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Abstract
In this paper, we reformulate a nonlinear complementarity problem or a mixed
complementarity problem as a system of piecewise almost linear equations. The
problems arise, for example, from the obstacle problems with a nonlinear source term
or some contact problems. Based on the reformulated systems of the piecewise
almost linear equations, we propose a class of semi-iterative algorithms to find the
exact solution of the problems. We prove that the semi-iterative algorithms enjoy a
nice monotone convergence property in the sense that subsets of the indices
consisting of the indices, for which the corresponding components of the iterates
violate the constraints, become smaller and smaller. Then the algorithms converge
monotonically to the exact solutions of the problems in a finite number of steps.
Some numerical experiments are presented to show the effectiveness of the
proposed algorithms.
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1 Introduction
Let F : Rn → Rn be a given function. The nonlinear complementarity problem, denoted by
NCP(F ,φ), is to find an x ∈ Rn such that

x ≥ φ, F(x) ≥ , (x – φ)T F(x) = . (.)

In this paper, we focus on problem (.), in which the function F has the form of F(x) =
Ax + �(x), that is, we have the problem of finding an x ∈ Rn such that

x ≥ φ, Ax + �(x) ≥ , (x – φ)T[
Ax + �(x)

]
= , (.)

where A = (aij) ∈ Rn×n is a given matrix, φ = (φi) ∈ Rn is a given vector, and � : Rn → Rn is
a given diagonal differentiable mapping, that is, the ith component �i of �(x) is a function
of the ith variable xi only:

�i = �i(xi), i = , , . . . , n.
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We denote the above problem by ALCP(A,� ,φ) and call it an almost linear complemen-
tarity problem (see, e.g., []). Obviously, if � is a linear function, ALCP(A,� ,φ) reduces
to a linear complementarity problem.

ALCP(A,� ,φ) has many applications, especially in engineering. For instance, it can be
derived from the discrete simulations of Bratu obstacle problem [], which models the
nonlinear diffusion phenomena taking place in combustion and in semiconductors, and
of some free boundary problems with nonlinear source terms, which models the diffusion
problems involving Michaelis-Menten or second order irreversible reactions [, ].

In the literature, one classical approach used for solving (.) consists of the linearized
projected relaxation methods [, ]. They are known to be convergent and easy to imple-
ment. However, their convergence rates depend crucially on the choice of the relaxation
parameter and deteriorate heavily with mesh refinement. In order to improve the effi-
ciency, later multigrid methods were proposed (e.g. see [–]) and domain decomposition
methods (e.g. see [–]), in which the subproblems are generally linear complementarity
problems and then preconditioners, widely used in the linear systems, may not be applied
directly. Another efficient way to solve problem (.) is given by active set strategies (e.g.
see [–]). To solve the linear complementarity problem, the basic iteration of the active
set strategies consists of two steps. First, based on a certain active set method, the (mesh)
domain is decomposed into active and inactive parts. Then a reduced linear system asso-
ciated with the inactive set can be solved by using a fast linear system solver such as the
multigrid method or the preconditioned conjugate gradient method. For instance, in [,
], two approaches were introduced, respectively, for the elliptic and the parabolic case,
where the Lagrange multiplier strategy is used in order to express the problem as a higher
dimension standard equality problem. In particular, in [] such a strategy is combined
with a semi-iterative procedure based on a suitable successive update of the coincidence
set (that is, the area where the solution touches the obstacle), while in [] the solution of
the parabolic variational inequality is obtained as the limit of the solutions of a family of
appropriately regularized nonlinear parabolic equations. Alternately, inexact semismooth
Newton methods have been developed to solve problem (.) based on its semismooth re-
formulation [–]. These algorithms are attractive because they converge rapidly from
any sufficiently good initial iterate and the subproblems are also systems of equations.

