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Abstract
A fuzzy rough variable is defined as a rough variable on the universal set of fuzzy
variables, or a rough variable taking ‘fuzzy variable’ values. In order to further discuss
the mathematical properties of fuzzy rough variables, this paper extends some
inequalities to the context of fuzzy rough theory based on the chance measure and
the expected value operator, involving the Markov inequality, the Chebyshev
inequality, the Hölder inequality, the Minkowski inequality, and the Jensen inequality.
After that, linearity, monotonicity, and continuity of critical values of fuzzy rough
variables are also investigated.
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1 Introduction
Fuzzy set theory has been well developed and applied in a wide variety of real problems
since it was proposed in  by Zadeh []. Kaufmann [] first introduced fuzzy variable
as a fuzzy set of real numbers to describe fuzzy phenomena. By means of a mathematical
way, a fuzzy variable was defined as a function from a possibility space to the set of real
numbers by Liu []. Now, fuzzy set theory has been proved to be an excellent tool and
one of the most successful approaches to the issue of how to understand and manipulate
imperfect knowledge.

On the other hand, in order to deal with vague description of objects, rough set theory
was initialized by Pawlak [] in , which provides a new powerful mathematical ap-
proach to handling imperfect knowledge in the real world. A fundamental assumption in
this theory is that objects are perceived through, and thus can be represented by, available
information on their attributes, but such information may not be sufficient to character-
ize these objects exactly. One way is approximating a set by other sets. Thus a rough set
may be defined by a pair of crisp sets which give the lower and upper approximations of
the original set. Liu [] defined a rough variable to be a measurable function from a rough
space to the set of real numbers and gave the definition of the lower and upper approxi-
mations of the rough variable.

With the development of fuzzy set theory and rough set theory, it is generally accepted
that these two theories are related but distinct and complementary with each other. Thus
many researchers began to consider the combination of the two theories. For example, in
the real world, sometimes it is not easy to describe a fuzzy event by a precise fuzzy set, but
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the lower and upper approximations of the fuzzy set of a fuzzy event can be given, which
can be seen as a fuzzy rough variable. In , Dubois and Prade [] initially proposed
the concept of fuzzy rough sets by constructing a pair of upper and lower approximation
operators of fuzzy sets with respect to a fuzzy similarity relation by means of the t-norm
Min and its dual conorm Max. A fuzzy rough variable, very different from the fuzzy rough
set introduced by Dubois and Prade [], was defined by Liu [] as a measurable function
from a rough space to the set of fuzzy variables. In other words, a fuzzy rough variable is
a rough variable defined on the universal set of fuzzy variables, or a rough variable taking
‘fuzzy variable’ values. By now, the fuzzy rough theory has been studied in both theoretical
and practical perspectives, for instance, the generalized definition of a fuzzy rough set [,
], a new definition for the lower and upper approximations [, ], fuzzy rough attribute
(or feature) selection [, ], as well as its applications in data reduction and classification
[–], complex systems monitoring [], neural networks [], and so on.

It is well known that there are some inequalities in probability theory such as the Markov
inequality, the Chebyshev inequality, the Jensen inequality, the Hölder inequality, and the
Minkowski inequality, which make an important contribution to the development of prob-
ability theory in both theories and applications. On the basis of these inequalities, in pos-
sibility and rough theory, Liu [] proved that these analogous inequalities hold both for
fuzzy variables and rough variables. Moreover, Yang and Liu [] also proved these in-
equalities for fuzzy random variables. As an extension of these researches, it is necessary
to study these inequalities in the context of fuzzy rough theory. Therefore, in the present
paper, some inequalities are presented for fuzzy rough variables, and some properties of
critical values of fuzzy rough variables are also proved.

The rest of this paper is organized as follows. In Section , we first review some ba-
sic knowledge of fuzzy variables, rough variables, and fuzzy rough variables involving the
chance measure and the expected value operator. Some inequalities for fuzzy rough vari-
ables are presented in Section . Section  introduces definitions of the (γ , δ)-optimistic
value and the (γ , δ)-pessimistic value, and it discusses the linearity, monotonicity and con-
tinuity of the critical values to explore the mathematical properties of fuzzy rough vari-
ables.

