RESEARCH Open Access

CrossMark

A Hilbert-type operator with a symmetric homogeneous kernel of two parameters and its applications

Keomkyo Seo*

*Correspondence: kseo@sookmyung.ac.kr Department of Mathematics, Sookmyung Women's University, Hyochangwongil 52, Yongsan-ku, Seoul, 140-742, Korea

Abstract

We introduce a general homogeneous kernel whose degree is given by two parameters to establish the equivalent inequalities with the norm of a new Hilbert-type operator. As applications, we provide new extended Hilbert-type inequalities with the best possible constant factors.

MSC: 47A07; 26D15

Keywords: Hilbert-type operator; Hilbert-type inequality; beta function; kernel;

norm

1 Introduction

Let $\{a_n\}$ and $\{b_m\}$ be two sequences of nonnegative real numbers. The well-known Hilbert's inequality says that if p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $0 < \sum_{m=1}^{\infty} a_m^p < \infty$ and $0 < \sum_{n=1}^{\infty} b_n^q < \infty$, then

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{m+n} < \frac{\pi}{\sin(\frac{\pi}{p})} \left(\sum_{m=1}^{\infty} a_m^p \right)^{1/p} \left(\sum_{n=1}^{\infty} b_n^q \right)^{1/q}, \tag{1}$$

where the constant factor $\frac{\pi}{\sin(\frac{\pi}{p})}$ is the best possible [1]. This inequality has been generalized in numerous ways with introducing suitable parameters and weight coefficients. (For example, see [2–13] and the references therein.) In particular, by introducing a Hilbert-type linear operator with a symmetric homogeneous kernel, one can obtain various Hilbert-type inequalities with the best constant factors. For this purpose, let k(x,y) be a nonnegative symmetric function defined on $(0,\infty)\times(0,\infty)$, *i.e.*, k(x,y)=k(y,x). For p>1 and $\frac{1}{p}+\frac{1}{q}=1$, let ℓ^r (r=p,q) be two normed spaces. If T is a bounded self-adjoint semi-positive definite operator defined by

$$(Ta)(n) := \sum_{m=1}^{\infty} k(m, n) a_m, \quad n \in \mathbb{N}$$

for $a = \{a_m\}_{m=1}^{\infty} \in \ell^p$, or similarly,

$$(Tb)(m) := \sum_{n=1}^{\infty} k(m,n)b_n, \quad m \in \mathbb{N}$$

for $b = \{b_n\}_{n=1}^{\infty} \in \ell^q$. The operator T is called the *Hilbert-type operator* and the function k(x,y) is called the *symmetric kernel* of T. In view of this point, Hilbert's inequality (1) can be expressed by

$$(Ta,b) \leq \frac{\pi}{\sin(\frac{\pi}{p})} ||a||_p ||b||_q,$$

where the kernel $k(x,y) = \frac{1}{x+y}$ and the formal inner product (Ta,b) between Ta and b is given by $(Ta,b) := \sum_{n=1}^{\infty} (Ta)(n)b_n$. Motivated by this observation, Yang [14] defined a Hilbert-type linear operator $T: \ell^r \to \ell^r$ (r=p,q) with the kernel $k(x,y) = \frac{(xy)^{\frac{\lambda-1}{2}}}{(x+y)^{\lambda}}$ of degree -1. As a consequence, he was able to prove that if p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $a_m, b_n \ge 0$, $1-2\min\{\frac{1}{p},\frac{1}{q}\} < \lambda < 1+2\min\{\frac{1}{p},\frac{1}{q}\}$, then the following two inequalities are equivalent:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(mn)^{\frac{\lambda-1}{2}} a_m b_n}{m^{\lambda} + n^{\lambda}} < \frac{1}{\lambda} B \left(\frac{q(\lambda+1) - 2}{2q\lambda}, \frac{p(\lambda+1) - 2}{2p\lambda} \right) ||a||_p ||b||_q,$$

$$\left[\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} (mn)^{\frac{\lambda-1}{2}} a_m \right)^p \right]^{\frac{1}{p}} = 1 p \left(q(\lambda+1) - 2 - p(\lambda+1) - 2 \right) ||a||_p ||b||_q,$$

$$\left\{\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\frac{(mn)^{\frac{\lambda-1}{2}}a_m}{m^{\lambda}+n^{\lambda}}\right)^p\right\}^{\frac{1}{p}}<\frac{1}{\lambda}B\left(\frac{q(\lambda+1)-2}{2q\lambda},\frac{p(\lambda+1)-2}{2p\lambda}\right)\|a\|_p,$$

where B(u, v) denotes the beta function defined by

$$B(u,v) := \int_0^\infty \frac{t^{u-1}}{(1+t)^{u+v}} dt = B(u,v) \quad (u,v>0).$$

Moreover, the constant factor $\frac{1}{\lambda}B(\frac{q(\lambda+1)-2}{2q\lambda},\frac{p(\lambda+1)-2}{2p\lambda})$ is the best possible. In 2010, Jin and Debnath [15] generalized the Hilbert-type linear operator whose kernel is symmetric and homogeneous of degree -1. In fact, they obtained several extended Hilbert-type inequalities by using the kernel $k(x,y)=\frac{1}{(x^{\frac{1}{\lambda}}+y^{\frac{1}{\lambda}})^{\lambda}}$ ($\lambda>0$). For instance, they proved that if p>1, $\frac{1}{p}+\frac{1}{q}=1$, $\alpha,\beta>0$, $0<\lambda\leq\min\{\frac{q}{\alpha},\frac{p}{\beta}\}$, then the following two inequalities are equivalent:

$$\begin{split} &\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{(m^{\alpha} + n^{\beta})^{\lambda}} < \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{\alpha^{\frac{1}{q}} \beta^{\frac{1}{p}}} \left(\sum_{m=1}^{\infty} m^{(p-1)(1-\alpha\lambda)} |a_m|^p \right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} n^{(q-1)(1-\beta\lambda)} |b_n|^q \right)^{\frac{1}{q}}, \\ &\left\{ \sum_{n=1}^{\infty} n^{\beta\lambda - 1} \left(\sum_{m=1}^{\infty} \frac{a_m}{(m^{\alpha} + n^{\beta})^{\lambda}} \right)^p \right\}^{\frac{1}{p}} < \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{\alpha^{\frac{1}{q}} \beta^{\frac{1}{p}}} \left(\sum_{m=1}^{\infty} m^{(p-1)(1-\alpha\lambda)} |a_m|^p \right)^{\frac{1}{p}}, \end{split}$$

where the constant factor $\frac{B(\frac{\lambda}{p},\frac{\lambda}{q})}{\alpha^{\frac{1}{q}}\beta^{\frac{1}{p}}}$ is the best possible. See [16–23] for other Hilbert-type operators and the corresponding extended Hilbert-type inequalities with the best factors.