In this paper, we will propose some semi-iterative algorithms for the numerical treat-
ment of an almost linear unilateral obstacle problem or mixed complementarity prob-
lem. The algorithms are obtained as applications of piecewise almost linear systems to
the problem which can be considered as an extension of piecewise linear systems to the
affine lower obstacle problem [–]. The algorithms do not require the use of Lagrange
multipliers and the involved subproblems in the algorithms are systems of almost linear
equations, whose dimensions are less than n, the dimension of the original problem. We
prove that the proposed algorithms enjoy a nice global monotonic convergence property
in the sense that the subsets of the indices consisting of the indices, for which the corre-
sponding components of the iterates violate the constraints, become smaller and smaller.
Then the iterates converge to the exact solution in a finite number of steps. The numerical
examples presented indicate the effectiveness of the proposed algorithms.

The rest of this paper is organized as follows. In Section  we investigate the classical ob-
stacle problem and reformulate the problem via a piecewise almost linear system (PALS).
Based on the PALS given in Section , we propose a semi-iterative algorithm and discuss
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its monotone and finite convergence in Section . In Section , semi-iterative algorithms
are proposed for solving upper obstacle problems and mixed complementarity problems,
respectively, via their PALS reformulations, and the monotone and finite convergence of
the algorithms are also obtained. In Section  we present some numerical examples to in-
vestigate the efficiency of the algorithms. Finally, in Section , we give a few conclusions.

2 Some preliminaries
For any given vector x ∈ Rn, let the diagonal function Pφ(x) be defined as

Pφ(x) = diag
(
pφ (x), pφ (x), . . . , pφn (xn)

)
(.)

with

pφi (xi) =

⎧
⎨

⎩
, if xi ≥ φi,

, if xi < φi,
i = , , . . . , n.

It is easy to see the following result is true [].

Lemma .

Pφ(x)(x – φ) = max{x,φ} – φ and
[
I – Pφ(x)

]
(x – φ) = min{x,φ} – φ.

According to Lemma ., we have the following conclusion.

Lemma . Let x be the solution of the following nonsmooth equations:

(
I – Pφ(x) + APφ(x)

)
(x – φ) + �

(
Pφ(x)(x – φ) + φ

)
+ Aφ = . (.)

Let y = Pφ(x)(x – φ) + φ = max{x,φ}. Then y is the solution of the almost linear complemen-
tarity problem (.).

Proof It is easy to check by Lemma . that

(
I – Pφ(x) + APφ(x)

)
(x – φ) + �

(
Pφ(x)(x – φ) + φ

)
+ Aφ

= min{x,φ} – φ + A
(
max{x,φ} – φ

)
+ �

(
max{x,φ}) + Aφ

= min{x,φ} – φ + Ay + �(y). (.)

By (.), x is the solution of problem (.) equivalent to y = max{x,φ} satisfying

Ay + �(y) = φ – min{x,φ} = – min{x – φ, },

which implies

y ≥ φ, Ay + �(y) ≥ ,
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and

(y – φ)T(
Ay + �(y)

)
= –

[
max{x – φ, }]T

min{x – φ, } = .

That is, y is the solution of problem (.). �

Remark . For the linear complementarity problem

x ≥ φ, Ax – b ≥ , (x – φ)T (Ax – b) = , (.)

problem (.) reduces to the following piecewise linear system (PLS):

[
I – Pφ(x) + APφ(x)

]
(x – φ) = b – Aφ.

3 A semi-iterative algorithm for obstacle problem (1.2)
It is to be noted that the left-hand side of system (.) is not everywhere differentiable
even for smooth � . Nevertheless, a semi-iterative algorithm for solving system (.) can
be constructed as follows:

Algorithm . Let P = O. Set k := .
Step : Solve the system of finding xk+, such that

(
I – Pk + APk)(xk+ – φ

)
+ �

(
Pk(xk+ – φ

)
+ φ

)
+ Aφ =  (.)

with

Pk = Pφ

(
xk), k = , , . . . , (.)

where Pφ is defined by (.).
Step : If (Pk+ – Pk)(xk+ – φ) = , let y = Pk(xk+ – φ) + φ = max{xk+,φ} and stop. Oth-

erwise, go to Step .
Step : Set k := k +  and go to Step .