2 Preliminaries
In this section, we recall some concepts and properties of fuzzy variables, rough variables,
and fuzzy rough variables, which will be applied in the following sections.

2.1 Fuzzy variable
In order to measure a fuzzy event, Zadeh [, ] proposed the concepts of possibility
measure and necessity measure in  and , respectively. Subsequently, possibility
theory was developed by many researchers such as Dubois and Prade [, ]. Liu and
Liu [] presented the concept of credibility measure in  on the basis of possibility
measure and necessity measure, and then a complete axiomatic foundation of credibility
theory was developed by Liu [].

Definition  (Liu []) Let � be a nonempty set, P(�) the power set of �, and Pos a pos-
sibility measure. The triplet (�,P(�), Pos) is called a possibility space. A fuzzy variable is
defined as a function from a possibility space (�,P(�), Pos) to the set of real numbers.
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Definition  (Liu and Liu []) Let (�,P(�), Pos) be a possibility space, and A a set in
P(�). Then the credibility measure of A is defined by

Cr{A} =


(
Pos{A} + Nec{A}), ()

where Pos and Nec represent the possibility measure [] and the necessity measure [],
respectively.

Example  Let us consider a trapezoidal fuzzy variable ξ = (r, r, r, r). Then we have

Pos{ξ < } =

⎧
⎪⎨

⎪⎩

, if r ≤ ,
r

r–r
, if r ≤  ≤ r,

, otherwise,
()

Nec{ξ < } =

⎧
⎪⎨

⎪⎩

, if r ≤ ,
r

r–r
, if r ≤  ≤ r,

, otherwise,
()

Cr{ξ < } =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, if r ≤ ,
r–r

(r–r) , if r ≤  ≤ r,

 , if r ≤  ≤ r,

r
(r–r) , if r ≤  ≤ r,
, otherwise.

()

Definition  (Liu and Gao []) The fuzzy variables ξ, ξ, . . . , ξn are said to be indepen-
dent if

Cr{ξi ∈ Bi, i = , , . . . , n} = min
≤i≤n

Cr{ξi ∈ Bi} ()

for any Borel sets B, B, . . . , Bn of real numbers.

Theorem  (Liu and Gao []) The fuzzy variables ξ, ξ, . . . , ξn are independent if and
only if

Cr

{ n⋃

i=

{ξi ∈ Bi}
}

= max
≤i≤n

Cr{ξi ∈ Bi} ()

for any Borel sets B, B, . . . , Bn of real numbers.

Definition  (Liu and Liu []) Let ξ be a fuzzy variable. Then the expected value of ξ is
defined by

Ef [ξ ] =
∫ +∞


Cr{ξ ≥ r}dr –

∫ 

–∞
Cr{ξ ≤ r}dr ()

provided that at least one of the two integrals is finite, where Ef denotes the expected value
operator of fuzzy variables.
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Example  Let ξ be a fuzzy variable with a membership function

μ(x) =

{
, if x ∈ [a, b],
, otherwise.

()

Then the expected value of ξ is Ef [ξ ] = 
 (a + b).

Example  The expected value of a trapezoidal fuzzy variable ξ = (r, r, r, r) is

Ef [ξ ] =



(r + r + r + r). ()

Theorem  (Liu []) Let ξ and η be fuzzy variables with finite expected values. Then, for
any real numbers a and b, we have

Ef [aξ + bη] = aEf [ξ ] + bEf [η]. ()

2.2 Rough variable
Rough set theory, initialized by Pawlak [], has been proved to be an excellent mathe-
matical tool to deal with vague description of objects. In order to provide an axiomatic
theory to describe rough variables, Liu [] gave some definitions about rough set theory
as follows.