Most of the previous results were, however, obtained by using the Hilbert-type operator with the symmetric homogeneous kernel of $-\lambda$ -order, which depends on a parameter $\lambda > 0$. In this paper, we introduce a more general homogeneous kernel whose degree is

given by two parameters (Definition 2.3). We establish the equivalent inequalities with the norm of a new Hilbert-type operator (Theorem 3.1). As applications, we provide new extended Hilbert-type inequalities with the best possible constant factors (Corollary 4.1 and Cases 1-3).

2 Hilbert-type operator with a symmetric homogeneous kernel whose degree is given by two parameters

For completeness, we begin with the following definitions and notations.

Definition 2.1 Let p > 1, $n_0 \in \mathbb{Z}$, $w(n) \ge 0$ $(n \ge n_0, n \in \mathbb{Z})$. Define the normed space ℓ_{w,n_0}^p by

$$\ell^p_{w,n_0} := \left\{ a = \{a_n\}_{n=n_0}^\infty : \|a\|_{p,w} := \left(\sum_{n=n_0}^\infty w(n) |a_n|^p \right)^{1/p} < \infty \right\}.$$

Definition 2.2 Let $\lambda_1, \lambda_2, \lambda > 0$ satisfying that $\lambda = \lambda_1 + \lambda_2$. Denote by $F_{n_0}(r)$ ($n_0 \in \mathbb{Z}$) the set of all real-valued C^1 -functions $\phi(x)$ satisfying the following conditions:

- (1) $\phi(x)$ is strictly increasing in $(n_0 1, \infty)$ with $\phi((n_0 1) +) = 0$, $\phi(\infty) = \infty$.
- (2) For $\alpha > 0$, $\frac{\phi'(x)}{\phi(x)^{\alpha+1-\lambda_i}}$ is decreasing in $(n_0 1, \infty)$.

Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda = \lambda_1 + \lambda_2$, λ_1 , λ_2 , $\lambda > 0$. For $\phi(x) \in F_{m_0}(r)$ and $\psi(y) \in F_{n_9}(s)$, r, s > 1, we define the following weight functions:

$$\begin{split} w_1(m) &:= \frac{\phi(m)^{p(\alpha+1-\lambda_2)-1}}{\phi'(m)^{p-1}}, \qquad w_2(n) := \frac{\psi(n)^{q(\alpha+1-\lambda_1)-1}}{\psi'(n)^{q-1}}, \\ \widetilde{w}_1(n) &:= \frac{\psi'(n)}{\psi(n)^{p(\alpha-\lambda_1)+1}}, \qquad \widetilde{w}_2(m) := \frac{\phi'(m)}{\phi(m)^{q(\alpha-\lambda_2)+1}}. \end{split}$$

Definition 2.3 Let $\lambda_1, \lambda_2, \lambda > 0$ satisfying that $\lambda = \lambda_1 + \lambda_2$. For $\alpha > 0$ and $\alpha, \gamma > 0$, $K_{\alpha,\lambda}(\alpha, \gamma)$ is a continuous real-valued function on $(0, \infty) \times (0, \infty)$ satisfying the following properties:

(1) $K_{\alpha,\lambda}(x,y)$ is a symmetric homogeneous function of degree $2\alpha - \lambda$, that is,

$$K_{\alpha,\lambda}(x,y) = K_{\alpha,\lambda}(y,x),$$

$$K_{\alpha,\lambda}(tx,ty) = t^{2\alpha-\lambda}K_{\alpha,\lambda}(x,y) \quad \text{for any } t > 0.$$

- (2) $K_{\alpha,\lambda}(x,y)$ is decreasing with respect to x and y, respectively.
- (3) For sufficiently small $\varepsilon \geq 0$, the following integral

$$\widetilde{K}_{\alpha,\lambda}(\lambda_i,\varepsilon) := \int_0^\infty K_{\alpha,\lambda}(1,t)t^{-1+\lambda_i-\alpha-\varepsilon} dt$$

exists for i = 1, 2. Moreover, assume that $\widetilde{K}_{\alpha,\lambda}(\lambda_i, 0) := K_{\alpha}(\lambda_i) > 0$ and $\widetilde{K}_{\alpha,\lambda}(\lambda_i, \varepsilon) = K_{\alpha}(\lambda_i) + o(1)$ as $\varepsilon \to 0+$.

(4) Given p > 1, $\phi(x) \in F_{m_0}(r)$, and $\psi(y) \in F_{n_0}(s)$ (r, s > 1),

$$\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \int_0^{\frac{\phi(m_0)}{\psi(n)}} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_i-\alpha-\frac{\varepsilon}{p}} dt = O(1)$$

Lemma 2.4 Let $\lambda_1, \lambda_2, \lambda > 0$ satisfying that $\lambda = \lambda_1 + \lambda_2$. For any $\alpha > 0$, we have

$$K_{\alpha}(\lambda_1) = K_{\alpha}(\lambda_2).$$

Proof Since

$$K_{\alpha}(\lambda_1) = \widetilde{K}_{\alpha,\lambda}(\lambda_1,0) = \int_0^{\infty} K_{\alpha,\lambda}(1,t)t^{-1+\lambda_1-\alpha} dt,$$

letting $t = \frac{1}{s}$ gives

$$K_{\alpha}(\lambda_1) = \int_0^{\infty} K_{\alpha,\lambda}(1,s) s^{-1+\lambda_2-\alpha} ds = K_{\alpha}(\lambda_2).$$

In view of Lemma 2.4, we may assume that

$$K_{\alpha}(\lambda) := K_{\alpha}(\lambda_1) = K_{\alpha}(\lambda_2).$$

Lemma 2.5 Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda_1 + \lambda_2 = \lambda$, $\lambda_1, \lambda_2 > 0$, $\alpha > 0$. For $\phi(x) \in F_{m_0}(r)$ and $\psi(y) \in F_{n_0}(s)$, r, s > 1, define the weight coefficients $W_1(m)$ and $W_2(n)$ by

$$W_1(m) := \sum_{n=n_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) \frac{\phi(m)^{\lambda_2-\alpha}}{\psi(n)^{\alpha+1-\lambda_1}} \psi'(n),$$

$$W_2(n) := \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n)) \frac{\psi(n)^{\lambda_1-\alpha}}{\phi(m)^{\alpha+1-\lambda_2}} \phi'(m).$$

Then

$$W_1(m) < K_{\alpha}(\lambda)$$
 and $W_2(n) < K_{\alpha}(\lambda)$

for any $m \ge m_0$, $n \ge n_0$ $(m, n \in \mathbb{Z})$.

Proof We have

$$\begin{split} W_1(m) &= \sum_{n=n_0}^{\infty} K_{\alpha,\lambda}\left(1,\frac{\psi(n)}{\phi(m)}\right) \frac{\phi(m)^{\alpha-\lambda_1}}{\psi(n)^{\alpha+1-\lambda_1}} \psi'(n) \\ &< \int_{n_0-1}^{\infty} K_{\alpha,\lambda}\left(1,\frac{\psi(x)}{\phi(m)}\right) \frac{\psi'(x)}{\psi(x)^{\alpha+1-\lambda_1}} \phi(m)^{\alpha-\lambda_1} \, dx. \end{split}$$

Setting $t = \frac{\psi(x)}{\phi(m)}$, we get

$$W_1(m) < \int_0^\infty K_{\alpha,\lambda}(1,t)t^{-1+\lambda_1-\alpha} dt = K_{\alpha}(\lambda).$$

Similarly, one can obtain $W_2(n) < K_{\alpha}(\lambda)$.