Remark . In Algorithm ., one needs to solve a system of nonlinear equations (.)
at each iteration. Since the nonlinearity of F(x) = Ax + �(x) occurs only in the diagonal
function � , (.) is a system of almost linear equations (see, e.g., []). Especially, when
F(x) = Ax – b, Algorithm . reduces to the semi-iterative Newton type algorithm for the
solution of the linear complementarity problem (.). In this algorithm, only a system of
linear equations needs to be solved at each iteration. We refer to [] for more details.

Remark . Let

Ik =
{

i : pk
i = 

}
and Jk =

{
i : pk

i = 
}

.

Equation (.) can be rewritten as
⎧
⎨

⎩
AIk Ik xk+

Ik + �Ik (xk+
Ik ) = –AIk Jk φJk ,

xk+
Jk = φJk – AJk Ik xk+

Ik – AJk Jk φJk – �Jk (φJk ),
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where AIJ denotes submatrix of A consisting of aij with i ∈ I , j ∈ J , and xI denotes the
subvector of x consisting of xi with i ∈ I . Consequently, the main work in solving (.) is
to solve a system of almost linear equations with dimension nk = dim(Ik) ≤ n.

In order to prove the convergence of Algorithm ., some preliminary results are needed
first (see, e.g., [, ]).

Lemma . Let A be an M-matrix. Then, for any diagonal matrix P, whose diagonals are
zeros or ones, the two matrices I – P + AP and I – P + PA are M-matrices, and therefore, (I –
P + AP)– ≥  and (I – P + PA)– ≥ . Furthermore, for any nonnegative diagonal matrix �,
the matrices I –P+AP+� and I –P+PA+� are M-matrices, and then (I –P+AP+�)– ≥ 
and (I – P + PA + �)– ≥ .

Define

P =
{

P ∈ Rn×n : P is a diagonal matrix with zeros or ones diagonals
}

and

S̄P =
{

x ∈ Rn : TP(x) ≥ 
}

,

where

TP(x) = (I – P + AP)(x – φ) + �
(
P(x – φ) + φ

)
+ Aφ.

Let A be an M-matrix and �i (i = , , . . . , n) be monotonically nondecreasing functions.
Then, for any P ∈ P , TP is an M-function. In fact, for any x ∈ Rn and y ∈ Rn, if TP(x) ≥
TP(y), we have

TP(x) – TP(y) = (I – P + AP)(x – y) + �
(
P(x – φ) + φ

)
– �

(
P(y – φ) + φ

)

=
(
I – P + AP + �P(x, y)

)
(x – y)

≥ , (.)

where

�P(x, y) =
∫ 


∇�

(
P
(
x + t(y – x)

)
+ (I – P)φ

)
dtP (.)

is a diagonal matrix with nonnegative diagonals. By Lemma ., (I –P+AP+�P(x, y))– ≥ ,
and hence by (.), we have x ≥ y, which implies the inverse isotone of TP . On the other
hand, for every pair of indices i �= j, and for every x ∈ Rn, noting that AP := I – P + AP = (aP

ij)
is an M-matrix, aP

ij ≤ . Therefore, the one-dimensional function gij in the variable t has
the form

gij(t) =
(
TP

(
xt,j))

i =
∑

l �=j

aP
il(xl – φl) + aP

ij(t – φj) + �i
(
pi(xi – φi) + φi

)
+

n∑

j=

aijφj,



Xu and Zeng Journal of Inequalities and Applications  (2015) 2015:315 Page 6 of 17

where xt,j = (x, . . . , xj–, t, xj+, . . . , xn) and P = diag(p, p, . . . , pn). It is clear that gij is non-
increasing, which implies the off-diagonal antitone of TP . Therefore, the inverse isotone
together with the off-diagonal antitone of TP implies that TP is an M-function [].

For any P ∈P and x ∈ S̄P , we have

 ≤ TP(x) = (I – P + AP)(x – φ) + �
(
P(x – φ) + φ

)
+ Aφ

=
(
I – P + AP + �P(x,φ)

)
(x – φ) + �(φ) + Aφ,

where �P(x,φ) is defined as (.). Then,

(
I – P + AP + �P(x,φ)

)
(x – φ) ≥ –�(φ) – Aφ ≥ min

{
–�(φ) – Aφ, 

}
.

