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1 Introduction

Let H be a real Hilbert space with inner product (:,-) and norm || - ||, C be a nonempty
closed convex subset of H and P¢ be the metric projection of H onto C. Let S: C — C be
a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of
all real numbers. A mapping A : C — H is called L-Lipschitz continuous if there exists a
constant L > 0 such that

|Ax — Ayl < Lllx - yll, Vx,y€C.
A mapping T: C — C is called &-strictly pseudocontractive if there exists a constant & €
[0,1) such that

ITx— Ty)> < lx—y* +£| (I - T)x— (T - Ty,

Vx,y € C.

Let A: C — H be a nonlinear mapping on C. We consider the following variational
inequality problem (VIP) [1]: find a point ¥ € C such that

(Ax,y—x) >0, VyeC. 1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).
The general mixed equilibrium problem (GMEP) (see, e.g., [2]) is to find x € C such that

Ox,y) +h(x,y) >0, VyeC, (1.2)
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where @,/ : C x C — R are two bi-functions. We denote the set of solutions of GMEP
(1.2) by GMEP(®, /). We assume as in [3] that ® : C x C — R is a bi-function satisfying
conditions (01)-(63) and /1 : C x C — Ris a bi-function with restrictions (h1)-(h3), where

(01) O(x,x) =0 forallx e C;
(02) © is monotone (i.e., O(x,y) + O(y,x) <0, Vx,y € C) and upper hemicontinuous in the

first variable, i.e., for each x,y,z € C,

limsup ® (tz +(1-t)x, y) < O(x,y);

t—0%

(63) O is lower semicontinuous and convex in the second variable;

(h1) A(x,x) =0 for all x € C;

(h2) & is monotone and weakly upper semicontinuous in the first variable;
(

h3) 4 is convex in the second variable.

For r>0and x € H, let T, : H — 2 be a mapping defined by
1

T,x = {ze C:0(z,y)+h(z,y) + -(y—z,z—x) zO,VyeC}
r

called the resolvent of ® and .
Let F1,F, : C — H be two mappings. Consider the following general system of varia-
tional inequalities (GSVI) of finding (x*,y*) € C x C such that

0, Vxe(C,
. * (1.3)

(F1Y* +x* —y*, 2 — x¥)
Vx e C,

>
(VaFox* +y* —x*,x —y*) >

where v; > 0 and v, > 0 are two constants. The solution set of GSVI (1.3) is denoted by
GSVI(C, Fy, F).

If C is the fixed point set Fix(T') of a nonexpansive mapping T and S is another nonex-
pansive mapping (not necessarily with fixed points), then VIP (1.1) becomes the variational

inequality problem of finding x* € Fix(7T') such that
((1 - Sx*,x - x*) >0, VxeFix(T). (1.4)

This problem, introduced by Mainge and Moudafi [4, 5], is called the hierarchical fixed
point problem. It is clear that if S has fixed points, then they are solutions of VIP (1.4).

During the 1980s and 1990s, the system of variational inequalities used as tools to solve
Nash equilibrium problems. See, for example, [6—8] and the references therein. On the
similar lines, the results of this paper can be applicable to solve Nash equilibrium problem
for two person game. In the recent past, several iterative methods have been proposed and
analyzed to three nonlinear problems, namely, system of variational inequalities, gener-
alized mixed equilibrium problems and variational inequalities; see, for example, [9-11]
and the references therein.

In this paper, we will introduce a Mann-type hybrid steepest-descent iterative algorithm
for finding a common element of the solution set GMEP(®, /1) of GMEP (1.2), the solution
set GSVI(C, Fi, F,) (i.e., E) of GSVI (1.3), the solution set ﬂﬁl VI(C, A) of finitely many
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variational inequalities for inverse-strongly monotone mappings Ay : C — H, k=1,...,M,
and the common fixed point set (|, Fix(S;) N Fix(T) of finitely many nonexpansive map-
pings S;: C — C, i =1,...,N and a strictly pseudocontractive mapping 7 : C — C, in
the setting of the infinite-dimensional Hilbert space. The iterative algorithm is based on
Korpelevich’s extragradient method, the viscosity approximation method [12], Mann’s it-
eration method, and the hybrid steepest-descent method. Our aim is to prove that the it-
erative algorithm converges strongly to a common element of these sets, which also solves
some hierarchical variational inequality. We observe that related results have been derived
in [4, 5,13, 14].

2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by (-,-) and || - ||, respectively. Let C be a nonempty, closed, and convex
subset of H. We write x,, — x to indicate that the sequence {x,} converges weakly to x
and x, — x to indicate that the sequence {x,} converges strongly to x. Moreover, we use
wy(x,) to denote the weak w-limit set of the sequence {x,} and w;(x,) to denote the strong
w-limit set of the sequence {x,}, i.e.,

wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {x,,}}
and
ws (%) := {x € H : x,, — x for some subsequence {x,,} of {x,,}}.

The metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € H the unique point Pcx € C satisfying the property

ll = Pex|| = inf ||lx — y|| =: d(x, C).
yeC

The following properties of projections are useful for our purpose.

Proposition 2.1 Given any x € H and z € C. One has
(i) z=Pcx o (x—2z,y—2) <0,Vy e C;
(i) z=Pcx & llx—z|2 < lw =y~ lly - 2II% Yy € G
(iii) (Pcx — Pcy,x —y) > |Pcx — Pcy||?, Yy € H, which hence implies that P is
nonexpansive and monotone.

Definition 2.1 A mapping T: H — H is said to be
(a) nonexpansive if

ITx - Tyl < llx—yll, VxyeH;

(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if T is
1-inverse-strongly monotone (1-ism),

(x—y, Tx—Ty) > | Tx - Ty||?>, Vx,y€H;



Latif et al. Journal of Inequalities and Applications (2015) 2015:282 Page 4 of 29

alternatively, T is firmly nonexpansive if and only if T can be expressed as
1
T=-+9),
S+

where S: H — H is nonexpansive; projections are firmly nonexpansive.

Definition 2.2 A mapping A : C — H is said to be

(i) monotone if
(Ax—Ay,x—y)>0, Vx,yeC;
(i) n-strongly monotone if there exists a constant n > 0 such that
(Ax—Ay,x—y) = nlx-y|*>, Vx,yeC;
(ili) a-inverse-strongly monotone if there exists a constant « > 0 such that
(Ax — Ay,x —y) > a||Ax — Ay||*>, Vx,yeC.

It is obvious that if A : C — H is «-inverse-strongly monotone, then A is monotone and
é-Lipschitz continuous. Moreover, we also have, for all #,v € Cand A > 0,

|7 = 2A)u - (1 - )\A)vnz <llu—=v|®+ 1A - 20)|Au — Av|>. (2.1)

Proposition 2.2 (see [15]) For given x,y € C, (%,¥) is a solution of the GSVI (1.3) if and
only if x is a fixed point of the mapping G : C — C defined by

Gx = Pc(I — viF)Pc(I — voFy)x, VxeC,
where y = Pc(I — voFy)X.

In particular, if the mapping F; : C — H is {;-inverse-strongly monotone for j = 1,2, then
the mapping G is nonexpansive provided v; € (0,2¢;] for j = 1,2. We denote by = the fixed
point set of the mapping G.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.1 Let X be a real inner product space. Then there holds the following inequality
I+ y11> < %1% + 2(p,2 +3), Vx,yeX.

Lemma 2.2 Let H be a real Hilbert space. Then the following hold.:
(@) lx =yl = ]2 = yl12 - 2(x — 3,9 for all x,y € H;
(b) 12 + eIl = Allxll? + pllyll® = hpellx = yI|2 for all x,y € H and &, p € [0,1] with
A+u=1
(c) if{xn} is a sequence in H such that x, — x, it follows that

lim sup ||x, —y||2 = limsup ||x, —x*+ = —y||2, VyeH.

n—0o0 n— 00
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Let C be a nonempty, closed, and convex subset of a real Hilbert space H. We introduce
some notations. Let A be a number in (0,1] and let x > 0. Associating with a nonexpansive
mapping T : C — C, we define the mapping 7* : C — H by

T x:= Tx - \uF(Tx), VxeC,

where F : C — H is an operator such that, for some positive constants «,n > 0, F is

k-Lipschitzian and n-strongly monotone on C; that is, F satisfies the conditions:
IBx - Fyll <«llx -yl and (Fx—Fy,x-y) >nllx-y|*

forallx,y € C.
In the sequel, we let GMEP(®, /1) denote the solution set of GMEP (1.2).

