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1 Introduction

In 1938, Marcinkiewicz [1] introduced the integral on one-dimensional Euclidean space
R, which is today called the Marcinkiewicz integral, and conjectured that it is bounded
on L#([0,2n]), 1 < p < 00. Zygmund in [2] proved the Marcinkiewicz conjecture. In 1958,
Stein [3] generalized the above Marcinkiewicz integral to the higher-dimensional case. Let
2 be homogeneous of degree zero in R”, n > 2, integrable and have mean value zero on

the unit sphere S"~L. The higher-dimensional Marcinkiewicz integral is then defined by

Ma(f)(w) = { [ 22w

x—y|<t |x —)’l"’l
Stein [3] proved that if Q € Lip,(S"!) for some « € (0,1], then Mg, is bounded on L?(R")
for p € (1,2] and also bounded from L}(R") to LV*°(R"). Since then, many papers focused

2 dt

>
t_3 , x e R".

on the boundedness of this operator on various function spaces. We refer the reader to
[4-12] for its developments and applications.

The main purpose of this paper is to establish the bound of the commutator generated by
the Marcinkiewicz integral and the RBMO(u) function on the non-homogeneous metric
measure spaces.

During the past 10 to 15 years, considerable attention has been paid to the study of the
classical theory of harmonic analysis on Euclidean spaces with non-doubling measures
only satisfying the polynomial growth condition (see [13-21]). To be precise, let u be a
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positive Radon measure on R? with satisfies the polynomial growth condition that, for all
xeR%andr>0,

,u(B(x, r)) <cor”, (1.1)

where ¢ is a positive constants and 0 < n < d, and B(x, r) is the open ball centered at x and
having radius r. The analysis associated with such non-doubling measure u has proved to
play a striking role in solving the long-standing open Painlevé’s problem and Vitushkin’s
conjecture by Tolsa [19]. The non-doubling measure ;& may not satisfy the well-known
doubling condition, which is a key assumption in harmonic analysis on spaces of homo-
geneous type in the sense of Coifman and Weiss [22, 23]. To unify both spaces of ho-
mogeneous type and the metric spaces endowed with measures satisfying the polynomial
growth condition, Hyt6nen [24] introduced a new class of metric measure spaces satisfy-
ing both the so-called geometrically doubling and the upper doubling condition, which are
called non-homogeneous metric measure spaces (see Definition 1.3 below). Many clas-
sical results have been proved still valid if the underlying spaces are non-homogeneous
metric measure spaces (see [25-32]). From now on, we always assume that (X, d, i) is a
non-homogeneous metric measure spaces in the sense of Hyténen [24]. In this setting,
Hytonen [24] introduced the space RBMO(), and Hyténen and Martikainen [27] estab-
lished a version of the Tb theorem. About Marcinkiewicz integral, Lin and Yang [31] have
proved that the L?(u)-boundedness with p € (1, 00) is equivalent to either of its bounded-
ness from L!(p) into LY*°(u) or from the atomic Hardy space H'(u) (see [28]) to L (u).
They also showed that if the Marcinkiewicz integral is bounded from H' (i) to L!(u), then
it is bounded from L*°(u) to RBLO(u) (see [33]), which is a proper subset of RBMO(u).
These results essentially improve the existing results in [34].

Now we recall some necessary notions and notation.

The following notion of the geometrically doubling is well known in analysis on met-
ric spaces, which was originally introduced by Coifman and Weiss in [22, 23] and is also
known as metrically doubling.

Definition 1.1 A metric space (X,d) is said to be geometrically doubling if there exists
some Ny € N such that, for all balls B(x,r) C X, there exists a finite ball covering {B(x;, 5)};
of B(x,r) such that the cardinality of this covering is at most Nj.

Remark 1.2 Let (X, d) be a metric space. In [24], Hyténen showed that the following
statements are mutually equivalent:

(1) (X,d) is geometrically doubling.

(2) Forany e € (0,1) and any ball B(x,r) C X, there exists a finite ball covering
{B(x;, er)}; of B(x, r) such that the cardinality of this covering is at most Nye™",
where 1 = log, Nj.

(3) Forany ¢ € (0,1) and any ball B(x,r) C X contains at most Noe™ centers of disjoint
balls {B(x;, er)};.

(4) There exists M € N such that any ball B(x,r) C X contains at most M centers {x;};
of disjoint balls {B(x;, r/4)}M,.