Noting that (I – P + AP)– ≥ (I – P + AP + �P(x,φ))– ≥  and min{–�(φ) – Aφ, } ≤  we
have

x ≥ φ +
(
I – P + AP + �P(x,φ)

)–
min

{
–�(φ) – Aφ, 

}

≥ φ + (I – P + AP)– min
{

–�(φ) – Aφ, 
}

.

That is, S̄P is bounded below. On the other hand, let x = φ + (I – P + AP)– max{–�(φ) –
Aφ, }. It is easy to check x ∈ S̄P . In fact,

TP(x) = max
{

–�(φ) – Aφ, 
}

+ �
(
P(I – P + AP)– max

{
–�(φ) – Aφ, 

}
+ φ

)
+ Aφ

≥ max
{

–�(φ) – Aφ, 
}

+ �(φ) + Aφ ≥ ,

by the use of the monotonicity of � and the relation P(I – P + AP)– max{–�(φ) – Aφ, } +
φ ≥ φ. Therefore, S̄P is nonempty and bounded below and has a minimal element. In fact,
S̄P has unique minimal element x∗

P , which solves TP(x) = , i.e. TP(x∗
P) =  (see, e.g., []

and the references therein). According to the above discussion, we have immediately the
following result.

Lemma . Let A be an M-matrix, and �i (i = , , . . . , n) be monotonically nondecreased
functions. Then Algorithm . is well defined.

The following two lemmas are crucial for the convergence of Algorithm ..

Lemma . Let {Pk} be defined by (.). Then

(
Pk+ – Pk)(xk+ – φ

) ≥ , k = , , , . . . . (.)

Moreover, let {xk} be generated by Algorithm .. Then, if the equality in (.) holds, xk+ is
the solution of problem (.).

Proof Inequality (.) follows directly from the definitions (.) and (.). If for some k,

(
Pk+ – Pk)(xk+ – φ

)
= ,
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then, by (.),

(
I – Pk+ + APk+)(xk+ – φ

)
+ �

(
Pk+(xk+ – φ

)
+ φ

)
+ Aφ

=
(
I – Pk + APk)(xk+ – φ

)
+ �

(
Pk(xk+ – φ

)
+ φ

)
+ Aφ,

= ,

which implies that xk+ is the solution of problem (.). �

Lemma . Let A be an M-matrix and �i (i = , , . . . , n) be monotonically nondecreased
functions. Let {xk} and {Pk} be generated by Algorithm .. Then

Pk(xk+ – φ
) ≥ Pk–(xk – φ

) ≥ · · · ≥ P(x – φ
)

= O (.)

and

Pk+ ≥ Pk ≥ O, k = , , , . . . . (.)

Proof By (.), we have

 =
(
I – Pk + APk)(xk+ – φ

)
+ �

(
Pk(xk+ – φ

)
+ φ

)
+ Aφ

=
(
I – Pk– + APk–)(xk – φ

)
+ �

(
Pk–(xk – φ

)
+ φ

)
+ Aφ.

Therefore,

(
I – Pk + PkA

)
Pk(xk+ – φ

)
+ �

(
Pk(xk+ – φ

)
+ φ

)

= Pk[(I – Pk + APk)(xk+ – φ
)

+ �
(
Pk(xk+ – φ

)
+ φ

)]

+
(
I – Pk)�

(
Pk(xk+ – φ

)
+ φ

)

= Pk[(I – Pk– + APk–)(xk – φ
)

+ �
(
Pk–(xk – φ

)
+ φ

)]

+
(
I – Pk)�

(
Pk(xk+ – φ

)
+ φ

)

=
(
I – Pk + PkA

)
Pk–(xk – φ

)
+ �

(
Pk–(xk – φ

)
+ φ

)

+
(
Pk – Pk–)(xk – φ

)

+
(
I – Pk)[�

(
Pk(xk+ – φ

)
+ φ

)
– �

(
Pk–(xk – φ

)
+ φ

)]
. (.)