Lemma 2.3 (see [3]) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let © : C x C — R bea bi-function satisfying conditions (61)-(03) and h: C x C —
R is a bi-function with restrictions (h1)-(h3). Moreover, let us suppose that

(H) for fixed r > 0 and x € C, there exist a bounded K C C and x € K such that for all

z€ C\K, -O(%,2) + h(z,%) + H{Z -2,z - x) < 0.
For r > 0 and x € H, the mapping T, : H — 2 (i.e., the resolvent of ©® and h) has the
following properties:
(i) Tyx+#;

(i) Tyx is a singleton;

(iti) T, is firmly nonexpansive;

(iv) GMEP(O®, h) = Fix(T;) and it is closed and convex.

Recall that a set-valued mapping T : D(T) C H — 2" is called monotone if for all x,y €
D(T),f € Tx and g € Ty imply

{f -gx-y =0.

A set-valued mapping 7 is called maximal monotone if T is monotone and (I + AT)D(T) =
H for each A > 0, where [ is the identity mapping of H. We denote by G(T') the graph of T.
It is known that a monotone mapping 7 is maximal if and only if, for (x,f) € H x H,
(f —g,x—y) >0 for every (y,g) € G(T) implies f € Tx.

3 Main results

We now propose the following Mann-type hybrid steepest-descent iterative scheme:

O(uy,y) + h(uy,y) + i (y—tty,uty —x,) >0, VyeC,

Yn1l = ﬁn,lslun + (1 - ,Bn,l)um

Vn,i = ﬂn,isiun + (1 - ,Bn,i)yn,i—lx i= 2: “ee ,N, (31)
Yn = Pclonyf un) + (I =yt F)Gynn],

KXn+l = lgnxn + )/nquV[ nt 5nTquVIJ/n

for all n > 0, where
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F:C — H is a k-Lipschitzian and n-strongly monotone operator with positive
constants k,n >0 and f : C — C is an [-Lipschitzian mapping with constant / > 0;
Ay : C — H is ng-inverse-strongly monotone, {Ag,.} C [ak, bk] C (0,2n%),

Vk e {l,...,M},and AM := Pc(I — Apg ) - - - Pc(I = A1uAi);

F;: C — H is {j-inverse-strongly monotone and G := Pc(I — viFy)Pc(I — v, F,) with

v; €(0,28) forj=1,2;

T :C — Cisa &-strict pseudocontraction and S; : C — C is a nonexpansive mapping
foreachi=1,...,N;

®,h: C x C — Rare two bi-functions satisfying the hypotheses of Lemma 2.3;

0<u<2n/k?and 0 < yl <t with 7:=1-/1—u(2n — ux?);

{ay}, {Bn} are sequences in (0,1) with 0 < liminf, . B, <limsup,_ ., Bn < 1;
{yu}, {84} are sequences in [0,1] with 8, + y, + 8, =1, Vn > 0;

{Bni}Y, are sequences in (0,1) and (v, + 8,)& < y,, V1 > 0;

{r,} is a sequence in (0, 00) with liminf,_, o 7, > 0 and liminf,_, » §, > 0.

We start our main result from the following series of propositions.

Proposition 3.1 Let us suppose that 2 = Fix(T) N ﬂf\il Fix(S;) N ﬂﬁl VI(C,Ax) N
GMEP(®,h) N E # (. Then the sequences {x,}, {yu}, {¥n:} for all i, {u,} are bounded.

Proof Since 0 < liminf,,_, B, < limsup,_, ., B» <1, we may assume, without loss of gen-
erality, that {8,} C [¢,d] C (0,1). For simplicity, we write

Vi = AV f nN) + (I = b F) Gypn
for all n > 0. Then y,, = Pcv,. Also, we set ¥, = A;”yn,
A = Pl = hionA)PC = Mi1nAi) -+ Pell = MuAs)

forall k € {1,2,...,M} and n > 0, and A = I, where [ is the identity mapping on H.
First of all, take a fixed p € §2 arbitrarily. We observe that

yn1 = pll < lluw = pIl < %0 =PIl

For all i from i =2 to i = N, by induction, one proves that

lyni — Pl < Buillten —pll + A= By lyni-1 — I

=< llun = pll < ll%n = pll.
Thus we obtain that for every i=1,...,N,
lyn: —pIl < Iy = pll < ll%n = pll. 3.2)
Since for each k € {1,..., M}, I — Ax,Ax is nonexpansive and p = Pc(I — Ay, Ax)p, we have

175 =PIl = |Pcl = haauAst) ALy = Po = haruAan) AV p|

< T = AagnAa) ALy = (I = dagnAa) AY |
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<[ A¥ Ty, - AV p|

< [[A%yn = App|
= lly = pl. (33)

For simplicity, we write p = Pc(p — voFap), Yun = Pc(Yun — VaFayun) and z, = Pc(Yun —
v F1y,n) for each n > 0. Then z, = Gy, y and

p=Pc —viF)p=Pc —vF)Pc( —viF>)p = Gp.

Since F; : C — H is {j-inverse-strongly monotone and 0 < v; < 2¢; for each j = 1,2, we know
that, forall # > 0,
2o —pI* = 1Gyun - pII?
= [Pl = wF)PC( = vaFa)yny = Pell = wF)PC( - vF)p|
< | = vF)Pc(I = vyFy)yun — (I — viFy)Pc(I - Vze)P”2
= |[Pcl = vaFa)ynn — Pl — vaFa)p]
—i[FPc( = vaFa)yun — FiPc(I = vy Fy)p)] ||2
< |Pcl = vaFa)yun — Pc - Vze)PH2
+vi(v1 — 2@'1)||F1PC(1 —2F)yuN — FiPc(I - 1121:2)}9”2
< |Pell = vaEa)yun = Pell - vaFa)p|
< | =vaFo)yun - (I = vaFa)p]
= | Gun = p) = va(Foyun — Fop) ”2
< lymn — 1% + v2(vs = 280) | Fayun — Fop|?
< yun =217 < llun = pl* < llxn - pII>. (3.4)
Also, since Gp = p and G is nonexpansive, utilizing Lemma 3.1 of [16] we have from (3.1)
and (3.4)
lyn = pll = IIPcvy. —pli
< ey (FOnn) = f®)) + U =t F)Gyun — (I = etubF)p + au(yf = uE)p|
< &y |[fOun) = f @) + | - uttF) Gy = I = cuptF)p| + | (vf — uF)p|
< auylllyun —pll + L =) lyun —pll + o | (nf — E)p|
= (L= au(® = yD)ynn =Pl + || (vf - 1F)p|

= (L=l = D) Iy =Pl + e =) WL =D
T—yl
< max{”ynN -pl, w}
T—yl
< max{ Il — pll, w} (3.5)
T -yl
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Taking into account (y, + 8,)& < y, and utilizing [17], we obtain from (3.1), (3.3), and (3.5)
that

%641 —P|| = H,Bn(xn —P) + Vn@n —P) + 8n(T5’n —P) ”
< Bullxn = pll + || Yun = ) + 8u(Tyy — p) “
< Bullxw = pll + (vu + 8)11yn = P

< Bullxn —pll + (Vu + 8)llyn — Pl

I(vf — nF)pll
sﬁnnxn—pn+(yn+8n)max{||xn—p||,7yf d
T -yl
—uF
EmaX{llxn—pll,M}. (3.6)
—]/l
By induction, we get
(vf — uF)
len—pllEmaX{llxo—pll,L‘;lp|| , Vn>0.

This implies that {x,} is bounded and so are {Fyy,n}, {FiVun}> (Vun} {2a}s {6}, (Vi) v}
{yni} foreachi=1,...,N. Since || Ty, — p|| < % 19 — pll, {T,} is also bounded. O

Proposition 3.2 Let us suppose that §2 # (). Moreover, let us suppose that the following
hold:

(HO) lim,—, o0y =0 and Y o oy = 00;

(H1) 302 [k = Aint] < 00 or limy, oo Mk%ik”’ll =0 foreachk=1,...,M;
(H2) Y07 |ty — ] < 00 or limy,s o "’%":H' =0;

(H3) >"0% | Bui — But,il < 00 or lim,,, W%’i”'“l =0 foreachi=1,...,N;
(H4) D02 17n — ruca| < 00 or limy,, o 'r”;#*ll =0;

(H5) Y0021 1By = Bl < 00 or im0 P2Pestl — 0;

00 - . 1 -
(H6) >0y |11/§n - 11/2;2_1' <00 or limy 00 5| 11/?3,, - 11/2,,1_1 =0.