Definition  (Liu []) Let � be a nonempty set,A a σ -algebra of subset of �, 	 an element
in A, and π a set function satisfying the following four axioms,

Axiom . π{�} < +∞;
Axiom . π{	} > ;
Axiom . π{A} ≥  for any A ∈ A;
Axiom . for every countable sequence of mutually disjoint events {Ai}∞i=, we have

π

{ ∞⋃

i=

Ai

}

=
∞∑

i=

π{Ai}.

Then (�,�,A,π ) is called a rough space.

Definition  (Liu []) A rough variable is a measurable function ξ from the rough space
(�,	,A,π ) to the set of real numbers. That is, for every Borel set B of �, we have

{
λ ∈ � | ξ (λ) ∈ B

} ∈A. ()

The lower and upper approximations of the rough variable ξ are then defined as follows:

ξ =
{
ξ (λ) | λ ∈ 	

}
, ξ =

{
ξ (λ) | λ ∈ �

}
. ()

Definition  (Liu []) Let (�,	,A,π ) be a rough space. Then the upper trust of an event
A is defined by

Tr{A} =
π{A}
π{�} ; ()
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the lower trust of the event A is defined by

Tr{A} =
π{A ∩ 	}

π{	} ; ()

and the trust of the event A is defined by

Tr{A} =


(
Tr{A} + Tr{A}). ()

Example  Let ξ = ([a, b], [c, d]) be a rough variable with c ≤ a < b ≤ d representing the
identity function ξ (λ) = λ from the rough space (�,	,A,π ) to the set of real numbers,
where � = {c ≤ λ ≤ d}, 	 = {a ≤ λ ≤ b}, and π is the Lebesgue measure, which is a stan-
dard method that gives the subsets of a Euclidean space a length, area, or volume. In this
case, π measures the length of a set. For example, if a set A = [a, b], then π{A} = b – a.
According to Definitions  and , we can obtain the upper trust, the lower trust, and trust
of the event {ξ ≤ } as follows:

Tr{ξ ≤ } =

⎧
⎪⎨

⎪⎩

, if c ≥ ,
c

c–d , if c ≤  ≤ d,
, if d ≤ ,

()

Tr{ξ ≤ } =

⎧
⎪⎨

⎪⎩

, if a ≥ ,
a

a–b , if a ≤  ≤ b,
, if b ≤ ,

()

Tr{ξ ≤ } =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, if c ≥ ,
c

(c–d) , if c ≤  ≤ a,
ac–ad–bc
(b–a)(d–c) , if a ≤  ≤ b,
d–c

(d–c) , if b ≤  ≤ d,
, if d ≤ .

()

When [a, b] = [c, d], we have � = 	, and Tr{ξ ≤ } = Tr{ξ ≤ }. It follows that

Tr{ξ ≤ } =

⎧
⎪⎨

⎪⎩

, if a ≥ ,
a

a–b , if a ≤  ≤ b,
, if b ≤ .

()

Definition  (Liu []) Let ξ be a rough variable. Then the expected value of ξ is defined
by

Er[ξ ] =
∫ +∞


Tr{ξ ≥ r}dr –

∫ 

–∞
Tr{ξ ≤ r}dr ()

provided that at least one of the two integrals is finite, where Er denotes the expected value
operator of rough variables.

Example  Let ξ = ([a, b], [c, d]) be a rough variable with c ≤ a < b ≤ d. We then have

Er[ξ ] =



(a + b + c + d). ()
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Especially, when [a, b] = [c, d], the rough variable ξ degenerates to an interval number
[a, b]. Then we have

Er[ξ ] =



(a + b). ()

Theorem  (Liu []) Let ξ and η be rough variables with finite expected values. Then, for
any real numbers a and b, we have

Er[aξ + bη] = aEr[ξ ] + bEr[η]. ()

2.3 Fuzzy rough variable
Fuzzy rough variables have been defined in several ways. In this paper, we adopt the defi-
nition introduced by Liu [] as follows.