Definition 1.3 A metric measure space (X,d, u) is said to be upper doubling if p is a
Borel measure on X and there exist a dominating function A : X x (0,00) — (0,00) and a
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positive constant ¢, such that, for each x € X', r — A(x,r) is non-decreasing and
,LL(B(x, r)) <A, r) <cAlxr/2), forallxe X,r>0. 1.2)

It was proved in [28] that there exists a dominating function A related to A satisfying
the property that there exists a positive constant ¢; such that A<, ¢; < ¢, and, for all
xy€ X, r>0withd(x,y) <r, A7) < c;i(y, r). Based on this, in this paper, we always
assume that the dominating function A also satisfies it.

The following coefficients §(B, S) for all ball B and S were introduced in [24] as analogs

of Tolsa’s number Kp s in [18].

Definition 1.4 For all balls B C S, let

5(B,S) =1 +/ _dnw (1.3)
@

s-p) AMcp, d(x,cp))

where above and in that follows, for a ball B = B(cg, ) and p > 0, pB = B(cg, prg).

Remark 1.5 The following discrete version Kp s of (B, S) was first introduced by Bui and
Duong [25] in non-homogeneous metric measure spaces, which is more close to the quan-
tity Kps introduced by Tolsa [18] in the setting of non-doubling measures. For all balls
B C S, let K5 be defined by

Np,s

Kgs=1+ Z w6'B) (1.4)

CB, 6l7']3

where N s denote the smallest integer satisfying 6NBSyg > 1. Obviously §(B,S) < Kps. As
was pointed out by Bui and Duong [25], it is not true that §(B,S) ~ Kgs.

Definition 1.6 Letw, 8 € (0,00). Aball B C X is called («, B)-doubling if u(aB) < Bu(B).

It was proved in [24] that if a metric measure space (X,d, 1) is upper doubling and
logy o

a, B € (0,00) satistying B > c; =, then, for any ball B, there exists some j € NU {0}
such that o/B is (@, 8)-doubling. Moreover, let (X, d, ;1) be geometrically doubling, 8 >
with # = log, Ny and p a Borel measure on X which is finite on bounded sets. Hytonen
[24] also showed that for p-almost every x € X, there exist arbitrary small («, 8)-doubling
balls centered at x. Furthermore, the radii of these balls may be chosen to be of the form
a7/Bfor j € Nand any preassigned number r > 0. Throughout this paper, for any « € (1, 00)
and ball B, the smallest («, ,)-doubling ball of the form /B with j € N is denoted by B,

where
B = max{a®,a®} +30" +30".
In what follows, by a doubling ball we mean a (6, 8s)-doubling ball and B® is simply

denoted by B.
Now we recall the definition of RBMO(u) from [24].
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Definition 1.7 Let p € (1,00). A function f € L (1) is said to be in the space RBMO(u1)

loc
if there exist a positive constant ¢ and, for any ball B C X, a number fz such that

1
u(pB)

fB )~ fo| diae) <

and, for any two balls B C S,

Ifs —fs| < cdps.

The infimum of the positive constant c is defined to be the RBMO(u) norm of f and denote
by IIf lrBMm(u)-

In [24], it follows that the definition of RBMO(u) is independent of the choice of p €
1, 00).
The following equivalent characterization of RBMO(ut) was established in [28].

Lemma 1.8 Let p € (1,00) and f € Llloc(u). Then the following statements are equivalent:
(1) f € RBMO(u);
(2) there exist a positive constant ¢ and, for any ball B C X, such that

1
u(pB)

[ = myflanto) <c

B

and, for any doubling balls B C S,
lmp — ms| < cdps.

Moreover, let ||f ||« be the infimum of the positive constant c in (2). Then there exists a con-
stant ¢ such that W# < IIf lremo@) =< Cllf Il

Now we give the definition of Marcinkiewicz integral (see [31]).

Definition 1.9 Let K be alocally integrable function on (X x X)\ {(x,x) : x € X'}. Assume
that there exists a positive constant ¢ such that, for all x,y € X’ with x #y,

d(x,y)
and, forall y,y € X,
1
f [[K@x,9) - K(x,y)] + |[K@,x) - K(¥,)|] du(x) <c. (1.6)
d(xy)=2d(yy') d(x,y)

The Marcinkiewicz integral Mf associated to the above kernel K is defined by setting, for
allx e X,

M) = [ [

2477
t_3] . 1.7)

f K () du(y)
d(x,y)<t
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We show that the commutator M, associating with » € RBMO(u) and M, which is
defined by

My(f)x) = [b, M](f)(x) = bE)M(f)(x) - M(bf)(x), x€X. (1.8)

In [31], the authors have proven that the Marcinkiewicz integral M is bounded from
LP(u) to LP(u), 1 < p < 00. Our main result is as follows.