Then lim,,_, o ||%441 — %4l = 0, i.e., {x,} is asymptotically regular.

Proof First, it is known that {8,} C [¢,d] C (0,1) as in the proof of Proposition 3.1.
Taking into account liminf,_, 7, > 0, we may assume, without loss of generality, that
{r,} C [€,00) for some € > 0. First, we write x,, = 8,_1%,_1 + (1 — B,-1)W,_1, Y > 1, where
W1 = x”_l":’:‘s% It follows that for all n > 1,

Kn+l — ,ann Xn — IBVl—lxn—l

B TP
_ ynj/n + Sn T}N’n _ Vn—l_)N/n—l + 67!—1 Tj’n—l
1- :Bn 1- ,Bn—l
_ yn(jln _5/;1—1) + (Sn(Tj}n - Tj’n—l)
1- ﬂn

Yn Yn-1 ~ (Sn 8n—1 ~
—_— = _ - Ty,-1. 3.7
+<1—ﬁn 1—ﬂn1)y””<1—ﬁn 1—ﬂn1> Yt 3.7



Latif et al. Journal of Inequalities and Applications (2015) 2015:282 Page 9 of 29

Since (y, + 8,)& <y, for all n > 0, we have

”Vn@n = Yn-1) + 8u(Ty, — Tj}n—l)” < Y+ 8)Yn = Yual- (3.8)
Next, we estimate ||y, — y,-1|. Observe that

12w = znaI? = | Pl = wE)PC = vaEa)yy = Pell = wE)PC( = vaFa)yn )
< |t = viF)Pc( = v2F3)ynn — (I = viFy)Pc(I - 1)21‘"2))%—1,1\1”2
= | [PcU = vaF2)yun — Pc = v2F2)yn-1n]
—w[FPc = vaF2)ynn — FiPc(I = vaFa)yu-in] H2
< |Pctl = vaFa)yun = Pell = vaFa)yuoin |
=128 — 1) | FiPc( = vaF2)yun — FLPc(I = vaFa)yu1n ||2
< |Pc(l = vaF)yun = Pcll = vaFa)yan |
< | = veF)yun - - Vze)}’n—1,N||2
= | Onn = yn-1n) = v2(Fayun — FoYn-1n) ||2
< Ynn = Ynan I = v2(282 = V) IF2ynn — Faynoin |

S ”yn,N _yn—l,N”Z' (39)
Also, we observe that

Vy = Oanf()’n,N) + (1 - anMF)an
V1 = Qpa Vf Wpoin) + U — @ bF)zye, Yu> 1

Simple calculations show that

Vi = Vp1 = (L = oy bF)zy = (I = 0y plF)zy 1 + (0tn = n1) (Vf 1) — F2Z01)
+o,y (f(yn,N) _f(Yn—l,N)) .

Then, passing to the norm we get from (3.9)

Vi = viall < ” (I - aypuF)zy — (I — ayitF)z, 1 ” + oty — oy ”Vf(yn—l,N) - uFz, ”
+ o,y ”f()/n,N) _f(yn—l,N) ||
< (- an?)llzn = zpor | + Mlaty = cpr | + @uy U yun = ysvl
< (= anD)lynn = Ynorll + Moty = aut] + 0y Uy = Yu-rn |
= (1 - an(f - )’l)) ”yn,N _yn—l,N” + f\;ﬂan - an—1|’ (310)
where Sup,.=o VfuN) — WFzy]| < M for some M > 0. In the meantime, by the definition
of y,; one obtains, foralli = N,...,2,
”yn,i _yn—l,i” =< lgn,i”un — Uy ” + ”Siun—l — Yn-1,i-1 ” |,8n,i - ﬂn—l,i|

+ (1 = Bui)l¥mi-1 = Yn-vi-1ll. (3.11)
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In the case i = 1, we have

lyn1 = yn-11ll < Buallttn — vty |l + |S1240-1 — Uu-1ll1Bu1 — Bu-11]
+ (1 - ,31'1,1)||un — U1l

= Nty — |l + 1S1280-1 = U 1By = P11l (3.12)

Substituting (3.12) in all (3.11)-type expressions one obtains for i = 2,...,N,

i
1y = Ynevill < Nt =t ll + Y _1Skttns = Vs Il Bk = Bu-ril
k=2

+ 1S1ttp1 = thy—1 | Brg = Bu-1,11-

This together with (3.10) implies that

191 = yn-1ll = 1Pcvi = Pcvp |

< (1=t = YD) 1yun = Yuan |l + Mloty — oty 1|

N

= (1 - an(T - Vl)) |:||Mn — Uyl + Z”Skun—l _yn—l,k—IH |,Bn,k - ﬂn—l,kl

k=2

+ ”Slun—l - un—l” |/3n,1 - ,3}1—1,1|i| +M|Ot,,, —0p-1

N
< (1=t =y D) lttn =ty ll + Y N1 Skthns = Yn-r kol Bk = Bu-r]

k=2

+ 1181ttt = a1 Bt = Bura] + Mty — a1 (3.13)

Furthermore, utilizing (2.1), we obtain

15w = Fncall = | ANy = AN yuca |
= | P = hytnAnt) ALy = Pcll = AatuaaAs) ANy |
< | Pcll = AatnAs) AV 1y~ Poll = Aatn1An) ALy |
+ | Pell = hptnrAn) ANy, = Pl = hagnrAn) AN 91 |
< (= AatnAst) ATy = (I = hagnrAn) AY |
U = AtnaAn) ALy = (0 = dopgpa An) ANy |

< |)"M,n - )\M,n—1| HAMA?,/H)M || + || quwilyn - A],\,/I:llyn—l ||

IA

[Aatn = Aatn-l ||AMA2VI_IJ’n ” + [AM-1,n — Arn-] HAM_lAQ/"Zyn ”
+ A2y = A Y|

IA

IA

|)‘«M,n - }\M,n—1| “AMAy_lyn H

+ | Ap-10 = Adi-1-11 ||AM—1A2472yn H
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ot A = A | AL A | + | ADyn = Ay |

WE

< Mo Y i = Monoal + 19 = Y|l (3.14)

>
(i

1

where supnzl{X:Q/i1 ||AkAﬁ‘1y,,||} < M, for some Mj > 0.
By [3], we know that

Tn-1

lotn =t || < 1% — Xy | + L1

, (3.15)

n

where L = sup,.q ||, — %, ||. So, substituting (3.15) in (3.13), we obtain

”yn _yn—ln

e
= (l—an(f - Vl))<||xn = %p-1]| +L‘1_ . -

n

N
) + 3 ISkttnas = Yurit 1 Buk = Bu-ri]

k=2

+ |S1¢44-1 = 1 11 Bug — Bu—11| + Mo, — oty |

N
|rn - rn—1|
< (1=t =y D) otn = Fpall + L=+ 3 Skttt = Ynotcr Bk = B
" k=2
+ ”Slun—l - un—l” |ﬂn,1 - ﬂn—l,ll + M|05n - an—1|

N
~ | |y =Tyl
< (1-au(® = yD) 1% = %1 +M{% + Y 1Buk = Bu-1kl

i k=2

+1Bu1 — Bu-11l + oy — O5;1—1|:|

N
~ | 1 =il
< (1= (v = yDa) 10 = xca | + My {—1 + Y 1Bk = Burkl + lay — el |,

€
k=1

where sup,.o{L + M + 22]:2 ISkt — Vgl + 1S1tbn — 1)1} < M for some M; > 0. This
together with (3.7), (3.8), and (3.14), implies that

”Wn - Wn—l”

< ”VnG’n _5’;«1—1) + 6n(Tj’n - T5’n—1)”

1_ﬁn
Vn Vn-1 ~ n Sn1 -
+ - [ _||+‘ - 151
‘1—@1 1= Bt | T2, " 1B
(Vi + 8 = Fs m .
< PO I | T T | e Py, )
1_,3n 1_/3;'1 l_ﬂn—l l_ﬂn l_ﬂn—l
= = Fuctll + ‘1 T ’(lmln + 1 T5nal)
J Vi Vi
~ -1 - ~
< Mo ) 1Mk = kol + 19 = Y| + | == = — ‘(||yn_1||+||Tyn_1||)
k=1 l_lgn l_ﬂn—l
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~ ~ | |ry—r._
<Mo ) Nhien = hienaal + (L= (T = v Do) 160 — Xpa || + My [%

Vn VYn-1

Vi Ty,_
5~ 1o |l 1 T50l)

M
0D

k=1
N
+ 3 1Bk = Buril + loty —%ﬂ] +
k=1

= raal
~ — I'p-1

= (1 —(r- Vl)an) o = 2pa |l + Mo [% + Z'Ak,n = Al

k=1
:|, (3.16)

where suanO{Mo + M + 1Pull + 1 TYull} < M, for some M, > 0.