Lemma 2.6 Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda_1 + \lambda_2 = \lambda$, $\lambda_1, \lambda_2 > 0$. For $a_m, b_n \ge 0$ $(m_0, n_0 \in \mathbb{Z})$, let $a = \{a_m\}_{m=m_0}^{\infty} \in \ell_{w_1,m_0}^p$ and $b = \{b_n\}_{n=n_0}^{\infty} \in \ell_{w_2,n_0}^q$. Then, for $\phi(x) \in F_{m_0}(r)$ and $\psi(y) \in F_{n_0}(s)$

(r, s > 1), we have

$$\left\| \sum_{m=m_0}^{\infty} K_{\alpha,\lambda} (\phi(m), \psi(n)) a_m \right\|_{p,\widetilde{w}_1} \le K_{\alpha}(\lambda) \|a\|_{p,w_1} \quad and$$

$$\left\| \sum_{n=n_0}^{\infty} K_{\alpha,\lambda} (\phi(m), \psi(n)) b_n \right\|_{q,\widetilde{w}_2} \le K_{\alpha}(\lambda) \|b\|_{q,w_2},$$

and hence

$$\left\{ \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n)) a_m \right\}_{n=n_0}^{\infty} \in \ell_{\tilde{w_1},n_0}^{P} \quad and \\
\left\{ \sum_{n=n_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n)) b_n \right\}_{m=m_0}^{\infty} \in \ell_{\tilde{w_2},m_0}^{q}.$$

Proof Applying Hölder's inequality, we observe

$$\begin{split} &\sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \left(\phi(m), \psi(n) \right) a_m \\ &= \sum_{m=m_0}^{\infty} \left(K_{\alpha,\lambda} \left(\phi(m), \psi(n) \right) \frac{\phi(m)^{\frac{\alpha+1-\lambda_2}{q}}}{\psi(n)^{\frac{\alpha+1-\lambda_1}{p}}} \frac{\psi'(n)^{\frac{1}{p}}}{\phi'(m)^{\frac{1}{q}}} a_m \right) \left(\frac{\psi(n)^{\frac{\alpha+1-\lambda_1}{p}}}{\phi(m)^{\frac{\alpha+1-\lambda_2}{q}}} \frac{\phi'(m)^{\frac{1}{q}}}{\psi'(n)^{\frac{1}{p}}} \right) \\ &\leq \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \left(\phi(m), \psi(n) \right) \frac{\phi(m)^{(\alpha+1-\lambda_2)(p-1)}}{\psi(n)^{\alpha+1-\lambda_1}} \frac{\psi'(n)}{\phi'(m)^{p-1}} a_m^p \right)^{\frac{1}{p}} \\ &\times \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \left(\phi(m), \psi(n) \right) \frac{\psi(n)^{(\alpha+1-\lambda_1)(q-1)}}{\phi(m)^{\alpha+1-\lambda_2}} \frac{\phi'(m)}{\psi'(n)^{q-1}} \right)^{\frac{1}{q}}. \end{split}$$

By Definition 2.2, we get

$$\begin{split} &\sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \big(\phi(m), \psi(n) \big) a_m \\ &\leq \left(\int_0^{\infty} K_{\alpha,\lambda} (1,t) t^{-1+\lambda_2-\alpha} dt \right)^{\frac{1}{q}} \left(\frac{\psi(n)^{q(\alpha+1-\lambda_1)-1}}{\psi'(n)^{q-1}} \right)^{\frac{1}{q}} \\ &\quad \times \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \big(\phi(m), \psi(n) \big) \frac{\phi(m)^{(\alpha+1-\lambda_2)(p-1)}}{\psi(n)^{\alpha+1-\lambda_1}} \frac{\psi'(n)}{\phi'(m)^{p-1}} a_m^p \right)^{\frac{1}{p}}. \end{split}$$

Therefore, by using Lemma 2.5, we get

$$\left\| \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) a_m \right\|_{p,\widetilde{w}_1}$$

$$= \left\{ \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{p(\alpha-\lambda_1)+1}} \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) a_m \right)^p \right\}^{\frac{1}{p}}$$

$$\leq K_{\alpha}(\lambda)^{\frac{1}{q}} \left(\sum_{n=n_{0}}^{\infty} \sum_{m=m_{0}}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n)) \frac{\phi(m)^{(\alpha+1-\lambda_{2})(p-1)}}{\psi(n)^{\alpha+1-\lambda_{1}}} \frac{\psi'(n)}{\phi'(m)^{p-1}} a_{m}^{p} \right)^{\frac{1}{p}}$$

$$= K_{\alpha}(\lambda)^{\frac{1}{q}} \left(\sum_{m=m_{0}}^{\infty} W_{1}(m) \frac{\phi(m)^{p(\alpha+1-\lambda_{2})-1}}{\phi'(m)^{p-1}} a_{m}^{p} \right)^{\frac{1}{p}}$$

$$< K_{\alpha}(\lambda) \|a\|_{p,w_{1}}.$$

In the same manner, one can obtain

$$\left\| \sum_{n=n_0}^{\infty} K_{\alpha,\lambda} (\phi(m), \psi(n)) b_n \right\|_{q, \widetilde{w}_2} \le K_{\alpha}(\lambda) \|b\|_{q, w_2}.$$

In view of Lemma 2.6, we can define a Hilbert-type operator $T: \ell^p_{w_1, m_0} \to \ell^p_{\widetilde{w}_1, m_0}$ by

$$(Ta)(n) := \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n))a_m, \quad n \geq n_0, n \in \mathbb{Z}.$$

Similarly, define $T: \ell^q_{w_2,n_0} \to \ell^q_{\widetilde{w}_2,m_0}$ by

$$(Ta)(m) := \sum_{n=n_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n))b_n, \quad m \geq m_0, m \in \mathbb{Z}.$$

It immediately follows from Lemma 2.6 that

$$||T||_p := \sup_{\|a\|_{p,\widetilde{w}_1} = 1} ||Ta||_{p,\widetilde{w}_1} \le K_{\alpha}(\lambda)$$

and

$$||T||_q := \sup_{||a||_{p,\widetilde{w}_2}=1} ||Tb||_{q,\widetilde{w}_2} \le K_{\alpha}(\lambda).$$

Hence the operator T is bounded. The formal inner product (Ta, b) of Ta and b is defined by

$$(Ta,b) := \sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n)) a_m b_n.$$