Definition  (Liu []) A fuzzy rough variable is a function ξ from a rough space
(�,	,A,π ) to the set of fuzzy variables such that Pos{ξ (λ) ∈ B} is a measurable function
of λ for any Borel set B of �.

Example  Let ξ = (ρ,ρ + ,ρ + ) with ρ = ([, ], [, ]), where the triple (a, b, c) with
real numbers a ≤ b ≤ c denotes a triangular fuzzy variable and ρ is a rough variable, then
ξ is a fuzzy rough variable.

Theorem  (Liu []) Assume that ξ is a fuzzy rough variable. Then, for any Borel set B
of �, we have

(a) the possibility Pos{ξ (λ) ∈ B} is a rough variable;
(b) the necessity Nec{ξ (λ) ∈ B} is a rough variable;
(c) the credibility Cr{ξ (λ) ∈ B} is a rough variable.

Definition  (Liu []) Let ξ be a fuzzy rough variable. Then its expected value is defined
by

E[ξ ] =
∫ ∞


Tr

{
λ ∈ � | Ef[ξ (λ)

] ≥ r
}

dr –
∫ 

–∞
Tr

{
λ ∈ � | Ef[ξ (λ)

] ≤ r
}

dr ()

provided that at least one of the two integrals is finite, where Ef is the expected value
operator of fuzzy variables.

Theorem  (Liu []) Assume that ξ and η are fuzzy rough variables with finite expected
values. If ξ (λ) and η(λ) are independent fuzzy variables for each λ, then, for any real num-
bers a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η]. ()

Definition  (Liu []) Let ξ be a fuzzy rough variable with finite expected value E[ξ ]. The
variance of ξ is defined as V [ξ ] = E[(ξ – E[ξ ])]. Then the square root of V [ξ ] is called the
standard deviation of ξ .



Zhao et al. Journal of Inequalities and Applications  (2015) 2015:262 Page 7 of 14

Definition  (Liu []) Let ξ be a fuzzy rough variable, and B a Borel set of �. Then the
chance of a fuzzy rough event ξ ∈ B is a function from (, ] to [, ], defined as

Ch{ξ ∈ B}(α) = sup
{
β | Tr

{
λ ∈ � | Cr

{
ξ (λ) ∈ B

} ≥ β
} ≥ α

}
, ()

which can also be written as follows:

Ch{ξ ∈ B}(α) = sup
Tr{A}≥α

inf
λ∈A

Cr
{
ξ (λ) ∈ B

}
. ()

Definition  (Liu []) Let ξ be a fuzzy rough variable, and B a Borel set of �. For any
real number α ∈ (, ], the α-chance of a fuzzy rough event ξ ∈ B is defined as the value of
chance at α, i.e., Ch{ξ ∈ B}(α), where Ch denotes the chance measure.

3 Inequalities of fuzzy rough variables
Some inequalities, including the Markov inequality, the Chebyshev inequality, the Hölder
inequality, the Minkowski inequality, and the Jensen inequality, analogous to those in
probability theory, have been proved to hold both for fuzzy variables and rough variables
by Liu []. In this section, these inequalities are proved for fuzzy rough variables.

Theorem  Let ξ be a fuzzy rough variable, and f a nonnegative measurable function. If
f is even and increasing on [,∞), then, for any given number t >  and α ∈ (, ], we have

Ch
{|ξ | ≥ t

}
(α) ≤ E[f (ξ )]

αf (t)
. ()

Proof For a fuzzy variable τ , the following inequality has been proved by Liu [].

Cr
{|τ | ≥ t

} ≤ Ef [f (τ )]
f (t)

, ∀t > ,

on condition that f is a nonnegative function and it is even and increasing on [,∞). Since
ξ (λ) is a fuzzy variable, for any λ ∈ �, it follows that

Cr
{∣∣ξ (λ)

∣∣ ≥ t
} ≤ Ef [f (ξ (λ))]

f (t)

for each λ. Especially, for any set A with Tr{A} ≥ α, we have

inf
λ∗∈A

Cr
{∣∣ξ

(
λ∗)∣∣ ≥ t

} ≤ Ef [f (ξ (λ))]
f (t)

, ∀λ ∈ A.