Vn _ Vn-1
1- ﬁn 1- ,Bn—l

N
+ Zlﬁn,k - lgn—l,k| + |an - an—1| +

k=1
Further, we observe that

Xn = ,Bn—lxn—l + (1 - ﬂn—l)wn—lv Vn>1

{xrﬁl = ,ann + (1 - ,Bn)wn;

Simple calculations show that
X1 = %n = (1= Bu) Wy = wiy1) + (Bn = Bu-1)(Xn1 = Wuo1) + Bulxn — %4-1).
Then, passing to the norm we get from (3.16)

%41 = Xl

= (1 - ,Bn)”Wn — Wp-1 ” + |:3n - :3n—1| ”xn—l — Wp-1 “ + ﬁn”xn — Xn-1 ”

M
~ | 7 =7y
< (1= 8] (1= au(r = yD)llxs = %1 +Mz[%‘“ £ Y don = M|
k=1
Ir =1l |~
~ —n-1
= (1 -(t-yha- ﬂn)an) llocn — xp-1 |l + Mo [% + Zp\k,n — Mol

;

M
~ | 1w = Fual
< (1= (r =y DA = d)ot) 0 = wcr | + Ms | =—"2 4> A = At
€ k=1

Vn _ Vn-1
1- :Bn 1- ,Bn—l

N
+ 3 1Buk = Buorkl + latn — | + ‘

k=1

+ 1B = Buoal 1%n-1 = Wil + Bl — Xl

Vn _ Vn-1
1- ﬁn 1- ,Bn—l

N
+ 3 1Bk = Buork] + lety — | + ‘

k=1

+ 1B = Bu-alln-1 = wyall

Vn Vn-1

1_/3;'1 1_131«1—1

N
+ Zlﬁn,k - lgn—l,k| + |an - an—1| +

k=1

+ |ﬁn - ﬁn1|:|7 (317)

where supnzO{Z\N/[z + 1%, — wull} < Ms for some M; > 0. By hypotheses (H0)-(H6) and
Lemma 2.1 of [16], we obtain the claim. O
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Proposition 3.3 Let us suppose that 2 # (). Let us suppose that {x,} is asymptotically
regular. Then ||x, — u,|| = ||x, — Ty, %4 — 0 and ||y, — yu|| = 0 as n — oo.

Proof Take a fixed p € 2 arbitrarily. We recall that, by the firm nonexpansivity of 7}, ,
a standard calculation shows that for p € GMEP(®, h),

2t = pI* < %0 = PII® = 1% — 141 (3.18)
Observe that

| A%y = > = | Pell = AwAi) A5y = Pell = danAip |
< | = nA) AE = (T = hinAi)p
< | A5 Y = p|” + hion et — 200) | A Ay, — Arp|?
< 19 =PI + (ot — 200 [ A ARy — A (3.19)
foreach k € {1,2,...,M}.
Utilizing Lemma 2.1 and Lemma 3.1 of [16], we obtain from 0 < y/ < 7, (3.1), (3.4), and
(3.18)
ly — 12
= @y (FOmn) @) + (I = twtF)zn — (I - auuF)p + aulyf - uF)p|”
< [letny (FGun) —f D)) + (I = 0 iF)z = (I = uiF)p||* + 200{(vf = E)p, v = )
oy [fOun) —f @) + | = tuttF)z — (I — cuiF)p||]* + 200a((vf = wF)p, 3 — )

<[
< [any Uyun =l + (1 = D)llzn = pl]* + 204((yf = wE)p, Y0 - p)

2
yl
ant?”yn,N -pll+ (1 —a,1)llz, —P||i| + 2an<()’f— MF)p’yn _p)

(vl
= anfl__2||yn,N —P||2 + (1 —a,7)| 2, —19||2 + 2an(()’f— MF)P:J’n _p>

< auTllyun =PI + 120 = pI* + 20| (vf = wF)p||llyn - Pl
< anTllyun = I + lynn — pII* = v2(285 = v2) | Fayun — Fapl®
=128 = V)| Fiimn — BN + 200 || (vf = wE)p|| Iy - pll
< anTllyun =PI + 11t = pII* = v2(285 = v2) | Fayun — Fapl®
=128 = VIFFun — FpII* + 20 | (vf = nE)p| lyn - pll
<oy Tllymn =PI + %0 =PI = 1% — tnll* = v2(282 = v2) | Fayun — Fopl?

— 120 = v)IFJun — FiPI? + 200, | (vf = F)p| ly. - p1.- (3.20)
Since (y, + 8,)& < y, for all n > 0, utilizing [17] we have from (3.19) and (3.20)

2
l%141 = Pl

= | Bu = ) + VG = ) + 8.(T5 - )|
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2

1 N -
lgn(xn —P) + (yn + Sn)m [yn(yn —19) + Sn(Tyn —P)]

< Bullxn =PI + (v + 8)

2

1
m[)’n@n = p) +8,(Tyy _P)]

< Bullxn =PI + (Y + 8) 13 — pII?
= Bullu = pII? + (L= Bo) 5 - pII?
< Bulln = plI* + (1= )| Aky - p|?
< Bulltn = pI* + (L= B)[lyn =PI + dtonhsen — 211) | Ak AX Yy, — Arp ]
< Bulltn = pII* + (L= B[t lymns =PI + 120 = pII? = 126, — 101>
- 1228 = )| F2yun — FBopl* = w1281 = v) | Fiyinn — Fip|?
+ 20, || (f = B | 19 = Il + Mot — 200 | Ax A%y — Agp| ]
< 112 =PI = (L= B [0 = 20 1% + A2k = Ato) | Ak AX = Asp |
+ 2282 = W) | Fayun — Fopll” + 1120 — v1) | Fiymn — Fip11?]

+ e Tllyun =PI + 20, | (vf = uE)p| llyn - p1.- (3.21)
So, we deduce from {B,} C [¢,d] C (0,1) and {Ak,} C [ak, bx] C (0,2m4), k =1,..., M, that

(1 = D[ 1% = sal® + Mo i = M) [ Ax AX Ly, — Agp|)?
+ (28 = V) | Fayun — Fapll* + 1281 = v) | Foyinn — Fip %]
< (1= B[ 1% = tnl® + 2t @x = M) [ A AS Yy, — Arp|)?
+ 2282 = )| Fayun — Fopll* + 1128 = v) | Fiun — Fip11?]
< 1% = pI* = 1%ns1 = PI* + T lyun =PI + 20| (vf = E)p | llys - P
< 1% = %nsa (160 = Il + [5m1 = PI) + €T lynn =PI + 200 | (2 = wF)p || 190 - pII.

By Propositions 3.1 and 3.2 we know that the sequences {x,}, {y,.}, and {y, n} are bounded,
and that {x,} is asymptotically regular. Therefore, from «,, — 0 we obtain

lim |[x, =yl = lim ||Foy,n — Fopll = lim [|[Fyy,n — Fipll
n—00 n—00 n—00

= lim |AA% Ty, - Ap| =0 (3.22)
n—00

foreach k € {1,...,M}.
By Proposition 2.1(iii), we deduce that for each k € {1,2,...,M},

| A%y, = | = | Pl = haonAi) AX Yy, = Pell = AanAr)p )
= <(1 - )\k,nAk)AI;,_lyn - - )‘-k,nAk)p; Al;f,yn _p)
1
= S (10 =20 Ay = (= | + | Afy =]

— T = A Ay, — (I = hinAi)p - (Aryn D))
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1
< L1480l + 4l
— [ ARy, — ARy — (A ARy — Ap) )

(I —2I? + | Aky, —p|?