Lemma 2.7 Let
$$p > 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$. Let $\widetilde{a} = \{\widetilde{a}_m\}_{m=m_0}^{\infty}$ and $\widetilde{b} = \{\widetilde{b}_n\}_{n=n_0}^{\infty}$ with $\widetilde{a}_m = \frac{\phi'(m)}{\phi(m)^{\alpha+1-\lambda_2+\frac{\varepsilon}{p}}}$ and $\widetilde{b}_n = \frac{\psi'(n)}{\psi(n)^{\alpha+1-\lambda_1+\frac{\varepsilon}{q}}}$ for $0 < \varepsilon < p\lambda_i$, $i = 1, 2$. Then, as $\varepsilon \to 0+$,

$$K_{\alpha}(\lambda)\big(1-o(1)\big)\sum_{n=n_0}^{\infty}\frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}<(\widetilde{Ta},\widetilde{b})< K_{\alpha}(\lambda)\big(1+o(1)\big)\sum_{n=n_0}^{\infty}\frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}.$$

Proof We have

$$\begin{split} (T\widetilde{a},\widetilde{b}) &= \sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \Big(\phi(m), \psi(n) \Big) \frac{\phi'(m)}{\phi^{(m)}^{\alpha+1-\lambda_2+\frac{\varepsilon}{p}}} \frac{\psi'(n)}{\psi(n)^{\alpha+1-\lambda_1+\frac{\varepsilon}{q}}} \\ &< \sum_{n=n_0}^{\infty} \int_{m_0-1}^{\infty} K_{\alpha,\lambda} \Big(\phi(x), \psi(n) \Big) \frac{\phi'(x)}{\phi(x)^{\alpha+1-\lambda_2+\frac{\varepsilon}{p}}} \frac{\psi'(n)}{\psi(n)^{\alpha+1-\lambda_1+\frac{\varepsilon}{q}}} \, dx. \end{split}$$

Setting $t = \frac{\phi(x)}{\psi(n)}$, we get

$$(T\widetilde{a}, \widetilde{b}) < \sum_{n=n_0}^{\infty} \left(\int_0^{\infty} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}} dt \right) \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}$$
$$= K_{\alpha}(\lambda) \left(1 + o(1) \right) \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}.$$

Moreover,

$$\begin{split} (T\widetilde{a},\widetilde{b}) &> \sum_{n=n_0}^{\infty} \left(\int_{\frac{\phi(m_0)}{\psi(n)}}^{\infty} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}} \, dt \right) \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \\ &= \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \left(\int_0^{\infty} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}} \, dt - \int_0^{\frac{\phi(m_0)}{\psi(n)}} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}} \, dt \right). \end{split}$$

Note that the definition of $K_{\alpha,\lambda}(x,y)$ implies that

$$\int_0^\infty K_{\alpha,\lambda}(1,t)t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}}\,dt=K_\alpha(\lambda_2)+o(1)$$

and

$$\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \int_0^{\frac{\phi(m_0)}{\psi(n)}} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}} dt = O(1).$$

Thus, using the fact that for a > 0,

$$\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} = \frac{1}{\varepsilon} \left(1 + o(1) \right) \quad \text{and} \quad \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\alpha+\frac{\varepsilon}{q}}} = O(1)$$

as $\varepsilon \to 0+$, we obtain

$$\begin{split} (T\widetilde{a},\widetilde{b}) > K_{\alpha}(\lambda) \big(1 + o(1)\big) & \left(\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} - O(1)\right) \\ & = K_{\alpha}(\lambda) \left[1 + o(1) - O(1) \sum_{n=n_0}^{\infty} \left(\frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}\right)^{-1}\right] \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \\ & = K_{\alpha}(\lambda) \big(1 - o(1)\big) \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}, \end{split}$$

which completes the proof.

Theorem 2.8 Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda_1 + \lambda_2 = \lambda$, $\lambda_1, \lambda_2 > 0$. For $a_m, b_n \ge 0$ $(m_0, n_0 \in \mathbb{Z})$, let $a = \{a_m\}_{m=m_0}^{\infty} \in \ell_{w_1,m_0}^p$ and $b = \{b_n\}_{n=n_0}^{\infty} \in \ell_{w_2,n_0}^q$. Then, for $\phi(x) \in F_{m_0}(r)$ and $\psi(y) \in F_{n_0}(s)$ (r, s > 1),

$$||T||_p = ||T||_q = K_\alpha(\lambda).$$

Proof Suppose that $||T||_p < K_\alpha(\lambda)$. Consider $\widetilde{a}_m = \phi'(m)\phi(m)^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}}$ and $\widetilde{b}_n = \phi'(n) \times \psi(n)^{-1+\lambda_1-\alpha-\frac{\varepsilon}{q}}$, where $m \ge m_0$, $n \ge n_0$, $m, n \in \mathbb{Z}$, $0 < \varepsilon < p\lambda_i$, i = 1, 2. A simple computation shows that $\widetilde{a} \in \ell^p_{w_1,m_0}$ and $\widetilde{b} \in \ell^q_{w_2,n_0}$ with $||\widetilde{a}||_{p,w_1} > 0$ and $||\widetilde{b}||_{q,w_2} > 0$. Then

$$\begin{split} \|T\widetilde{a}\|_{p,\widetilde{w}_{1}} &= \left\{ \sum_{n=n_{0}}^{\infty} \psi'(n)\psi(n)^{p(\lambda_{1}-\alpha)-1} \left(\sum_{m=m_{0}}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n))\widetilde{a}_{m} \right)^{p} \right\}^{\frac{1}{p}} \\ &\leq \|T\|_{p} \|\widetilde{a}\|_{p,w_{1}}. \end{split}$$

Moreover, we have

$$(T\widetilde{a},\widetilde{b}) = \sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n))\widetilde{a}_m\widetilde{b}_n$$

$$= \sum_{n=n_0}^{\infty} \left\{ \psi'(n)\psi(n)^{p(\lambda_1-\alpha)-1} \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n))\widetilde{a}_m \right)^p \right\}^{\frac{1}{p}} \|\widetilde{b}\|_{q,w_2}$$

$$\leq \|T\|_p \|\widetilde{a}\|_{p,w_1} \|\widetilde{b}\|_{q,w_2}$$

$$= \|T\|_p \left(\sum_{m=m_0}^{\infty} \frac{\phi'(m)}{\phi(m)^{1+\varepsilon}} \right)^{\frac{1}{p}} \left(\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \right)^{\frac{1}{q}}.$$

$$(2)$$

On the other hand, from Lemma 2.7 it follows

$$K_{\alpha}(\lambda)(1-o(1))\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} < (T\widetilde{a}, \widetilde{b}).$$
(3)

Therefore, combining these inequalities (2) and (3),

$$K_{\alpha}(\lambda)\left(1-o(1)\right)\left(\sum_{n=n_0}^{\infty}\frac{\psi'(n)}{\psi(n)^{1+\varepsilon}}\right)^{\frac{1}{p}}\leq \|T\|_{p}\left(\sum_{m=m_0}^{\infty}\frac{\phi'(m)}{\phi(m)^{1+\varepsilon}}\right)^{\frac{1}{p}}.$$

Since

$$\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} = \frac{1}{\varepsilon} \left(1 + o(1)\right) \quad \text{and} \quad \sum_{m=m_0}^{\infty} \frac{\phi'(m)}{\phi(m)^{1+\varepsilon}} = \frac{1}{\varepsilon} \left(1 + o(1)\right)$$

as $\varepsilon \to 0+$, we obtain that $K_{\alpha}(\lambda) \leq \|T\|_p$, which is a contradiction. Thus we conclude that $\|T\|_p = K_{\alpha}(\lambda)$. Applying the same argument, we have $\|T\|_q = K_{\alpha}(\lambda)$, which completes the proof.