It follows from the nonnegativity of f that

E[f (ξ )]
f (t)

=


f (t)

∫ +∞


Tr

{
λ ∈ � | Ef[f

(
ξ (λ)

)] ≥ r
}

dr

≥ 
f (t)

∫ +∞


Tr

{
λ ∈ A | Ef[f

(
ξ (λ)

)] ≥ r
}

dr

≥
∫ +∞


Tr

{
λ ∈ A | inf

λ∗∈A
Cr

{∣∣ξ
(
λ∗)∣∣ ≥ t

} ≥ r
}

dr
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= inf
λ∗∈A

Cr
{∣∣ξ

(
λ∗)∣∣ ≥ t

} · Tr{A}

≥ inf
λ∗∈A

Cr
{∣∣ξ

(
λ∗)∣∣ ≥ t

} · α.

Therefore, we have

inf
λ∗∈A

Cr
{∣∣ξ

(
λ∗)∣∣ ≥ t

} ≤ E[f (ξ )]
αf (t)

.

It follows from the arbitrariness of A that

sup
Tr{A}≥α

inf
λ∗∈A

Cr
{∣∣ξ

(
λ∗)∣∣ ≥ t

} ≤ E[f (ξ )]
αf (t)

.

That is,

Ch
{|ξ | ≥ t

}
(α) ≤ E[f (ξ )]

αf (t)
.

The proof is completed. �

On the basis of the inequality presented in Theorem , the well-known Markov inequal-
ity and the Chebyshev inequality in probability theory are proved in the context of fuzzy
rough theory as follows, which can be seen as special cases of Theorem .

Theorem  (Markov inequality) Let ξ be a fuzzy rough variable. Then, for any given num-
bers t > , p > , and α ∈ (, ], we have

Ch
{|ξ | ≥ t

}
(α) ≤ E[|ξ |p]

αtp . ()

Proof It is a special case of Theorem  when f (x) = |x|p. �

Theorem  (Chebyshev inequality) Let ξ be a fuzzy rough variable whose variance V [ξ ]
exists. Then, for any given numbers t >  and α ∈ (, ], we have

Ch
{∣∣ξ – E[ξ ]

∣∣ ≥ t
}

(α) ≤ V [ξ ]
αt . ()

Proof It is a special case of Theorem  when the fuzzy rough variable ξ is replaced with
ξ – E[ξ ] and f (x) = x. �

The Markov inequality gives an upper bound for the α-chance that the absolute value
of a fuzzy rough variable is greater than or equal to some positive constant, whereas the
Chebyshev inequality describes to what extent the values taken by a fuzzy rough variable
deviate from its expected value. Both of them state important properties of a fuzzy rough
variable.

For instance, the following conclusion can be deduced from the Chebyshev inequality
immediately, which implies that the α-chance that the values taken by an arbitrary fuzzy
rough variable with finite expected value exceed k (k > ) standard deviations away from
its mean (i.e., expected value) is no more than 

αk .
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Example  Let ξ be a fuzzy rough variable with finite expected value e and standard de-
viation σ . It follows from Theorem  that

Ch
{|ξ – e| ≥ kσ

}
(α) ≤ V [ξ ]

α(kσ ) =


αk , ∀α ∈ (, ], k > .

Theorem  (Hölder inequality) Let p and q be two positive real numbers with /p+/q = ,
ξ and η two fuzzy rough variables with E[|ξ |p] < ∞ and E[|η|q] < ∞. If the fuzzy variables
ξ (λ) and η(λ) are independent for each λ ∈ �, then we have

E
[|ξη|] ≤ p

√
E
[|ξ |p] q

√
E
[|η|q]. ()

Proof The inequality holds trivially if at least one of ξ and η is zero a.s. Now we assume
E[|ξ |p] >  and E[|η|q] > . It is easy to prove that the function f (x, y) = p√x q√y is a concave
function on D = {(x, y) | x ≥ , y ≥ }. Thus, for any point (x, y) with x >  and y > ,
there exist two real numbers a and b such that

f (x, y) – f (x, y) ≤ a(x – x) + b(y – y), ∀(x, y) ∈ D.