Theorem 1.10 Let K satisfy (1.5) and the following Hormander-type condition:

o0

‘ K(x,y) - K (x,y
’>0v285’)§r; l /;ir<d(x,y)§65+1r[‘ (x,y (x y )|

1
d(x,y)

+ |K(y, x) — K(y’,x) |] dulx) <c. 1.9)
If M is bounded on L*(u), then, for any b € RBMO(w), the commutator My, is bounded
on L () with the bound no more than c,||b||rRemo(.), where 1 < p < 0.

Remark 1.11 The Hérmander-type condition (1.9) is slightly stronger than (1.6).

The organization of this paper is as follows. In Section 2, we introduce the sharp maxi-
mal operator M*, associated with Kz s and prove Lemma 2.6. This technical lemma is of
independent interest. Section 3 is devoted to the proof of Theorem 1.10.

Throughout this paper, we denote ¢ a positive constant which is independent of the
main parameters involved, but may vary from line to line. For any ball B C X, we denote
its center and radius by cp and rp. mpf means that ﬁ Jof @) du(y).

2 The sharp maximal function
For a locally integrable function f, let M*f be the sharp maximal function of f, namely, for
xe X,

M*f(x) = sug , (2.1)

1 ) |mgf — msf|
5 / 10) = maf dt)+ sup P

S)E Ay Kps
where A, = {(B,S):x € BC S and B, S are doubling balls}.

For 0 < r < 00, let M*f(x) = [M#([flr)(x)]% for x € X. A simple computation proves that
if0<r<l,

Mf(x) < e:M"f (x), (2.2)

where ¢, > 0 is independent of f and «.
We recall some results in [32].

Lemma 2.1
(1) Letpe(1,00),r€(1,p) and p € [5,00). The following maximal operators defined,
respectively, by setting, for all f € L} (1) and x € X:

loc

1 , G
Mr,pf(x)=ilelg{m/3[f(y)l du(y)} :
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NF@= sip —— /B )| du),

x€B:doubling 4 (B)

and

M,f (x) = sup 1

d
xes (1(0B) -/l;lf(y)| no)

are bounded on L7 (1) and also bounded from L*(u) to LV™(u).
(2) Forallf € L! (w) it holds true that |f(x)| < Nf (x) for ju-almost every x € X.

loc

In Lemma 2.1, if 0 < r < 1, using the Hélder inequality, we have M, ,f(x) < M,f(x). So
Lemma 2.1 is right when 0 < r < 1.

We also need the following Calderén-Zygmund decomposition theorem obtained by

Bui and Duong [25]. Let y be a fixed positive constant satisfying that y > max{cilogz ° 63"}

where ¢; is as in Definition 1.3 and # as in Remark 1.2.

1
Lemma2.2 Letp € [1,00),f € L”(iu) and t € (0,00) (¢ > % when 1(X) < 00). Then

(1) there exists a family of finite overlapping balls {B;};, pairwise disjoint,
5 | Vol dut> . porat
— x)|[ dux)>— forallj,
n(62B;) Jp, Y !
1 / » t ,
_ @) [ dulx) < — foralljandall n € (2,00),
u(6°nB)) Jys, sl ¥ Jorally

and

lf(x)| <t for u-almosteveryx e X\ (U 6B');

J

(2) for each j, let S; be a (3 x 62,23 doubling ball of the family {(3 x 62)*Bj}ien,
and w;j = Zi%' Then there exists a family {¢;}; of functions such that, for each j,
k

supp(;) C Sj, ¢j has a constant sign on §j,

/ 0, dpu(x) = / Fay() dux),
X 6B, j

Z|g0,»(x)| <ot for u-almosteveryx € X,
j

where yy is some positive constant depending only on (X, 1), and there exists a
positive constant c, independent of f, t and j such that, when p = 1, it holds true that

Il om(S) < ¢ fX [ (x)oy )| da )

and, if p € (1,00), it holds true that

» 1/p 1y c )
{ /%|“’i(x)| d“(x)} [k == fX If )y ()| dpa(v).
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The following John-Nirenberg inequality was established by Hytonen in [24].