=

N =

2),

— || A%y, — ARy — A (AxAK Ly, - Arp) |

which immediately leads to

| A%y =p|* < llyn =PI = | A5y, = ARy = M (Ax A5y, — Arp) ||
= 5 =2l = | A5y — Ay, |* = 22, | Ac Ak Yy, - Ap)?
+ 2kt ANy = Ay Ak ANy = Arp)
< llyn = pI* = | 4Ky — Aky|®
+ 20| A%y = Ayl | Ak A — Axp)- (3.23)

From (3.4), (3.20), (3.21), and (3.23) we conclude that

%1 — pII?
< Bullww = pI* + A= B[ - pII?
< Ballxn = pII> + (1= )| ALy - p|*
< Bulltn =PI + U= B[ 15— pI? — | 4Ky — Ay, |
+ 2o | AN yn = Aky || | Ac ARy - Acp|]
< Bulln = pI* + (1= B)[@nTllyun —pII°
+ llzn = pII* + 20, | (vf = wE)p | ly. - P
— A5y = Ay])” + 20| 4Ky — Ay A AS 0 - Arp]]
< Bulln —pI? + (L= B)[etnT lyna — P12
+ o = plI* + 200, || (vf = F)p 1y - pll
— | Ay = ARy |* + 204 | AK i — Ak | | Ak ARy - Acp|]
<l = pI? = (1= ) | Ay — ALy
+ 20 || AR 9 = ARyl | A Ay — Awp

+ T ymn = PI” + 20| (v f = wE)p||llyn - Pl (3.24)
which together with {8,} C [¢,d] C (0,1) and {Ax,} C lax, bx] C (0,2nx), k =1,...,M,yields

- )] A5y, - Aky, |
< (- B A5y, - Aby,?

< Ntn =PI = 1na1 =PI + 20sen | Ay — Aly | || Ak AS ™y — Asp|
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+ oy Tl[yun — I + 20| (vf = nF)p||llys - pll
< 10 = a1 (19 = Pl + 11 — 1))

+ 26| Ay = Ay Ak A 90— Arp |

+ &, ||yun =PI + 20 || (vf = wF)p||lyn - plI.

Since o, — 0, and {x,}, {y,}, and {y,, n} are bounded, we obtain from (3.22) and the asymp-
totical regularity of {x,} (due to Proposition 3.2),

lim | AX Ty, — Afy,| =0, Vke{l,...,M). (3.25)

n—00

Note that

1y =Tl = || Ay = Ay,
< [ A%y = Ay + [ Ay = Alya| + -+ | ALy — Ay

Thus,

1im Iy, = 3ull = . (3.26)
g

Remark 3.1 By the last proposition we have w,, (x,) = o, (14,) and ws(x,) = ws(1,), i.e., the
sets of strong/weak cluster points of {x,} and {u,} coincide.

Of course, if 8,,; — B; # 0 as 1 — 00, for all indices i, the assumptions of Proposition 3.2
are enough to assure that
1241 — 2 | _

lim

n—00

0, Vie{l,...,N}.
n,i

In the next proposition, we estimate the case in which at least one sequence {8,x,} is a
null sequence.

Proposition 3.4 Let us suppose that §2 # (. Let us suppose that (HO) holds. Moreover, for
an index ko € {1,...,N}, lim,_, o Buk, = 0 and the following hold:
(H7) foreachie{l,...,N}and k€ {1,...,M},

. |ﬂn,i - ,Bn—l,i| . |Ol,, - an—1| . |ﬁn - ﬁn—1| . |rn - rn—l'
lim —=lim——=Ilim—— = lim ———
n—00 O5;'1,3;1,k0 n—00 anﬁn,ko n—00 anﬂn,ko n—00 O‘n,Bn,kO
. 1 Vn Vn-1
= lim -
"_’ooanlgn,ko 1-8, 1-B.
. Mewn — M-
= lim | k,n k,n 1| - 0;
n—00 an,Bn,ko
(H8) there exists a constant b > 0 such that %'ﬁ -3 11] | <bforalln=>1.
n " Pnkg n—1,ko
Then
. X, — X,
lim ” n+l n” -0.
n—00

n,ko
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Proof We start by (3.17). Dividing both terms by §,,«, we have

%41 — %l < (1 (- )/l)(l _ d)Oln) [l = 1l
ﬁn,ko IBVI,k()
~ [ 1rw =1l Yoy Pbon = At
+ M3|: LS R :
Eﬂn,ko ﬂn,ko
L SicilBui = Buoril | lotw = ]
lsn,ko ,Bn,ko
| Yn_ _ _VYn-1 _B_
Ay Tt 181 = Bu-1l :| (3.27)
ﬂn,ko ﬂn,ko
So, by (H8) we have
%41 — %l
ﬁn,ko
KXy — Xy
< [1= (- y D)1 - dy, ] 2 =22
n-1,ko

1 1

:Bn,ko ,Bn—l,ko

M N
+ [’\‘/’[3 |: |7y — Tl + Zk:ll)\‘k,}’l - )\k,n—1| + Zk:ﬂﬂn,k - ﬁn—l,k|

+ [1 -(t-yDHA- d)an] 1% — %1

613}’1,/(0 ﬁn,ko ,Bn,ko
2% - 251 oy — o .
s~ Tfra +|n n1|+|,3n ,3n1|:|
ﬁn,ko ﬂn,ko IBVI,k()
%0 — %1l 1 1
<[1- (@ - yD - d)atn] = + % = 21 | -
n-1,ko ﬂn,ko :3}’1—1,/(0
M N
n M}} |: |rn - rn—1| n Zk:ll)\‘k,}’l - )\k,n—1| n Zk=1|,3n,k - ;Bn—l,k|
6:3}’1,/(0 ﬁn,k() IBVI,/(O
| — 72 Oy — Oy - B
Ty~ T-fpa +|n n1|+|,3n ,3n1|:|
ﬁn,ko ﬂn,ko ,Bn,ko
% = %nall
<[1-(r -y -d)on] = + ubllxy — %u1l
n-1,ko
M N
+ Ma |: |7y — Tyl + Zkzlphk,n - }Lk,n—1| + Zk:ﬂﬁn,k - IBn—l,k|
6:371,/(0 ﬁn,k() ﬂn,ko
Yn Yn—
T~ Thal | o=l 18- ﬁn_lq
ﬂn,ko ﬂn,ko ,Bn,ko
Xy — Xy—
- [1 —an(t —yD(1 - d)]M
ﬁnfl,k()
(c-yD-d) ——— b ||
+a,(t - —d) —————— 1 b|lxy — %,
e @-yDa-a|
M N
+ MS |: |7y — 1yl + Zk:ll)\k,n - )\k,n—1| + Zk=1|,3n,k - ,Bn—l,k|
60[,,,3",](0 anﬂn,ko anﬂn,ko

Yn-1

Vi
VT ThS e anal 1B Bl } }

an,Bn,ko anlgn,ko anﬁn,ko
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Therefore, utilizing Lemma 2.1 of [16], from (HO0), (H7), and the asymptotical regularity
of {x,} (due to Proposition 3.2), we deduce that

lim %61 — %l -o. O

n—00 ,Bn,ko

Proposition 3.5 Let us suppose that §2 # ). Let us suppose that (H0)-(H6) hold. Then
2y = Yunll = 0 as n — oo.