3 Two equivalent inequalities for the Hilbert-type operator

Equipped with the Hilbert-type operator defined as above, we have the following theorem.

Theorem 3.1 Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda_1 + \lambda_2 = \lambda$, $\lambda_1, \lambda_2 > 0$. For $a_m, b_n \ge 0$ $(m_0, n_0 \in \mathbb{Z})$, let $a = \{a_m\}_{m=m_0}^{\infty} \in \ell_{w_1,m_0}^p$, $b = \{b_n\}_{n=n_0}^{\infty} \in \ell_{w_2,n_0}^q \|a\|_{p,w_1} > 0$, $\|b\|_{q,w_2} > 0$. Then, for $\phi(x) \in F_{m_0}(r)$ and $\psi(y) \in F_{n_0}(s)$ (r, s > 1), we have the following equivalent inequalities:

$$(Ta,b) = \sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) a_m b_n < K_{\alpha}(\lambda) ||a||_{p,w_1} ||b||_{q,w_2},$$
(4)

$$||Ta||_{p,\widetilde{w}_1} < K_{\alpha}(\lambda)||a||_{p,w_1}. \tag{5}$$

Furthermore, the constant factor $K_{\alpha}(\lambda)$ is the best possible.

Proof It follows from Hölder's inequality that

$$\begin{split} (Ta,b) &= \sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \Big(\phi(m), \psi(n) \Big) \Big(\frac{\phi(m)^{\frac{\alpha+1-\lambda_2}{q}}}{\psi(n)^{\frac{\alpha+1-\lambda_1}{p}}} \frac{\psi'(n)^{\frac{1}{p}}}{\phi'(m)^{\frac{1}{q}}} a_m \Big) \\ &\times \left(\frac{\psi(n)^{\frac{\alpha+1-\lambda_1}{p}}}{\phi(m)^{\frac{\alpha+1-\lambda_2}{q}}} \frac{\phi'(m)^{\frac{1}{q}}}{\psi'(n)^{\frac{1}{p}}} b_n \right) \\ &\leq \left(\sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \Big(\phi(m), \psi(n) \Big) \frac{\phi(m)^{(\alpha+1-\lambda_2)(p-1)}}{\psi(n)^{\alpha+1-\lambda_1}} \frac{\psi'(n)}{\phi'(m)^{p-1}} a_m^p \right)^{\frac{1}{p}} \\ &\times \left(\sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda} \Big(\phi(m), \psi(n) \Big) \frac{\psi(n)^{(\alpha+1-\lambda_1)(q-1)}}{\phi(m)^{\alpha+1-\lambda_2}} \frac{\phi'(m)}{\psi'(n)^{q-1}} b_n^q \right)^{\frac{1}{q}} \\ &= \left(\sum_{m=m_0}^{\infty} W_1(m) \frac{\phi(m)^{p(\alpha+1-\lambda_2)-1}}{\phi'(m)^{p-1}} a_m^p \right)^{\frac{1}{p}} \left(\sum_{n=n_0}^{\infty} W_2(n) \frac{\psi(n)^{q(\alpha+1-\lambda_1)-1}}{\psi'(n)^{q-1}} b_n^q \right)^{\frac{1}{q}}. \end{split}$$

Applying Lemma 2.5, we see that

$$(Ta,b) < K_{\alpha}(\lambda) ||a||_{p,w_1} ||b||_{q,w_2}.$$

In order to prove that inequality (4) implies inequality (5), we define \vec{b} as follows:

$$\widetilde{b}_n := \frac{\psi'(n)}{\psi(n)^{p(\alpha-\lambda_1)+1}} \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m),\psi(n)) \right)^{p-1}$$

for $n \ge n_0$, $n \in \mathbb{Z}$. Then we see that $\widetilde{b} \in \ell^q_{w_2,n_0}$ and $\|\widetilde{b}\|_{q,w_2} > 0$ as before. Thus using inequality (4) shows that

$$\begin{split} \|\widetilde{b}\|_{q,w_2}^q &= \sum_{n=n_0}^\infty \frac{\psi'(n)}{\psi(n)^{p(\alpha-\lambda_1)+1}} \left(\sum_{m=m_0}^\infty K_{\alpha,\lambda}\big(\phi(m),\psi(n)\big) a_m\right)^p \\ &= \sum_{n=n_0}^\infty \sum_{m=m_0}^\infty K_{\alpha,\lambda}\big(\phi(m),\psi(n)\big) a_m \widetilde{b}_n < K_\alpha(\lambda) \|a\|_{p,w_1} \|\widetilde{b}\|_{q,w_2}, \end{split}$$

which gives $||Ta||_{p,\widetilde{w}_1} = ||\widetilde{b}||_{q,w_2}^{q-1} < K_{\alpha}(\lambda)||a||_{p,w_1}$. Hence inequality (4) implies inequality (5).

Now suppose that inequality (5) holds for any $a \in \ell^p_{w_1,m_0}$.

$$(Ta,b) = \sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) a_m b_n$$

$$= \sum_{n=n_0}^{\infty} \left(\frac{\psi'(n)^{\frac{1}{p}}}{\psi(n)^{\alpha-\lambda_1+\frac{1}{p}}} \sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) a_m \right) \left(\frac{\psi(n)^{\alpha-\lambda_1+\frac{1}{p}}}{\psi'(n)^{\frac{1}{p}}} b_n \right)$$

$$\leq \left\{ \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{p(\alpha-\lambda_1)+1}} \left(\sum_{m=m_0}^{\infty} K_{\alpha,\lambda}(\phi(m), \psi(n)) a_m \right)^p \right\}^{\frac{1}{p}} \|b\|_{q,w_2}$$

$$< K_{\alpha}(\lambda) \|a\|_{p,w_1} \|b\|_{q,w_2},$$

which means that inequality (5) implies inequality (4). Therefore inequality (4) is equivalent to inequality (5). Furthermore, Theorem 2.8 implies that the constant factor $K_{\alpha}(\lambda)$ in inequalities (4) and (5) is the best possible, which completes the proof.