Lemma 2.3 let (X,d, ) be geometrically doubling and upper doubling. For every p > 1,
there is a constant c so that, for every f € RBMO(w) and every ball B,

w(x € B:|f(x) - fz] > t) <2u(pB)exp(~ct/|/f rBmo())>
where fg can be seen in definition of RBMO(u).

From Lemma 2.3, it is easy to prove that there are two positive c;, ¢, such that, for any
ball B and » € RBMO(u),

|b(x) mB(b)|>
pB)f <c1||b||RBMom du) = . (2.3)

Lemma 2.4 There is a constant c¢ such that, for any a > 0 and t;,t, > 0,
iy < c[t1 log(2 + at;) + al exp tz].

This lemma had been established in [34].
We also need some useful properties of Kp s, which were proved in [25, 32].

Lemma 2.5

(1) ForallballsBCRCS,Kpr <2Kpggs.

(2) For any p € [1,00), there exists a positive constant c,, depending only on p, such that,
for all balls BC S with rs < prg, Kgs <c,.

(3) There exists a positive constant c, such that, for all balls B, Ky 3 < c.

(4) There exists a positive constant c, depending on c;, such that, for all balls BC R C S,
I<B,S < I<B,R + CI(R,S.

(5) There exists a positive constant c, depending on c,, such that, for all balls BC R C S,
Krs <cKpgs.

Now we give and prove the main result about the sharp maximal function M,
Lemma 2.6 Let K satisfy (1.5) and the Hormander-type condition (1.9). We have s € (1, 00),

po € (1,00) and b € L>®°(u). If M is bounded on L*(11), then there is a positive constant c
such that, for all f € L*°(u) N LPO () and for all x € X,

M [My(F)]x) < c[lIblIrBMOG) M6 [MF)] () + 1BlIREMOG) I ll2%(0) |-

Proof Without loss of generality, we may assume ||b||rgmo(.) = 1. To prove Lemma 2.6, it

suffices to prove that
1
5 f MyF)O) — hs] dia(y) < cMog[ M) + I <G (2.4)
B
for all x € B and

\hg — hs| < c(Kp,s)*[Ms[ M) ) + If 12200 ] (2.5)
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for all balls B C S with x € B, where B is an arbitrary ball and S is a doubling ball,
hs = m[M((b~ mE(b))fXX\gB)]
and
s = ms M (b= msO) e, )]:
To prove (2.4), for a fixed ball B, x € B and f € L*(u), we write

FO) =fOX550) +F DX, 850) = 0) +0)

and

M) = (b0) ~m(5) M) 5) = M((b() ~m(B)fi) 0) = M((b () ~m5 (D)) ).
So we can write
— = / | My ) - b5 dpa()
MB) [166) =m0 M0ty
* m fB M((bG) - my(®)f) ) dr(y)

1
" u(6B) /BW((b(y) - my(D))fs) () — hs| din(y)

=A1 +A2 +A3.

By the Holder inequality and Corollary 2.3 in [32], we see that

A1</L(6B)S | 160 -myte |duw]/5,[/}3 (M(f))s(y)]l/s
< Mo [ M()] ().

To estimate A,, from the Holder inequality, the L2(11)-boundedness of M and Corol-
lary 2.3 in [32], it follows that

1/2

< O] o0 - s )|

1/2
2
= [m [160) g0 oy

< 6B (b0) = mgy AW 2, + 6B (my ) = mp®)i0) | 12,

1 N 1/2
= |V||Lw(u)[mf§3|b@)—m§jg(b)| du(y)]
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M(%B)T2

+ c”f”LOO(H-) [ M(6B)

= C”f||L°°(u)

where we use the fact that |ng(b) —mg(b)| < c(Kpp + K, 55+ Kp gB) <c
3 583 '

To obtain (2.4), we still need to estimate Asz. Set

[e'e) Zdt 1/2
Mﬂw):( /0 [ /d W)Stgd(mIK(%z)(b(z)—mg(w)ﬁ(z)!du(z)} t—g) :
0 b d zdt 1/2
My (x,y) = (/O [L(x’z)ggdw)\lqy,z)( (2) - mp(b))o ()| M(z] _3) )

and

Page 9 of 18

- 2 1/2
Ma(x, ) = ( / [ / (K 2) - K2 ))(b(z)—mrg(b))fz(z)|dﬂ(z)} d—f) :
0 max{d(y,z),d(x,z)} !