Proof Let p € £2. In terms of the firm nonexpansivity of Pc and the ¢j-inverse-strong
monotonicity of F; for j = 1,2, we obtain from v; € (0,2¢;), j = 1,2, and (3.4)

G = BI* = |Pcll = vaE)yun — Pell - vaE)p|*
< (I = vaF2)yun = U = v2F2)p, Jun — D)
1 - -
- E[”(I— va o)y — (I - Vze)PH2 + [Fnn =PI

— | = vaF2)yun — I = vaF2)p = (Gun —13)”2]

IA

1
S LI =1 + 5 B
— | Onn = Fun) = v2(Fayun — Fap) — (0 - D) H2]
1
= 5 [l =21 + 158 =51 = | Gy =) - w-p|

+202((uN = IuN) = (B = D) Fayun — Fap) = V31| Fayun — Fapll*]

and

2y = plI? = | Pel = viE)Fun — Pell - viF)B

< (I = viF))jun — I = viF1)p, 24 — p)
- %[H (I = v F)in — (= viF)P|)* + ll2s — pII?
— I = vED)Fnn - (= viF)p — (20 - )|*]
< =[x = BIP + 120 =PI = | Gy —20) + 0 - D)

201(Fiyun = F12y G = 20) + (0 = P)) = v | Fvyinn — F12117]

>—A+N|>—l

E[Hym—pn 2w =pl? = | Gun - 20) + (0 - P)|*

+ 2V1(Fy¥nn = F1py Gun — 20) + (0 = D))]-

Thus, we have

~ ~ ~ ~\ |12
13un = BI* < ynn =PI = | s = Fun) — (0 = D)
+205(OVuN = Iun) = (2 = D), Fayun — Fop)
~ V3| Exyun — Fopl? (3.28)
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and

I2s = 2I% < ynn =PI = |Gy —20) + (0= B)|”
+ 20| Eyyun = FipI | G — 20) + (0 = D) |- (3.29)

Consequently, from (3.4), (3.24) and (3.28), it follows that

%1 = pII?

< Bullxn = pII” + A = B [nTllyun = pII* + 20 = pI* + 20, | (vf = F)p [ lyn - P
— | Ay = ARy |* + 20in | AK = Ak | | AcAK - Arp|]

< Bullxw = plI* + A = B[ antlyun = pI* + Fun = BI? + 20 | (vf = wE)p||ly. - pll
+ 2o | AN n = Ay || | A ARy — Acp|]

< Bullstn = pI* + (1= Bu)[oaT 19 =PI + Iynn =PI = | Gnw = ) = 0 = D)
+20 | Oy = Fun) = (0 = D) | Fxyuy = Fopll + 200 (v.f = F)p] lyn - pl
+ 2hion | ARy = ARy | | Ak Ay — Acp])]

< Bullaw —pI? + A= B)[etnT lymn =PI + 1060 = 1% = | Gnnc = ) — 0 - D)
+20 | Oy = Fun) = (0 = B)|| | E2yun = Fopll + 200 (v.f = F)p]) lyn - pl
+ 20| A5y = ARy | | Ak ARy — Acp])]

< 1% =PI + T llymn = I = (L= B)| Oy = Fun) = (0 - D)
+203 | Oy = Fun) = (0 = D) | E2yun — Fopll + 20| (v.f = F)p]) lyn - pl

’

+ 2 kn ” Al;;_lyn - A];yn ” ”AkAﬁ_lyn —Ap

which yields

A=) Gux = 5un) - @ -5

< @= B2 Onx = 5ur) - 0 - D)

< %0 = pII* + T Y =PI = %01 — P>
+20 |y = Fun) = (0 = D) | E2yun — Fapll + 20| (v.f = F)p]) lyn - pl
+ 2o | A yn = Ay || | A ARy - Acp|

< 160 = [l (16 = Pl + 11 = 1) + €T [y =PI
+20 |y = Fun) = (0 = D) || | E2yun — Fapll + 20| (v.f = F)p]) lyn - pl
+ 2o | ANy = Ay || | Ak ARy - Acp|.

Since llm}’l*)OO a, =0, limnﬁoo ”xn+1 —Xn ” =0, and {xn}1 {yn}’ {yn,N}r and {yn,N} are bounded,
we deduce from (3.22) that

Tim [ = Fux) = (= B)| = 0. (3.30)
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Furthermore, from (3.4), (3.24), and (3.29), it follows that

i1 = pII2

< Bullxn = plI” + A = Bo)[@nTlyun — PI* + 12w — pI* + 200 | (v.f = wE)p| Iy - pll
+ 2o | AN yn = Ay || | Ac ARy — Acp|]

< Bulltn =PI + A= B)[oaT 15 =PI + 15 =PI = | G = 2a) + (0 - B)|*
+ 20llEsiun = Fip Il G = 20) + (0 = B)|| + 20| (vf = E)p | 190 - Pl
+ 2o | A n = Ay || | A ARy — Acp|]

< Bulltn =PI + A= B)[caT 1 — PP + 1160 = I = | Gy —20) + (0 = D)
+ 201llEs3un = FpI|| G = 20) + 0 = B)|| + 20| (vf = E)p 19 - Pl
+ 2o | A yn = Akya || | Ak ARy — Acp|]

< ot =PI + T [y =PI = U= B) | Gy —20) + (= P
+ 20llEsiun = FipI|| G = 20) + (0 = B)|| + 20| (vf = E)p |19 - Pl
+ 2o | AN 9 = Ay | | Ac ARy - Acp

’

which leads to

I

(1= )| G —24) + (2~ D)
<@~ B0)|Gux —2z) + (0 -
< %0 = pII* + T [y =PI = %01 = pII>
+ 20illFnN = Bl G = 20) + (0 = D)|| + 200 (vf = F)p |19 - Pl
+ 2o | AN 9 = Ay || [ Ak ARy - Acp|
< 10 = ®all (1960 = Pl + 1 = 1) + €T lynn — 2l
+ 2011 FaJinn = Bl Gy = 24) + 0 = D) || + 20| (vf = wF)p Iy - pI

+ 2)\k,n ”Aﬁ_lyn - Aﬁyn ” HAkA];_lyn _AkPH'

Since lim,_, 00 @y = 0, lim,, o0 |41 — % ]| = 0, and {x,,}, {2}, W} Wun}, and {,n} are
bounded, we deduce from (3.22) that

Tim [| G —20) + (= D) = 0. (3.31)
Note that

1908 = Zall < |G = Fun) = @ = D) + | Gunw = 20) + (0= D) |-
Hence from (3.30) and (3.31) we get

lim ”yn,N _Zn” = lim ”yn,N - Gyn,N” =0. (3-32)
n—00 n—00
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Proposition 3.6 Let us suppose that 2 # (. Let us suppose that 0 < liminf,_, o B,; <
limsup,_, o Bui < 1 for each i =1,...,N. Moreover, suppose that (H0)-(H6) are satis-
fied. Then, lim,_, o ||Siuty, — uyll = 0 for each i =1,...,N provided ||Ty, — y,|| — as

n— oQ.

Proof First of all, observe that

X1 =% = Y = %) + 85 (Y — %)
= YuOn =) + VuOn = %) + 85(TV0 = Ty)
+8u(TY = Yn) + 85 (Y — %)
= (Vu + )0 = %) + VG = Yu) + 85(TY = Tyn) + 8,( Ty = Yn)
= (L= B n = %) + VuOn = yn) + 8TV = Tyu) + 8n(Tyn = yn)-

By Proposition 3.2 we know that {x,,} is asymptotically regular. Utilizing [17] we have from
(Vi + 60)E =< ¥

A=) lyn = xull < A = Byn — %l
= ||%ne1 = %0 = VuGn = V) = 8u (T = Th) = 8u(Ty = y) |
< %1 = %l + [ ¥u G = ) + 8(TTn = Ty | + 8l Ty =
< %1 = Xl + Vo + 80 17 = Yull + 8 Ty =yl

< %1 — xull + ”5’}1 = Yull + 1Ty = yull,
which together with (3.26) and || Ty, — y,|| — 0, implies that
lim ||x, —y,| =0. (3.33)
Hn—0oQ

Let us show that for each i € {1,...,N}, one has ||S;u;, — y,;-1|| = 0 as n — co. Let p € £2.
When i = N, by Lemma 2.2(b) we have from (3.2), (3.4), and (3.20)

lyn =PI < antllyun — I + 120 =PI + 200, | (vf = F)p | lys - pll

< &, Tllynn = plI* + 20, | (vf = wE)p | 1yn =PIl + lyun - pI?