4 Applications to various Hilbert-type inequalities

In this section, we apply our previous theorems to obtain several Hilbert-type inequalities. Recall that the beta function B(u, v) is defined by

$$B(u,v) := \int_0^\infty \frac{t^{u-1}}{(1+t)^{u+v}} dt = B(u,v) \quad (u,v>0).$$

Define the function $K_{\alpha,\lambda}(x,y)$ by

$$K_{\alpha,\lambda}(x,y) := \frac{(xy)^{\alpha}}{(x+y)^{\lambda}}$$

for $\lambda > \alpha \ge 0$. Then $K_{\alpha,\lambda}(x,y)$ is a symmetric homogeneous function of degree $2\alpha - \lambda$ and is decreasing with respect to x and y, respectively. Moreover,

$$\sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \int_0^{\frac{\phi(m_0)}{\psi(n)}} K_{\alpha,\lambda}(1,t) t^{-1+\lambda_2-\alpha-\frac{\varepsilon}{p}} dt = O(1).$$

To see this, for $0 < \varepsilon < p\lambda_2$,

$$\begin{split} \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \int_0^{\frac{\phi(m_0)}{\psi(n)}} \frac{t^{-1+\lambda_2 - \frac{\varepsilon}{p}}}{(1+t)^{\lambda}} dt &\leq \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \int_0^{\frac{\phi(m_0)}{\psi(n)}} t^{-1+\lambda_2 - \frac{\varepsilon}{p}} dt \\ &= \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\varepsilon}} \frac{1}{\lambda_2 - \frac{\varepsilon}{p}} \left(\frac{\phi(m_0)}{\psi(n)} \right)^{\lambda_2 - \frac{\varepsilon}{p}} \\ &= \frac{\phi(m_0)^{\lambda_2 - \frac{\varepsilon}{p}}}{\lambda_2 - \frac{\varepsilon}{p}} \sum_{n=n_0}^{\infty} \frac{\psi'(n)}{\psi(n)^{1+\lambda_2 + \frac{\varepsilon}{q}}} \\ &= O(1). \end{split}$$

Note that since

$$\begin{split} \widetilde{K}_{\alpha,\lambda}(\lambda_i,\varepsilon) &:= \int_0^\infty K_{\alpha,\lambda}(1,t) t^{-1+\lambda_i-\alpha-\varepsilon} \, dt \\ &= \int_0^\infty \frac{t^{-1+\lambda_i-\varepsilon}}{(1+t)^\lambda} \, dt, \end{split}$$

we see that

$$\widetilde{K}_{\alpha,\lambda}(\lambda_i,\varepsilon) \to \int_0^\infty \frac{t^{\lambda_i-1}}{(1+t)^{\lambda_i}} dt = B(\lambda_1,\lambda_2) = K_{\alpha}(\lambda_i) = K_{\alpha}(\lambda)$$

as $\varepsilon \to 0+$. Therefore from Theorem 3.1 we observe the following.

Corollary 4.1 Let p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda_1 + \lambda_2 = \lambda$, $\lambda_1, \lambda_2 > 0$, $\lambda > \alpha \ge 0$. For $a_m, b_n \ge 0$ $(m_0, n_0 \in \mathbb{Z})$, let $a = \{a_m\}_{m=m_0}^{\infty} \in \ell_{w_1, m_0}^p$, $b = \{b_n\}_{n=n_0}^{\infty} \in \ell_{w_2, n_0}^q$ and $\|a\|_{p, w_1} > 0$, $\|b\|_{q, w_2} > 0$. Then, for $\phi(x) \in F_{m_0}(r)$ and $\psi(y) \in F_{n_0}(s)$ (r, s > 1), we have the following equivalent inequalities:

$$\sum_{n=n_0}^{\infty} \sum_{m=m_0}^{\infty} \frac{\phi(m)^{\alpha} \psi(n)^{\alpha} a_m b_n}{(\phi(m) + \psi(n))^{\lambda}} < B(\lambda_1, \lambda_2) ||a||_{p, w_1} ||b||_{q, w_2},$$

$$\left\{ \sum_{n=n_0}^{\infty} \psi'(n) \psi(n)^{p(\lambda_1-\alpha)-1} \left(\sum_{m=m_0}^{\infty} \frac{\phi(m)^{\alpha} \psi(n)^{\alpha} a_m}{(\phi(m)+\psi(n))^{\lambda}} \right)^p \right\}^{\frac{1}{p}} < B(\lambda_1,\lambda_2) \|a\|_{p,w_1}.$$

Furthermore, the constant factor $B(\lambda_1, \lambda_2)$ *is the best possible.*

As applications, we have the following.

Case 1. Let $\phi(x) = x^{\beta}$ and $\psi(x) = x^{\gamma}$ $(\beta, \gamma > 0)$ for $m_0 = n_0 = 1$. For $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(m^{\beta} n^{\gamma})^{\alpha}}{(m^{\beta} + n^{\gamma})^{\lambda}} a_m b_n < \frac{B(\lambda_1, \lambda_2)}{\beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p, w_1} \|b\|_{q, w_2},$$

$$\left\{\sum_{n=1}^{\infty}n^{\gamma p(\lambda_1-\alpha)-1}\left(\sum_{m=1}^{\infty}\frac{(m^{\beta}n^{\gamma})^{\alpha}}{(m^{\beta}+n^{\gamma})^{\lambda}}a_m\right)^p\right\}^{\frac{1}{p}}<\frac{B(\lambda_1,\lambda_2)}{\beta^{\frac{1}{q}}\gamma^{\frac{1}{p}}}\|a\|_{p,w_1},$$

where $w_1(m) = m^{p(1-\lambda_2\beta+\alpha\beta)-1}$ and $w_2(n) = n^{q(1-\lambda_1\gamma+\alpha\gamma)-1}$.

(I) For $\lambda_1 = \frac{\lambda}{p}$ and $\lambda_2 = \frac{\lambda}{q}$ with $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{(m^{\beta}n^{\gamma})^{\alpha}}{(m^{\beta}+n^{\gamma})^{\lambda}}a_{m}b_{n}<\frac{B(\frac{\lambda}{p},\frac{\lambda}{q})}{\beta^{\frac{1}{q}}\sqrt{\frac{1}{p}}}\|a\|_{p,w_{1}}\|b\|_{q,w_{2}},$$

$$\left\{\sum_{n=1}^{\infty}n^{\gamma(\lambda-p\alpha)-1}\left(\sum_{m=1}^{\infty}\frac{(m^{\beta}n^{\gamma})^{\alpha}}{(m^{\beta}+n^{\gamma})^{\lambda}}a_{m}\right)^{p}\right\}^{\frac{1}{p}}<\frac{B(\frac{\lambda}{p},\frac{\lambda}{q})}{\beta^{\frac{1}{q}}\gamma^{\frac{1}{p}}}\|a\|_{p,w_{1}},$$

where $w_1(m) = m^{(p-1)(1-\lambda\beta)+p\alpha\beta}$ and $w_2(n) = n^{(q-1)(1-\lambda\gamma)+q\alpha\gamma}$.