For any x,y € X, we have (see also [31], p.134)

3
IM[(b - mzB)A]0) - M[(b - mpB)A] )] <Y Mix,).

i=1
Applying the Minkowski inequality and (1.9) we conclude that, for all x,y € B,

1/2
KOs 22 bte) - o) [ 2] o

(y,2)<t<d(x,2) 13

Mi(x,y) < /

d(y,z)<d(x,2)

1/2
s |b(z) — m3(b)|
= C/X\ss d(z,cp)? Mcp, d(z, CB))f (2)du(2)
<c 3 / rg-  |mgzy(b) — my(b)|
6

isp\6i-158 d(z,cp)V?  A(cp,d(z,cp))

f(2)dp(z)

i=1

- ry? Imgz(b) - b(2)|

+
l,zzl: /;iSB\GiISB d(z,c)V?  Alcp,d(z,cp))

f(2) du(z)
S j 1
(-2 L
= C;l6 A(cg, 6-157%) /6i53 lf(Z)|dM(z)

1
Z 2 G 615 /6 i53|m6?53(b)—b(z)|V(Z)|dﬂ(Z)

=1

o0
< cllf g Y 677
i=1

=< C”f”LC’C(;L);

’u(6i+153)
Alcp, 6i151p)

where we use the doubling condition of A, |mz,(b) — mp(b)| < ci and A(cp, d(x,cp)) «

A, d(x,cg)) «~ Alx,d(x,y)) forye Band x € X' \ kB (k > 1).
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Similarly, M (x,y) < c||fllzoo(u). Now for all x, y € B, by the Minkowski inequality we have

MS(xvy)
dt 1/2
= [ (K012~ K ) b0 - mg(b>)|[ / t—} )
x max{d(y,z),d(x,z)} <t
= C/ |(K(5,2) - K(%,2))/2(2) (b(2) — mp(b) )|d(y 2 du(z)
<l Z/ (K1) K, 2)) (6@) - .5, (0) | —— du(@)
£ 6/5B\6-158 o HE)\TE 658 d(y, z) e

+cllf llzoo g 2/153\61 . |(K(9,2) = K(x,2)) (m7, (b)) — m |d(y 2 du(z)

= M31 + M32.
In Lemma 2.4, we write a = 6'u(6"*'5B), t; = 7|K(y’;)(;§)(x’z)‘ ,and t, = 7‘bm_:£3‘ . From this we

have

> |K(y,2) — K(x,2)|
Man(x,9) < cllf i / KG2) = K2 oy o~ () due)
) = el “"; s 0D | o0

> |K(y,2) — K(x,2)| i
< o0 — " log|2+6'u(6'""5B
= Wl ; /61'53\6"-153[ d(y,z) 8t M( )

y |I((y,z)—1((x,z)|]+ 1 exp(|b(z)—m6753|)]du(z)
6'1( ) 2

d(y,z) u(6i*158
00 )
. |K(y,2) - K(x,2)| ( n(6"'5B) )
< c||f |l Lo l/ ——— " log( 2+ —— | du(z)
e (M); 6/5B\6i~15B d(y,z) £ A(cp,d(y,2))

+cnf||Loo,LZ /LSB\@ G 6”153) p( 5 )du(Z)

o0
. |K ’ Z) - I((x) Z) |
<l D0 [ Kp2) = K2l 3
= JeisB\6i1sB d

2
1 1 |b(2) — m gz
+¢||f |l oo T p— ex (7653)6[ (2)
e (M); 6! (1(6715B) Jeisp P %)

< cllfllzoequ)

where we use (2.3). For M3, we estimate

[o¢]

1
Maz = el Z e (b)‘/@w\@_lw'(““ ~Kw2)| 3,5 4@

oo
< cllf e / |(K(y,2) - K(x,2)
21: 6/5B\6/-15B )

< cllf ey

(YZ)
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Combining these estimates above, we get
e | M@0 =m0 0) - ] iy

1 1
Sem /B [B ;Mi(x,y)du(x)du(y)

< C”f”LOO(;L)'