= T |lyun =PI + 20| (vf = F)p||Ilyn = pll + BunlISnien — pII>
+ (1= B I1yun-1 =PI = Bun (L= Bun) ISnttn = Yun-1 1

< & Tllynn = pII* + 204 | (rf = wE)p | 1yn =PIl + Bunlltn - pII?
+ (1= Bu) = plI* = Bun (@ = Bun) ISn s — Yun-1 11>

= T llyun = pI? + 20| (vf = wE)p| 1y — pll + s — pII>
— Bun (1 = Bun) SN2ty = Y|

< ayTllyun = pI* + 20 | (vf = wE)p|lyn = pll + 120 — pII*

— Bun (L = Bun)ISnttn = Yy |12
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So, we have

Bun (L= Bun)ISnthn = Yunal®
< aytllynn = plI* + 20| (vf = E)p|lyn - pll
+ %0 = plI* = llyn - pII?
< ayTllyun = plI* + 20| (vf = F)p| Iyn - pll
+ 1% = yull (1120 =PIl + 1y = 2II).
Since a,, — 0, 0 < liminf,_, » Bun <limsup,_, . Bun <1and lim,_, « [|x, —¥4| = 0 (due to

(3.33)), it is known that {||Syu, — y,n-11} is a null sequence.
Letie{l,...,N —1}. Then one has

19n =PI < ctuTllymn =PI + 20 | (v = E)p | Iy = Il + lyun - pI?
< auTllymn =PI + 20 | (vf = wE)p | Ilyn =PIl + Bun I Snttn — pII?
+ (L= Bu)lymn-1 - plI?
< auTllynn — pI* + 20 | (vf = wE)p | 1yn =PIl + Bun %4 — pII>
+ (L= Bun) yun-1 - plI?
< auTllyun —pII* + 20| (vf = E)p | Iyn — ol + Bun %0 — pII?
+ (1= Bun) [ Brn-1lSn-1ttn = pI* + (1 = Bun-1) |ymn-2 = pII*]
< o Tllymn — pII* + 20 | (vf = wE)p| lyn - pll
+ (Bun + (L= Bun)Bun-1) lxn — pII?

N
+ [T a-Buollynn- -l

k=N-1

and so, after (N — i + 1) iterations,

s =PI < anTllynn =PI + 20| (v f = wE)p |y - pll

N /N
+ (ﬂn,N + Z (H(l - /3;1,1)) ﬂn,j-l) %, = pII?

Jj=i+2 \ I=f
N
+ [Ja=Buolymi—pI?
k=i+1
< auTllyun = pI* + 20, | (v f = E)p |y - pll

N /N
+ (ﬂn,N + Z (H(l - /3;1,1)) ﬁn,j-l) %, — pII?

j=i+2 \ I=j

N
+ [T =Buo[BuillSittn - pII”

k=i+1

+ (L= Bui)lymics = PI* = Bui(l = Bu)ISittn — yiza|I?]
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< anTllyun =PI + 20| (vf = E)p|Ilyn — pll + %0 — pII?

N
= Bui] [@ = BuiSithn = yia I (3.34)
k=i
Again we obtain
N
Bui] [0 = Bui I1Sitt = yia I
k=i

< T llyun — Pl + 20| (vf = wF)p ||l - P
+ 1% = plI* = llyn - pII?
< oyt llyun — Pl + 20| (vf = wF)p ||l - P

+ 11 = yull (Il = 21+ Il = pII)-

Since @, — 0, 0 < liminf,_, o By < limsup,_, ., Bn; <1 for each i =1,...,N — 1, and
1im,,_, 0 1%, — ¥ ] = O (due to (3.33)), it is known that

lim Sty = Yiall = 0.
n—00

Obviously for i = 1, we have ||S1u, — u,|| — 0.

To conclude, we have
[|S226,, — 1| < ||S214y, _yn,IH + ”yn,l — | = ||S2u, _yn,IH + BuallSiy — uyll,

from which ||Syu,, — u,|| — 0. Thus by induction ||S;u, — u,|| — 0 foralli=2,...,N since

it is enough to observe that

I1Sittn — vnll < NSittn = Yictll + Ynmic1 = Sicathull + |Sic1tty — tl

< NSittn = Vil + (1 = B I1Sic1thn — Ymicall + 1Sic1tn — . O

Remark 3.2 As an example, we consider M =1, N = 2 and the sequences:
1 1,
(a) )\l,n =Mm—- Vu > e
—ﬁ,m: —%,Vn>1;
(c) ﬂn=,3n,1=%—%,,3n,2=%—n%,‘v’n>2.

Then they satisfy the hypotheses on the parameter sequences in Proposition 3.6.

Proposition 3.7 Let us suppose that 2 # ¥ and B,,; — B for all i as n — oco. Suppose there
exists k € {1,...,N} such that B, — 0 as n — oo. Let ko € {1,...,N} be the largest index
such that B, x, — 0 as n — co. Suppose that

(i) 222 — 0asn— oo;
ﬁn,ko

(i) ifi < ko and B,; — O then ’i’;ﬁ — 0asn— oo;
(iti) if By — Bi # 0 then B; lies in (0,1).
Moreover, suppose that (HO), (H7), and (H8) hold. Then, lim,,_, », ||S;u,, — u,|| = 0 for each

i=1,...,N provided || Ty, — y,|| > 0 as n — oo.
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Proof First of all we note that if (H7) holds then also (H1)-(H6) are satisfied. So {x,} is
asymptotically regular.

Let ko be as in the hypotheses. As in Proposition 3.6, for every index i € {1,...,N} such
that 8,,; = B; # 0 (whichleadsto 0 < liminf,_, o, B,; < limsup,_, ., Bui < 1), onehas || S;u, —
Yni-1ll = 0 as n — oo.

For all the other indices i < ko, we can prove that ||S;u, — y,,1] = 0 as n — oo in a
similar manner. By the relation (due to (3.21) and (3.34))

1241 —P||2 =< /3n||xn —P||2 + (1 - ﬂn)”j}n —P||2
< Bullxw —plI* + @ = B)lyw - pII?
< Bullw —plI* + (1 - B)

x |:Olnf lyun =PI + 20 | (vf = nE)p| lyn - plI

N
+ 120 = 1> = B ] [ = Bui)ISits —yn,i_lnﬂ

k=i

< lxn =PI + utllyun — pII* + 20 | (vf = nE)p | Ilyn - Pl

N
= (= BB A= Buid ISzt = ynia I,

k=i

we immediately obtain that

N
(- )] [ - BulISittn = ymia >

k=i
N

< (=B [ = Bur)ISittn = ymialI®
k=i
< %[T”)’n,N —pI?+2||(vf = uE)p| llyn - pll]

o — xpsll
4 o el

b (I =PIl + %01 = plI).-

By Proposition 3.4 or by hypothesis (ii) on the sequences, we have

1% = el o — %l ,Bn,ko
= . — 0.
ﬁn,i ﬂn,ko ,Bn,i
So, the conclusion follows. O

Remark 3.3 Let us consider M =1, N = 3 and the following sequences:

@) a, = nl%,rn:2—ni2,‘v’n>1;

(b) Aw=m=—,Vn> n%%;

(©) Bur= v Bn=Pn2=3— 5 Buz = 7z, Vn>1.
It is easy to see that all hypotheses (i)-(iii), (HO), (H7), and (H8) of Proposition 3.7 are
satisfied.
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Remark 3.4 Under the hypotheses of Proposition 3.7, analogously to Proposition 3.6, one
can see that

lim ||Siuy — Y1l =0, Vie{2,...,N}.
n—0o0
Corollary 3.1 Let us suppose that the hypotheses of either Proposition 3.6 or Proposi-

tion 3.7 are satisfied. Then w,(x,) = w,(U,) = OwYn1), ©s(x,) = ws(u,) = Ws(¥n1), and
ww(x,) C 2.

Proof By Remark 3.1, we have w,(x,) = wu(u,) and ws(x,) = ws(u,). Note that by Re-
mark 3.4,

lim ”SNun _yn,N—IH =0.
n—0oQ

In the meantime, it is known that
lim ||Syuy, — u,| = lim |Ju, —x,| = lim |x, _yn” =0.
n—00 n—0o0 n—00

Hence we have
lim ||Syu, —yal = 0. (3.35)
n—0oQ

Furthermore, it follows from (3.1) that
lim ”yn,N _yn,N—IH = lim ﬂn,N”SNun _yn,N—IH = 01
n—00 n—0o0

which, together with lim,,_, o || SN2y, — Yun-1]l = 0, yields
lim ||Syu, —yunll = 0. (3.36)
n—0oQ

Combining (3.35) and (3.36), we conclude that
lim ”yn _yn,N” =0, (337)
n—oQ

which, together with lim,,_, o [|x, — ¥4l = 0, leads to
lim ||x, —yun]l = 0. (3.38)
n—oQ

Now we observe that

%60 = Yl < W% = vl + Y1 = thnll = 1120 = sl + Bt |S1640 — .