(II) For $\lambda_1 = \frac{\lambda}{q}$ and $\lambda_2 = \frac{\lambda}{p}$ with $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(m^{\beta} n^{\gamma})^{\alpha}}{(m^{\beta} + n^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{\beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} ||a||_{p, w_{1}} ||b||_{q, w_{2}},$$

$$\left\{ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(m^{\beta} n^{\gamma})^{\alpha}}{(m^{\beta} + n^{\gamma})^{\alpha}} \sum_{n=1}^{\infty} \frac{1}{\beta^{\frac{1}{p}}} B(\frac{\lambda}{p}, \frac{\lambda}{p}) \right\}$$

$$\left\{\sum_{n=1}^{\infty}n^{\gamma\lambda(p-1)-p\alpha\gamma-1}\left(\sum_{m=1}^{\infty}\frac{(m^{\beta}n^{\gamma})^{\alpha}}{(m^{\beta}+n^{\gamma})^{\lambda}}a_{m}\right)^{p}\right\}^{\frac{1}{p}}<\frac{B(\frac{\lambda}{p},\frac{\lambda}{q})}{\beta^{\frac{1}{q}}\gamma^{\frac{1}{p}}}\|a\|_{p,w_{1}},$$

where $w_1(m) = m^{p-1-\beta\lambda+p\alpha\beta}$ and $w_2(n) = n^{q-1-\gamma\lambda+q\alpha\gamma}$.

(III) Let $\lambda_1 = \frac{p+\lambda-2}{p}$, $\lambda_2 = \frac{q+\lambda-2}{q}$, $\lambda > \max\{2-p,2-q\}$, $0 < \beta < \frac{p}{p+\lambda-2-p\alpha}$, $0 < \gamma < \frac{q}{q+\lambda-2-q\alpha}$, $0 \le \alpha < \min\{\frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q}\}$. Then one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(m^{\beta} n^{\gamma})^{\alpha}}{(m^{\beta} + n^{\gamma})^{\lambda}} a_m b_n < \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{\beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_1} \|b\|_{q,w_2},$$

$$\left\{\sum_{n=1}^{\infty}n^{\gamma(p+\lambda-2)-p\alpha\gamma-1}\left(\sum_{m=1}^{\infty}\frac{(m^{\beta}n^{\gamma})^{\alpha}}{(m^{\beta}+n^{\gamma})^{\lambda}}a_{m}\right)^{p}\right\}^{\frac{1}{p}}<\frac{B(\frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q})}{\beta^{\frac{1}{q}}\gamma^{\frac{1}{p}}}\|a\|_{p,w_{1}},$$

where $w_1(m) = m^{(p-1)(1-\beta(q+\lambda-2))+p\alpha\beta}$ and $w_2(n) = n^{(q-1)(1-\gamma(p+\lambda-2))+q\alpha\gamma}$.

(IV) Let $\lambda_1 = \frac{q+\lambda-2}{q}$, $\lambda_2 = \frac{p+\lambda-2}{p}$, $\lambda > \max\{2-p,2-q\}$, $0 < \beta < \frac{q}{q+\lambda-2-q\alpha}$, $0 < \gamma < \frac{p}{p+\lambda-2-p\alpha}$, $0 \le \alpha < \min\{\frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q}\}$. Then one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(m^{\beta} n^{\gamma})^{\alpha}}{(m^{\beta} + n^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{\beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_{1}} \|b\|_{q,w_{2}},$$

$$\left\{ \sum_{n=1}^{\infty} n^{\gamma(p-1)(q+\lambda-2)-p\alpha\gamma-1} \left(\sum_{m=1}^{\infty} \frac{(m^{\beta}n^{\gamma})^{\alpha}}{(m^{\beta}+n^{\gamma})^{\lambda}} a_m \right)^{p} \right\}^{\frac{1}{p}} < \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{\beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_1},$$

where $w_1(m) = m^{p-1-\beta(p+\lambda-2)+p\alpha\beta}$ and $w_2(n) = n^{q-1-\gamma(q+\lambda-2)+q\alpha\gamma}$.

Case 2. For A, B > 0, let $\phi(x) = A(\ln x)^{\beta}$ and $\psi(x) = B(\ln x)^{\gamma}$ $(\beta, \gamma > 0)$, $m_0 = n_0 = 2$. For $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\sum_{m=2}^{\infty} \sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} (\ln n)^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B(\ln n)^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\lambda_{1}, \lambda_{2})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \sqrt{\frac{1}{p}}} \|a\|_{p, w_{1}} \|b\|_{q, w_{2}},$$

$$\left\{ \sum_{n=2}^{\infty} \frac{1}{n} (\ln n)^{p\gamma(\lambda_1 - \alpha) - 1} \left(\sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} (\ln n)^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B(\ln n)^{\gamma})^{\lambda}} a_m \right)^{p} \right\}^{\frac{1}{p}} < \frac{B(\lambda_1, \lambda_2)}{A^{\lambda_2} B^{\lambda_1} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p, w_1},$$

where $w_1(m) = m^{p-1} (\ln m)^{p(1-\lambda_2\beta + \alpha\beta)-1}$ and $w_2(n) = n^{q-1} (\ln n)^{q(1-\lambda_1\gamma + \alpha\gamma)-1}$.

(I) For $\lambda_1 = \frac{\lambda}{p}$ and $\lambda_2 = \frac{\lambda}{q}$ with $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} (\ln n)^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B(\ln n)^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \nu^{\frac{1}{p}}} ||a||_{p, w_{1}} ||b||_{q, w_{2}},$$

$$\left\{ \sum_{n=2}^{\infty} \frac{1}{n} (\ln n)^{\gamma - p\alpha\gamma - 1} \left(\sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} (\ln n)^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B(\ln n)^{\gamma})^{\lambda}} a_{m} \right)^{p} \right\}^{\frac{1}{p}} \\
< \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p, w_{1}},$$

where $w_1(m) = m^{p-1}(\ln m)^{(p-1)(1-\lambda\beta)+p\alpha\beta}$ and $w_2(n) = n^{q-1}(\ln n)^{(q-1)(1-\lambda\gamma)+q\alpha\gamma}$.

(II) Let $\lambda_1 = \frac{p+\lambda-2}{p}$, $\lambda_2 = \frac{q+\lambda-2}{q}$, $\lambda > \max\{2-p,2-q\}$, $0 < \beta < \frac{p}{p+\lambda-2-p\alpha}$, $0 < \gamma < \frac{q}{q+\lambda-2-q\alpha}$, $0 \le \alpha < \min\{\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\}$. Then one has the following equivalent inequalities:

$$\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} (\ln n)^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B(\ln n)^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_{1}} \|b\|_{q,w_{2}}, \\
\left\{ \sum_{n=2}^{\infty} \frac{1}{n} (\ln n)^{\gamma(p+\lambda-2)-p\alpha\gamma-1} \left(\sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} (\ln n)^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B(\ln n)^{\gamma})^{\lambda}} a_{m} \right)^{p} \right\}^{\frac{1}{p}} \\
< \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \alpha^{\frac{1}{p}}} \|a\|_{p,w_{1}}, \\$$

where $w_1(m) = m^{p-1} (\ln m)^{(p-1)(1-\beta(q+\lambda-2))+p\alpha\beta}$ and $w_2(n) = n^{q-1} (\ln n)^{(q-1)(1-\gamma(p+\lambda-2))+q\alpha\gamma}$.