So the estimate (2.4) is proved.
Now we prove (2.5). Consider two balls B C S with x € Band let N = Ngs + 1, where S is
a doubling ball. Write |z — hg| as

|hg — hs|
< [ms[M((6 — mp®))f xx\6v5) | = m5[M((b = m5(B))f X2 \6v5) ]|
+ [ms[M((b = ms®)f xanev8)] = ms[M((b = m5®)f xa\6v8) ]|
+ ’mB[M((b_ mE(b))fxeNB\gB)“ + |m5[M((b - mS(b))fX@VB\gs)]’

=Bl +32 +Bg +B4,.
As in the estimate for the A3, we have By < ¢||f|1o(,). To estimate By, for y € X, we get

By < |ms[M((b ~ms(B))f xa\ev5)] = ms[M((b ~ mp(B)f X\ev5) ]|

< cms|(ms(b) — mz(b)) M(f X x\6¥5))|
Kps+ K,

S BS T BB /M(fXX\éNB ) du(y)
u(S)

I<BS

1/s
< 28 (5 ( / Mo(f 3 6v8)0) du@)

< cKpsM;g [M (f)] :

For y € R, we have
By = |m5[M((b - mS(b))fX@VB\gs)]’

A2
S./X|K(y’2)||b(Z)_MS(b)|V(Z)X6NB\gS|</d(y'z)<tt_3) di(z)

|b(z) — ms(D)]
<c N Wv(z)xé’\’B\%S‘ du(z)

b(z) - b
< clif g /6 6@ = ms )l

Ng  Alcp, 6N7p)

1
< o 7w [ s = mes(®)] + o0 - | (2

1
= C|V||Lw(ﬂ)m /6$|b(2) - m&s| au(z) + cllf ll oo |W‘S(b)
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w(6NB)

~ mgs(b)| e 67

= cllf

where we have used |m5(b) — mg5(b)| < c(Kspes + Kgs65) < c.

In order to estimate Bs, for y € B, we get

|ms[M((b~ mﬁ(b))erNB\gs)]U)|
< |ms[ M( (b~ mz(5))f xon568) | 0) = mB[M((b ~ m5(B)f X5, 65) 0|

d 1/2
< [, Jkoalbe-melie)([ 5) e
6B\$B dyz)<t b

dt 1/2
+ féwg\w'K(y'z)Hb(Z) _mB(b)Hf(Z)’</,z<y,z)<t t—3> du(z)

b(z) — m3(b b(z) — m3(b
=dflo [ % @ seflin [ ZOEE dute
6°B
<l e _ ()] du(@)
(b
+c|[f llzoo Z /k+13\6k3 W(n)w du(z)
N-1
/L(6k+zB) 1
< cllf lzsoqu + cllf Nl ; 7ca 61rs) KE7D) 6k+13|b(2) —m o (b) dpu(2)

N-1 (6k+zB) 1

+C|lf||L°°(u)Z (cs, 651rg) 11(652B) Jora1p gty

b) — m3(b) ‘dpc(z

N-1 k+2
u(6"*“B)
<cllfllzeoquy + ellf oo E (g, 65115 (CKB,6/<+1B +1)
k=1

< Kz slf e
That is to say, B3 < cKZ g|f [l ()

Combining the estimates through B; to B, establishes (2.5), which completes the proof
of Lemma 2.6. O

3 Proof of Theorem 1.10

In this section, we prove Theorem 1.10. Let 0 < r < 1, we prove that, for any p € (1, 00),

b € L*°(u), and all bounded functions f with compact support,
1(fx € X MIM(N)](0) > 1}) < AP 1blRguog I 10 (31)

Once (3.1) is established, it follows from the Marcinkiewicz interpolation theorem that

||Mf[Mb(f)]||Lp( < cllbllremo(w) IIf 122w (3.2)
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This via Theorem 4.2 in [25] states that, for any p € (1,00), b € L*°(u), and all bounded

functions f with compact support and integral zero,

M1 ”U’(u) < cllbllremoq I 122 (0)- (3.3)

In [25], Theorem 6.4, the authors show the density in L”(i1) of bounded functions with
compact support and integral zero. Similar to [18], Lemma 3.3, using the truncation argu-
ment, a routine argument leads to (3.3) for all » e RBMO(w) and f € L? ().

Now we prove (3.1). Without loss of generality, we assume that p = 6 in Lemma 2.1 and
I1bllrBMO() = 1. For each fixed £ > 0 and bounded function f with compact support, apply-
ing the Calderén-Zygmund decomposition to |f|” at level £’ as Lemma 2.2, we decompose

fx) =g(x) + h(x), where

1

860 =F @) xx\U 65, ®) + D 0i), hx) = Y [wiw)f (&) — u(x)] = Y hilw).

