε(k + )

)

=
∞∑

n=

nαp–
∞∑

k=n

P
(
εk ≤ |X|β < ε(k + )

) ∑

j≤min(n,(k/n)p′/β )

�Dnj

�
∞∑

n=

nαp–
∞∑

k=n

P
(
εk ≤ |X|β < ε(k + )

)
min

(
n,

(
k
n

)p′/β)

≤
∞∑

n=

nαp–
∑

n≤k≤n+β/p′
P
(
εk ≤ |X|β < ε(k + )

)(k
n

)p′/β

+
∞∑

n=

nαp–
∑

k≥n+β/p′ +

P
(
εk ≤ |X|β < ε(k + )

)
n

:= I + I. (.)
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By αp –  – p′/β = –α(p′ – p) –  < –, β(p′/β –αp′(p′ – p)/(p′ +β)) = p, and αpp′β/(p′ +β) =
p, we get

I �
∞∑

n=

nαp––p′/β ∑

n≤k≤n+β/p′
P
(
εk ≤ |X|β < ε(k + )

)
kp′/β

≤
∞∑

k=

P
(
εk ≤ |X|β < ε(k + )

)
kp′/β ∑

n≥kp′/(p′+β)

nαp––p′/β

�
∞∑

k=

P
(
εk ≤ |X|β < ε(k + )

)
kp′/β–αp′(p′–p)/(p′+β)

�
∞∑

k=

E|X|pI
(
εk ≤ |X|β < ε(k + )

)

� E|X|p < ∞, (.)

and

I =
∞∑

n=

nαp–
∑

k≥n+β/p′
P
(
εk ≤ |X|β < ε(k + )

)

≤
∞∑

k=

P
(
εk ≤ |X|β < ε(k + )

) ∑

n≤kp′/(p′+β)

nαp–

�
∞∑

k=

P
(
εk ≤ |X|β < ε(k + )

)
kαpp′/(p′+β)

�
∞∑

k=

E|X|pI
(
εk ≤ |X|β < ε(k + )

)

< ∞.

This together with (.) and (.) implies that (.) holds.
∑n

i=( ani
n–α )p ≤ ∑n

i=( ani
n–α )p′ ≤ n from (.)′, ani > n–α , and p′ > p. That is,

n∑

i=

ap
ni ≤ n–αp. (.)

By (.), (.), (.), Xi ≺ X, and the definition of q, αp( – q) < –,

∞∑

n=

nαp–P(Bn)

≤
∞∑

n=

nαp–
∑

≤i<j≤n

P
(
aniXi > nα(q–))P

(
anjXj > nα(q–))

+
∞∑

n=

nαp–
∑

≤i<j≤n

P
(
aniXi < –nα(q–))P

(
anjXj < –nα(q–))
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�
∞∑

n=

nαp–

( n∑

i=

n–α(q–)pap
niE|X|p

)

�
∞∑

n=

nαp(–q) < ∞.

That is, (.) holds.
Finally, we prove (.). Using (.), similarly to the proof of (.) in Wu [], we can

prove max≤j≤n |EUnj| → , n → ∞. Hence, by Lemma  in Wu [] and ––α(–q)(–p) <
–,

∞∑

n=

nαp–P
(

max
≤j≤n

|Unj| ≥ ε
)

≤
∞∑

n=

nαp–P
(

max
≤j≤n

|Unj – EUnj| > ε
)

�
∞∑

n=

nαp– log n
n∑

j=

Ea
njY


nj

�
∞∑

n=

nαp– log n
n∑

j=

(
Ea

njX

j I(anj|Xj|≤nα(q–)) + nα(q–)P

(
anj|Xj| > nα(q–)))

≤
∞∑

n=

nαp– log n
n∑

j=

(
E|anjXj|pnα(q–)(–p) + nα(q–)–αp(q–)E|anjXj|p

)

�
∞∑

n=

(
nαp––αp+α(q–)(–p) + n–+αp–αpq+αq–α

)
log n

= 
∞∑

n=

n––α(–q)(–p) log n

< ∞.

This completes the proof of Theorem .. �

Proof of Theorem . Taking |ank| � n–α for all i ≤ n, n ≥ , then {ani} satisfies
∑n

i= ap′
ni �

n–αp′ . According to Theorem . in Wu [], (.) holds. This completes the proof of The-
orem .. �
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