Letting x = |ξ |p, y = |η|q, x = E[|ξ |p], and y = E[|η|q], we have

f
(|ξ |p, |η|q) – f

(
E
[|ξ |p], E

[|η|q]) ≤ a
(|ξ |p – E

[|ξ |p]) + b
(|η|q – E

[|η|q]).

Taking the expected values on both sides, we obtain

E
[
f
(|ξ |p, |η|q)] ≤ f

(
E
[|ξ |p], E

[|η|q]).

Hence the inequality () holds. �

As a special case of the Hölder inequality with p = q = , the Cauchy inequality can be
obtained as follows, which is widely used for dealing with some mathematical problems.

Example  (Cauchy inequality) Let ξ and η be two fuzzy rough variables with E[ξ ] < ∞
and E[η] < ∞. If the fuzzy variables ξ (λ) and η(λ) are independent for each λ ∈ �, then
it follows from Theorem  that

E
[|ξη|] ≤

√
E
[
ξ 

] · E
[
η

]
.

Theorem  (Minkowski inequality) Let p be a real number with  ≤ p < ∞, ξ , and η two
fuzzy rough variables with E[|ξ |p] < ∞ and E[|η|p] < ∞. If the fuzzy variables ξ (λ) and η(λ)
are independent for each λ ∈ �, then we have

p
√

E
[|ξ + η|p] ≤ p

√
E
[|ξ |p] + p

√
E
[|η|p]. ()

Proof The inequality holds trivially if at least one of ξ and η is zero a.s. Now we assume
E[|ξ |p] >  and E[|η|p] > . It is easy to prove that the function f (x, y) = ( p√x + p√y)p is a
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concave function on D = {(x, y) | x ≥ , y ≥ }. Thus, for any point (x, y) with x >  and
y > , there exist two real numbers a and b such that

f (x, y) – f (x, y) ≤ a(x – x) + b(y – y), ∀(x, y) ∈ D.

Letting x = |ξ |p, y = |η|p, x = E[|ξ |p], and y = E[|η|p], we have

f
(|ξ |p, |η|p) – f

(
E
[|ξ |p], E

[|η|p]) ≤ a
(|ξ |p – E

[|ξ |p]) + b
(|η|p – E

[|η|p]).

Taking the expected values on both sides, we obtain

E
[
f
(|ξ |p, |η|p)] ≤ f

(
E
[|ξ |p], E

[|η|p]).

Hence the inequality () holds. �

Theorem  (Jensen inequality) Let ξ be a fuzzy rough variable, and f a convex function.
If E[ξ ] and E[f (ξ )] are finite, then

f
(
E[ξ ]

) ≤ E
[
f (ξ )

]
. ()

Especially, when f (x) = |x|p and p ≥ , we have |E[ξ ]|p ≤ E[|ξ |p].

Proof Since f is a convex function, for each y, there exists a number k such that f (x)– f (y) ≥
k · (x – y). Replacing x with ξ and y with E[ξ ], we obtain

f (ξ ) – f
(
E[ξ ]

) ≥ k · (ξ – E[ξ ]
)
.

Taking the expected values on both sides, we have

E
[
f (ξ )

]
– f

(
E[ξ ]

) ≥ k · (E[ξ ] – E[ξ ]
)

= .

Hence the inequality () holds. �

The Jensen inequality gives a lower bound for the expected value of a convex function
of a fuzzy rough variable. On the basis of the Jensen inequality, some other inequalities
with regard to convex functions can be proved simply and directly. For instance, from the
Jensen inequality as well as the Cauchy inequality and the Minkowski inequality, some
important inequalities can be further deduced as follows.