It is obvious that ||g||zo0(,) < ct. Using Lemma 2.1(2) we have

p-1
L

Z‘Pi

= ‘Z il Do
1/p
<ct! Z(/lept(x) i du(x)) ()"

= CZ/ﬁB.Ilf(x)deu(x) <clfIE.

14
LP(u (1) LY (w)

That is to say, ||gllzrx) < cllf llzr()- Using (3.2) and Lemma 2.6 we have

n({x € X : M (M,(9)) (%) > 2ct})
< cu({x eX :MS,6(M(g))(x) > t})

= et | Mo (M@) [ = et 1 Wngs

where 1 <s < p.
Similar to [25], Section 4.1, we have, for any f,

MEf(x) < Mys(F) (%) + 3N, () (%) < cM,6(f) (%)
From this we write

w({x e X MM, @) > £})

< u({x € X:M,,G[M (Z(b-mggi(b))h,»)](x) > ct})

+ ,u({x €EX: M, [Z|b— m6~Bi(b)|./\/l(hi):|(x) > t/Z})

=D1 +D2.



Yonghui and Jiang Journal of Inequalities and Applications (2015) 2015:259 Page 14 of 18

According to the weak type 1-1 estimate for M,,, we have, for any A > 0,
au(fre X :Ms(@) > 1)) <csupdu({x e X :|glx)| > cs}).
8>ch

Taking 1 < p < p, it follows that

D, <t supé,u({x eX: M(Z(b— mg(b))hi>(x) > CS})

S>ct i
n
<ct |y (b - meg, (b))
; ()
121 n
<ct™?™ Z(b - m6~Bi(b))fu)i + ™ Z(b — mgg, (b))(pi
i LP1 (1) i LP1 ()

<Dy +Dyy.

For Dy, it follows that

1-p1/p

rilp /
Dy <ct™ Z[ /6 Ife Ipdu(x)] [ /6  [bt) = e ®) [y du(x)]
1% e 2p \1-p1/p
< ctmz[ /6 @) du(x)] n(6°By)

-1 13 14 pipt 3p \1-P1/P
<any [ ) dpc(x)[ | i) du(x)] u(6°B)
= Ct_p“f”ip(ﬂ)r

where we use Lemma 2.2(1). To estimate D5, by the fact Zi @; < ct, we have

b

Diy <c| Y (b - mgg(b))pit™
i LP1 ()

1/p1 1p p1
<c [Ztl|¢i||b—m6~&(b)|pl:| [Z|tl¢i|i|
i i LP1 ()
Up1|m1
<c [Zt‘llwllb—m@(b)\”]
F LP1(p)

< /R [0 @)|]6) - mag B due)

1/p

1/p ,
<ot Z( | Iqoi(x)lpdu(x)) ( | 1669 = mg du(x))

+crlz/R‘|¢i(x)Hmﬁi(b)—m6~Bi(b)|p1 A ()

1/p ,
<o Z( [ ymx)\”du(x)) W) st Y [ Joio)] o
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= Ct_pZ/ [f)|F dpu(x) + ct 12(/ |go,(x)|pdu(x)> (S

<t f 1B,
In order to estimate Dy, we write

piza’ Y [ 1609 =m0 M) )

X\6S;

ety /65 [6(6) = ma, (b)| M) dpa(x)
et /663, [6) = mig, (B) | M(eif ) x) s ()

+ct” Z / b(x) — mgg, (0)| M(wf)(x) dp(x)

S,\56B

= D21 + D22 + D23 + D24,.
For each i, we have

/ |b(x) — mgg, (b)| M (1) (x) dju(x)
X\6S;

d(x’csi)+r6si Zdt 1/2
5/ |b(x)—m6~&(b)||:/ / K(x,) —3} dp(x)
X\6S; 0 dey)<t 3
o 2 dt
+/ |b(x)—m6~Bl_(b)|[/ / K(x,y 31| du(x)
X\6S; d(x,csl.)+r65l, d(x,y)<t
= Dél + D%l'
Using
|m6k+165 (b) - mgg (%)| < c(Kep, 65, + Koos, + Ks, ghrigs, K gs, 6k+165) < ck,
we get
. d(xcgl)+r6g dt
Dy, 5/ |b(x — Mgg, (b)|f |K (%, y)h; ()’)|</ t_3> du(y) di(x)
X\6
A
<c b(x)—m~_(b)/ h;i(y) d du(y) du(x)
-/X\6Si| (0] X| l(y|d(x;Csi)l/z)»(x,d(x,Csi)) nb)dp
éi?
= c||h; f b(x) — mzz (b d du(x
) 2 g5 " =550 ey ey
A2