Case 3. For A, B > 0, let $\phi(x) = A(\ln x)^{\beta}$ and $\psi(x) = Bx^{\gamma}$ $(\beta, \gamma > 0)$, $m_0 = 2$, $n_0 = 1$. For $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\begin{split} &\sum_{n=1}^{\infty} \sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} n^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B n^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\lambda_{1}, \lambda_{2})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p, w_{1}} \|b\|_{q, w_{2}}, \\ &\left\{ \sum_{n=1}^{\infty} n^{p \gamma (\lambda_{1} - \alpha) - 1} \left(\sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} n^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B n^{\gamma})^{\lambda}} a_{m} \right)^{p} \right\}^{\frac{1}{p}} < \frac{B(\lambda_{1}, \lambda_{2})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p, w_{1}}, \end{split}$$

where $w_1(m) = m^{p-1} (\ln m)^{p(1-\lambda_2\beta + \alpha\beta)-1}$ and $w_2(n) = n^{q(1-\lambda_1\gamma + \alpha\gamma)-1}$.

(I) For $\lambda_1 = \frac{\lambda}{p}$ and $\lambda_2 = \frac{\lambda}{q}$ with $0 < \lambda_i < \alpha + \min\{\frac{1}{\beta}, \frac{1}{\gamma}\}$ and $0 \le \alpha < \lambda$, one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty} \sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} n^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + Bn^{\gamma})^{\lambda}} a_{m} b_{n} < \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_{1}} \|b\|_{q,w_{2}},$$

$$\left\{ \sum_{n=1}^{\infty} n^{\gamma(1-p\alpha)-1} \left(\sum_{n=1}^{\infty} \frac{((\ln m)^{\beta} n^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + Bn^{\gamma})^{\lambda}} a_{m} \right)^{p} \right\}^{\frac{1}{p}} < \frac{B(\frac{\lambda}{p}, \frac{\lambda}{q})}{A^{\lambda_{2}} B^{\lambda_{1}} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_{1}},$$

where $w_1(m) = m^{p-1} (\ln m)^{(p-1)(1-\lambda\beta)+p\alpha\beta}$ and $w_2(n) = n^{(q-1)(1-\lambda\gamma)+q\alpha\gamma}$.

(II) Let $\lambda_1 = \frac{p+\lambda-2}{p}$, $\lambda_2 = \frac{q+\lambda-2}{q}$, $\lambda > \max\{2-p,2-q\}$, $0 < \beta < \frac{p}{p+\lambda-2-p\alpha}$, $0 < \gamma < \frac{q}{q+\lambda-2-q\alpha}$, $0 \le \alpha < \min\{\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\}$. Then one has the following equivalent inequalities:

$$\sum_{n=1}^{\infty} \sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} n^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B n^{\gamma})^{\lambda}} a_m b_n < \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{A^{\lambda_2} B^{\lambda_1} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} ||a||_{p,w_1} ||b||_{q,w_2},$$

$$\left\{ \sum_{n=1}^{\infty} n^{\gamma(p+\lambda-2)-p\alpha\gamma-1} \left(\sum_{m=2}^{\infty} \frac{((\ln m)^{\beta} n^{\gamma})^{\alpha}}{(A(\ln m)^{\beta} + B n^{\gamma})^{\lambda}} a_m \right)^{p} \right\}^{\frac{1}{p}} < \frac{B(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q})}{A^{\lambda_2} B^{\lambda_1} \beta^{\frac{1}{q}} \gamma^{\frac{1}{p}}} \|a\|_{p,w_1},$$

where $w_1(m) = m^{p-1}(\ln m)^{(p-1)(1-\beta(q+\lambda-2))+p\alpha\beta}$ and $w_2(n) = n^{(q-1)(1-\gamma(p+\lambda-2))+q\alpha\gamma}$.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This research was supported by the Sookmyung Women's University Research Grants 2012.

Received: 10 July 2015 Accepted: 17 August 2015 Published online: 02 September 2015

References

- 1. Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, Cambridge (1952)
- Azar, LE: On some extensions of Hardy-Hilbert's inequality and applications. J. Inequal. Appl. 2008, Article ID 546829 (2008)
- 3. Debnath, L, Yang, B: Recent developments of Hilbert-type discrete and integral inequalities with applications. Int. J. Math. Stat. Sci. 2012. Article ID 871845 (2012)
- 4. Gao, M: A note on the Hardy-Hilbert inequality. J. Math. Anal. Appl. 204(1), 346-351 (1996)
- 5. Gao, M: On Hilbert's inequality and its applications. J. Math. Anal. Appl. 212(1), 316-323 (1997)
- 6. Krnić, M, Pečarić, JE: Extension of Hilbert's inequality. J. Math. Anal. Appl. 324(1), 150-160 (2006)
- 7. Mitrinović, DS, Pečarić, JE: On inequalities of Hilbert and Widder. Proc. Edinb. Math. Soc. 34(3), 411-414 (1991)
- 8. Pachpatte, BG: Inequalities similar to certain extensions of Hilbert's inequality. J. Math. Anal. Appl. **243**(2), 217-227 (2000)
- 9. Sulaiman, WT: New kinds of Hardy-Hilbert's integral inequalities. Appl. Math. Lett. 23(4), 361-365 (2010)
- 10. Yang, B: On Hilbert's integral inequality. J. Math. Anal. Appl. 220(2), 778-785 (1998)
- 11. Yang, B: On new generalizations of Hilbert's inequality. J. Math. Anal. Appl. 248(1), 29-40 (2000)
- 12. Yang, B: On a relation between Hilbert's inequality and a Hilbert-type inequality. Appl. Math. Lett. 21(5), 483-488 (2008)
- Yang, B, Debnath, L: Some inequalities involving π and an application to Hilbert's inequality. Appl. Math. Lett. 12(8), 101-105 (1999)
- 14. Yang, B: On the norm of a Hilbert's type linear operator and applications. J. Math. Anal. Appl. 325(1), 529-541 (2007)
- Jin, J, Debnath, L: On a Hilbert-type linear series operator and its applications. J. Math. Anal. Appl. 371(2), 691-704 (2010)
- Jichang, K, Debnath, L: On Hilbert type inequalities with non-conjugate parameters. Appl. Math. Lett. 22(5), 813-818 (2009)
- 17. Yang, B: On a Hilbert-type operator with a symmetric homogeneous kernel of –1-order and applications. J. Inequal. Appl. 2007, Article ID 47812 (2007)
- Yang, B: On the norm of a self-adjoint operator and a new bilinear integral inequality. Acta Math. Sin. Engl. Ser. 23(7), 1311-1316 (2007)
- Yang, B: On a Hilbert-type operator with a class of homogeneous kernels. J. Inequal. Appl. 2009, Article ID 572176 (2009)
- 20. Yang, B: A new Hilbert-type operator and applications. Publ. Math. (Debr.) 76(1-2), 147-156 (2010)
- Zhong, W: The Hilbert-type integral inequalities with a homogeneous kernel of –λ-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008)
- 22. He, L, Gao, X, Gao, M: On a new weighted Hilbert inequality. J. Inequal. Appl. 2008, Article ID 637397 (2008)
- 23. Yang, B, Debnath, L: On the extended Hardy-Hilbert's inequality. J. Math. Anal. Appl. 272(1), 187-199 (2002)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com