Example  Let ξ and η be two fuzzy rough variables with E[ξ ] < ∞ and E[η] < ∞. If
the fuzzy variables ξ (λ) and η(λ) are independent for each λ ∈ �, then it follows from
Example  and Theorem  that

√
E
[
ξ 

] · E
[
η

] ≥ E
[|ξη|] ≥ ∣∣E[ξη]

∣∣,

and it follows from Theorem  and Theorem  that
√

E
[
ξ 

]
+

√
E
[
η

] ≥
√

E
[
(ξ + η)

] ≥ ∣∣E[ξ + η]
∣∣.
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4 Critical values of fuzzy rough variable
In this section, we first recall the concepts of the (γ , δ)-optimistic value and the (γ , δ)-
pessimistic value of a fuzzy rough variable defined by Liu []. Then the linearity, mono-
tonicity, and continuity of these critical values are discussed. It is shown that these math-
ematical properties, which have been discussed for fuzzy variables and rough variables by
Liu [] as well as for fuzzy random variables by Yang and Liu [], are also valid for fuzzy
rough variables in a similar way.

Definition  (Liu []) Let ξ be a fuzzy rough variable, and γ , δ ∈ (, ]. Then

ξsup(γ , δ) = sup
{

r | Ch{ξ ≥ r}(γ ) ≥ δ
}

()

is called the (γ , δ)-optimistic value of ξ , and

ξinf(γ , δ) = inf
{

r | Ch{ξ ≤ r}(γ ) ≥ δ
}

()

is called the (γ , δ)-pessimistic value of ξ .

Theorem  (Liu []) Let ξ be a fuzzy rough variable. Assume that ξsup(γ , δ) is the (γ , δ)-
optimistic value and ξinf(γ , δ) is the (γ , δ)-pessimistic value of ξ . If δ > ., then we have

Ch
{
ξ ≤ ξinf(γ , δ)

}
(γ ) ≥ δ, Ch

{
ξ ≥ ξsup(γ , δ)

}
(γ ) ≥ δ. ()

Theorem  (Linearity) Let ξsup(γ , δ) and ξinf(γ , δ) be the (γ , δ)-optimistic and (γ , δ)-
pessimistic values of a fuzzy rough variable ξ , respectively. Then we have

(a) if c ≥ , then (cξ )sup(γ , δ) = cξsup(γ , δ) and (cξ )inf(γ , δ) = cξinf(γ , δ);
(b) if c < , then (cξ )sup(γ , δ) = cξinf(γ , δ) and (cξ )inf(γ , δ) = cξsup(γ , δ).

Proof (a) If c = , then the part (a) is obvious. In the case of c > , we have

(cξ )sup(γ , δ) = sup
{

r | Ch{cξ ≥ r}(γ ) ≥ δ
}

= c sup
{

r/c | Ch{ξ ≥ r/c}(γ ) ≥ δ
}

= cξsup(γ , δ).

In a similar way we may prove (cξ )inf(γ , δ) = cξinf(γ , δ). In order to prove the part (b), it
suffices to prove that (–ξ )sup(γ , δ) = –ξinf(γ , δ) and (–ξ )inf(γ , δ) = –ξsup(γ , δ). In fact, we
have

(–ξ )sup(γ , δ) = sup
{

r | Ch{–ξ ≥ r}(γ ) ≥ δ
}

= – inf
{

–r | Ch{ξ ≤ –r}(γ ) ≥ δ
}

= –ξinf(γ , δ).

Similarly, we may prove that (–ξ )inf(γ , δ) = –ξsup(γ , δ). �
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Theorem  (Monotonicity and continuity) Let ξsup(γ , δ) and ξinf(γ , δ) be the (γ , δ)-
optimistic and (γ , δ)-pessimistic values of a fuzzy rough variable ξ , respectively. Then we
have

(a) ξsup(γ , δ) is a decreasing and left-continuous function of γ for each δ;
(b) ξsup(γ , δ) is a decreasing and left-continuous function of δ for each γ ;
(c) ξinf(γ , δ) is an increasing and left-continuous function of γ for each δ;
(d) ξinf(γ , δ) is an increasing and left-continuous function of δ for each γ .