T6R;
< clibillg, Z/aﬂes,-\ass,-‘b(x) B mmt(b)’ d(x, cs)V2 0 (x, d(x, cs,)) )

+ cllhill g, Z|m@+165 (b) — mgg (b)]

Page 15 of 18
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1/2
6S,
x - dp(x)
[6’“65}\@65} d(xr CS[)I/Z)"(x’ d(x’ CSL'))

= el 30+ G
Cc
Lo 6’7‘65 N2 (cs;, 6/76s;)

< clhillpg

By the vanishing moment of %, it follows that
D3 < / |b(x) - m6~3i(b)| / | [I((x,y) - K(x, cRi)]hi(y)|
X\6S; X

00 dt 1/2
([ D) e
d(x,cgl.)+r65’. t

<c /X o) =z ) / [Ky) - Ko e )|

[[K(x,y) — K(x, cs,)|
h;
/ ) [Z/*16S,\6/6S, d(x, cs;)

X (|b(x) = mgjngs,| + Imgings, — maz ) du(x):| dp(y)

1
dx, cs)

< clhillpag

But

1/p , 1/p ,
||h,»||L1(M5c< /63‘[f(x)|pdu(x)> u(63i>“ﬁ+< f6$‘|¢(x)|pdu(x)> (65

< ct' ”f”ip(,,_)

50 Dyy < et P |If 15 < P If Ip 0
For D,,, it follows from the L”(11) boundedness of M that

Dy <ct™ 2/65_“7(96) — mgg, (b)| M (1) (x) dpu(x)
et Y|z (0) - meg ®)] [ Mo duts)

, 1y
<ot Z( /6 b - mg ) du(x)> [ M@

+ct” Z”M qol)”U, (6S;) uy

1/p /
<ectt Z(/ @i(x) du(x)) N(625l')1/p
i \YSi
<7y /6 N i) < et U

du(y) du(x)

Page 16 of 18
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Similar to Dy,, we have
, 1/p/
Dy3 < Ct_l Z(ﬁ ’b(x) - mg’&(b)‘p dﬂ(x)> ”M(wa)HLP(M)
i 568
<at™ Y S o

1
<! S ol [ 1) dn) ( [l du(x))

< ctP|fllzrqw)-

Next we estimate Do4. If suppf C B for some ball then, for any p >1 and x € X' \ pB, we

have

My <c/\1<xy»f(y|(/m)%) au)

ol
= c.[g Alx, d(x,9)) = )‘(CB,d(x,CB)) /Blf(Y)|d,u(y).

For any i we write S; = (3 x 62)kiB,. It follows that

b b
Dyy < leL M Lf(y wi(y)| dp(y) dpu(x)

si\ges; Mcs, d(x,cp,))

|b(x) — mgg, (b)|
<ot Z(/;B.lf(y” du(y)>/6 x—y(n;igi))du(x

sas; M, d

blx) — ez (b
+ct"IZ( /6 B‘[f(y)|du(y)> /S 1) = g O

i\g6Bi )"(CBV d(x; CBL'))

" 1b(x) = s, (b)] + e, (b) — mig (b))
= Xi:</63i Lf()/)| dﬂ()’)) /6 i\Si Mcp;, d(x,cB;)) A

et Bw>| )

~

b(x) — mgz, (D) + |mgz,(b) — mgg, (b)|
: : d
x Z/%B \6/6B; Mcp,, d(x,cp,)) wix)
u(6S;)
=< 12([ lf(y |d (y)) <1+ CB, i’s,))

ki1

+ctIZ( f6 N V(y)|du(y)>{ +
<t o) s (o)

= Cfp"f”lz,v(uy

_ME76B) }
B,.Si

0 )\(CB 6/t1 }"B
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Combining these estimates for the term Dy, Dyy, Dy3, and Doy yields the desired estimate
for D,. So we complete the proof of Theorem 1.10.
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