By Propositions 3.3 and 3.6, %, — u,|| = 0 and ||S;%, — u,|| — 0 as n — 0o, and hence
lim |[x, = yuall = 0.
n— o0

So we get wy, (%) = Wy (Y1) and ws(x,) = Ws(Vi1)-
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Let p € w,(x,). Then there exists a subsequence {x,,} of {x,} such that x,, — p. Since
p € wy(uy,), by Proposition 3.6 and [18] (demiclosedness principle), we have p € Fix(S;) for
eachi=1,...,N,ie,p€ ﬂﬁl Fix(S;). Taking into account p €€ w,(y,n) (due to (3.38))
and [|yun — Gyun|l — O (due to (3.32)), by [18] we know that p € Fix(G) =: Z. Also, since
p € wy(yy) (due to (3.33)), in terms of || 7y, — y,|| — 0 and Proposition 2.1 of [19], we get
p € Fix(T). Moreover, by [20] and Proposition 3.3 we know that p € GMEP(®, /7). Next we
prove that p € ﬂi\::l VI(C,A,,). As a matter of fact, from (3.25) and (3.33) we know that
Yn; —pand A}y, — p foreachm=1,..., M. Let

A,v+Ncv, ve(C,

Ty
7, veC,

where m € {1,2,...,M}. Let (v,u) € G(Tm). Since u — A,,v € Ncvand Ay, € C, we have
(v - Ay, u —AW,V) > 0.

On the other hand, from A}y, = Pc(I - Am,nAm)Af‘lyn and v € C, we have
(v= ALy A2y = (AT 90 = hanAn AL )) = 0,

and hence

Alyy — AnWHyn

<v - Ay, —~ . +AmA,’4"_1yy,> > 0.
m,n

Therefore, we have

(V - Anmiy"i’ ”>
> (v— Ay g Amv)

Ay Yn; — Azilyni

z(v—A:,';yn[,Amv)—<v—A;’:yn,, +A,,,A:Z—1y,,i>

)Vm,ni
=(v- A Y AV —AmA,,miyn,-> +({v- A Yy A Ay Yn; = A,,,A:Z’Iy,,i)

Ayn = A I >

)\m,n,'

- <V - AZ;yni,

Aty = Ay >

)"m,n,-

= (V= A0y A Ay, = Am Ay~ ) = <V = A Yn
From (3.25) and since A,, is Lipschitz continuous, we obtain
lim | AuALyn = A ALy, = 0.
n— 00
From A}y, = p, {Amn} C [@m, bl C (0,21,,), YV € {1,2,...,M} and (3.25), we have

(v—p,u)>0.
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Since 7,, is maximal monotone, we have p € 7";110 and hence p € VI(C,A,,), m =
1,2,...,M,which implies p € ﬂ[mwzl VI(C,A,,). Consequently, it is known that p € Fix(T) N
MY, Fix(S) NN, VI(C,A,,) NGMEP(©,h) N & =: £2. 0

Theorem 3.1 Let us suppose that 2 # (. Let {o,,}, {Bui}, i =1,...,N, be sequences in (0,1)
such that 0 < liminf,_, « B,; < limsup,,_, ., B < 1for each index i. Moreover, let us suppose
that (HO)-(H6) hold. Then the sequences {x,}, {y,}, and {u,} defined by scheme (3.1), all
converge strongly to x* = Po(I — (WF — yf))x* if and only if ||y, — Ty, || = 0 as n — oo, where
x* =Po(I — (WF — yf))x* is the unique solution of the hierarchical VIP

((yf —uP)x*,x—x*) <0, Vxe Q. (3.39)

Proof First of all, we note that F : C — H is n-strongly monotone and «-Lipschitzian on
Cand f: C — Cisan /[-Lipschitz continuous mapping with 0 < y[ < t. Observe that

un=t < Kk=1.

It is clear that

((WF = yf)x = (WE =y )y,x—y) > (un - yDllx - ylI*>, Vx,yeC.

Hence we deduce that uF — yf is (un — yI)-strongly monotone. In the meantime, it is easy
to see that uF — yf is (uk + yl)-Lipschitz continuous with constant pk + yI > 0. Thus,
there exists a unique solution x* in £2 to the VIP (3.39).

Now, observe that there exists a subsequence {x,,} of {x,} such that

limsup((yf — uF)x", %, — x*) = lim ((yf — wF)x*, %, — x*). (3.40)

n—0o0 11— 00
Since {x,,} is bounded, there exists a subsequence {x, y } of {x,,,} which converges weakly to
some p € H. Without loss of generality, we may assume that x,,, — p. Then by Corollary 3.1,
we get p € w,(x,) C §2. Hence, from (3.39) and (3.40), we have

lim sup((yf — uF)x*, %, — x*) = ((yf - uF)x*,p —x*) <0. (3.41)

n— 00

Since (H1)-(H6) hold, the sequence {x,} is asymptotically regular (according to Propo-
sition 3.2). In terms of (3.33) and Proposition 3.3, ||x, — y,|| — 0 and ||x,, — u,|| — 0 as
n— o0.

Let us show that ||x,, —x*|| — 0 as n — o0. Indeed, putting p = x*, we deduce from (3.3),
(3.4), (3.20), and (3.21) that

Joomsa =[]
= ,Bn ”xn _x* ”2 + (1 - ﬁn)”j’n _x* H2

< Balln ="+ @ = Bo) |yn - |
(yD)?

< Bulan -] + (1= ﬁn)[anTT lymn =% |* + (1 = @) || 20 — 2%
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+ 20, ((yf = WE)", Y — x*)]

OO ey s+ -0

<,3n||xn_x || +(1 ﬁn)[an

+ zan((yf - MF)x*,yn _x*>:|
2 _ [ 2
e A |

+ Zan((yf - /'LF)x*’yn _x*>:|

= <1 _an(l_lgn)rz_l_il)z

[
< (1- - == Yy P

12— (yl)? 27
T 2 - (yl)?

)||xn—x* 12+ 2001 = B = WE)" - 2°)

+ (1= B) ((f = uF)x*, g = 7). (3.42)
Sincs Z;’:O a, = 0o, {B,} Cz[c,dl C (0,1) and |lx, — yull — 0, we obtain Y .- a,(1 -
,6,,)% >3 o oan(l —d)# =00 and

limsup———— = ((vf = wE)x*, 3, — %)

100 ( 0)?

= limsup— (vf = WF)x*, 0 = &) + ((vf = KE)X™, Y — %))

T
n—00 (Vl)2 ((

=limsup——— = <(yf— WEF)x*, %, —x*) <0

n—00 ( 1)
(due to (3.41)). Applying Lemma 2.1 of [16] to (3.42), we infer that the sequence {x,} con-
verges strongly to x*. This completes the proof. 0

In a similar way, we can conclude another theorem as follows.

Theorem 3.2 Let us suppose that 2 # (). Let {a,,}, {Bni}, i =1,...,N, be sequences in (0,1)
such that B,; — B; for each index i as n — oco. Suppose that there exists k € {1,...,N}
for which B,y — 0 as n — oo. Let kg € {1,...,N} the largest index for which B, x, — 0.
Moreover, let us suppose that (HO), (H7), and (H8) hold and

(i) ﬂjj’(o — 0asn— oo;

(ii) ifi <ko and B,; — Bi then ﬂgk" — 0.asn— oo;

(iif) if Bui — Bi # 0 then B; lies in (0,1).
Then the sequences {x,}, {y,}, and {u,} defined by scheme (3.1) all converge strongly to x* =
Po(I-(WF -yf))x* ifand only if ||y, — Ty,|| = 0 as n — oo, where x* = Po(I— (WF - yf))x*

is the unique solution of the hierarchical VIP

((vf =P, x —x*) <0, Vxe 2.

Remark 3.5 According to the above argument for Theorems 3.1 and 3.2, we can readily
see that if, in scheme (3.1), the iterative step y, = Pcla,yf (Yun) + (I — oyt F)GYyn] is re-
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placed by the iterative one, y, = Pcla,yf(x,) + (I — 2yt F)Gy,n], then Theorems 3.1 and
3.2 remain valid.
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