Proof (a) For each fixed δ, it is easy to prove that ξsup(γ , δ) is a decreasing function of γ .
Next, we prove the left-continuity of ξsup(γ , δ) with respect to γ . Let γi be an arbitrary
sequence of numbers in (, ] such that γi ↑ γ . Then ξsup(γi, δ) is a decreasing sequence. If
the limitation is equal to ξsup(γ , δ), then the left-continuity is proved. Otherwise, we have

lim
i→∞ ξsup(γi, δ) > ξsup(γ , δ).

Letting z∗ = (limi→∞ ξsup(γi, δ) + ξsup(γ , δ))/, we have

ξsup(γi, δ) > z∗ > ξsup(γ , δ), ∀i.

Then, for any given ε > , there exists Ai with Tr{Ai} ≥ γi such that

inf
λ∈Ai

Cr
{
ξ (λ) ≥ z∗} ≥ δ – ε, ∀i.

Define A∗ =
⋃∞

i= Ai. It is clear that Tr{A∗} ≥ Tr{Ai} ≥ γi. Letting i → ∞, we get Tr{A∗} ≥ γ .
Thus

Ch
{
ξ ≥ z∗}(γ ) = sup

Tr{A∗}≥γ

inf
λ∈A∗ Cr

{
ξ (λ) ≥ z∗} ≥ δ – ε.

Letting ε → , we obtain Ch{ξ ≥ z∗}(γ ) ≥ δ. Hence z∗ ≤ ξsup(γ , δ). A contradiction proves
the left-continuity of ξsup(γ , δ) with respect to γ .

(b) For each fixed γ , it is easy to prove that ξsup(γ , δ) is a decreasing function of δ. Next,
we prove the left-continuity of ξsup(γ , δ) with respect to δ. Let δi be an arbitrary sequence of
numbers in (, ] such that δi ↑ δ. Then ξsup(γ , δi) is a decreasing sequence. If the limitation
is equal to ξsup(γ , δ), then the left-continuity is proved. Otherwise, we have

lim
i→∞ ξsup(γ , δi) > ξsup(γ , δ).

Letting z∗ = (limi→∞ ξsup(γi, δ) + ξsup(γ , δ))/, we have

ξsup(γ , δi) > z∗ > ξsup(γ , δ), ∀i.

It follows from the definition of ξsup(γ , δi) that

Ch
{
ξ ≥ z∗}(γ ) ≥ δi, ∀i.
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Then, letting i → ∞, we obtain

Ch
{
ξ ≥ z∗}(γ ) ≥ δ.

Hence z∗ ≤ ξsup(γ , δ). A contradiction proves the left-continuity of ξsup(γ , δ) with respect
to δ. The parts (c) and (d) may be proved similarly. �

5 Conclusions
Based on previous study on inequalities and critical values in fuzzy set theory and rough
set theory, this paper made a further study on fuzzy rough theory, and enriched the re-
search area of this theory in the following two parts: (i) some inequalities in fuzzy rough
theory were proved including the Markov inequality, the Chebyshev inequality, the Hölder
inequality, the Minkowski inequality and the Jensen inequality, which are analogous to
those of the fuzzy case and rough case; (ii) we explored the linearity, monotonicity and
continuity of critical values of the fuzzy rough variable.

This paper discussed these inequalities as well as properties of the critical values in a
theoretical way. However, the theorems and conclusions presented in this paper would
also make an important contribution to practical applications of the fuzzy rough theory.
Taking a decision system with fuzzy rough coefficients (e.g. [, ]) for instance, in or-
der to get optimal solutions to a problem (modeled by a mathematical model with fuzzy
rough coefficients), the objective functions as well as some constraints involving fuzzy
rough variables should be analyzed. It is clear that the analyses of these functions and the
development of a solving algorithm for the fuzzy rough model may benefit greatly from
the inequalities and properties of the critical values presented in this paper.
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