We note that if pk
i �= , then xk

i < φi and pk
i = . It follows for pk

i �=  that

pk
i
(
xk+

i – φi
)

+ φi = φi and pk–
i

(
xk

i – φi
)

+ φi ≤ φi.

By the use of the monotonicity of �i, we have immediately

�i
(
pk

i
(
xk+

i – φi
)

+ φi
)

– �i
(
pk–

i
(
xk

i – φi
)

+ φi
) ≥ , if pk

i �= ,

which implies

(
I – Pk)[�

(
Pk(xk+ – φ

)
+ φ

)
– �

(
Pk–(xk – φ

)
+ φ

)] ≥ . (.)
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Equation (.) together with (.) and (.) leads to

(
I – Pk + PkA

)[
Pk(xk+ – φ

)
– Pk–(xk – φ

)]

+ �
(
Pk(xk+ – φ

)
+ φ

)
– �

(
Pk–(xk – φ

)
+ φ

)

=
(
I – Pk + PkA + �k)[Pk(xk+ – φ

)
– Pk–(xk – φ

)]

≥ , (.)

where

�k =
∫ 


∇�

(
Pk–(xk – φ

)
+ φ + t

[
Pk(xk+ – φ

)
– Pk–(xk – φ

)])
dt

is a diagonal matrix with nonnegative diagonals. By Lemma ., (I – Pk + PkA + �k)– ≥ ,
and hence by (.), we get Pk(xk+ – φ) – Pk–(xk – φ) ≥ , that is, (.) holds.

If pk
i = , xk ≥ φi, and by (.), we have

xk+
i – φi = pk

i
(
xk+

i – φi
) ≥ pk–

i
(
xk

i – φi
) ≥ .

This implies xk+
i ≥ φi and hence pk+

i =  = pk
i . If pk

i = , we immediately have pk+
i ≥  = pk

i .
Therefore, we conclude (.). �

Theorem . Let A be an M-matrix and �i (i = , , . . . , n) be monotonically nondecreased
functions. Then Algorithm . is well defined and stops at the solution of problem (.) in a
finite number of iterations.

Proof Lemma . implies that the algorithms are well defined. By Lemma . and Algo-
rithm ., we have I ≥ Pk+ ≥ Pk ≥ · · · ≥ P = O. Obviously, we have Pk+ = Pk for some
k < n. In this case, (Pk+ – Pk)(xk+ – φ) = . By Lemma ., we obtain the solution of the
problem by Algorithm . within at most n steps. �

Theorem . indicates that Algorithms . can obtain the solution of problem (.)
within at most n steps. Nevertheless, the corresponding upper bound (i.e. n) may be large,
when the dimension of the system is large. However, several numerical tests presented in
Section  show that the convergence can be reached in just a few iterations.

Define

S =
{

x : min
{

x – φ, Ax + �(x)
} ≤ 

}
.

Then, if T(x) := Ax + �(x) is an M-function, the unique solution of problem (.) is
the maximal element of S (see, e.g., []). The following conclusion indicates that Algo-
rithm . has a monotone convergence property.

Theorem . Let A be an M-matrix and �i (i = , , . . . , n) be monotonically nondecreased
functions. Let {xk} and {Pk} be generated by Algorithm .. Assume

yk+ = Pk(xk+ – φ
)

+ φ, k = , , , . . . .
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Then {yk+} ⊂ S and

yk+ ≥ yk ≥ · · · ≥ y.

That is to say, {yk} is in S and converges to the solution of problem (.) monotonically.

Proof The monotone convergence is from (.) directly. If yk+
i > φi, pk

i = , and by (.),
we have

[
Ayk+ + �

(
yk+)]

i

=
[(

I – Pk + APk)(xk+ – φ
)

+ �
(
Pk(xk+ – φ

)
+ φ

)
+ Aφ +

(
Pk – I

)(
xk+ – φ

)]
i = ,

which implies min{yk+ – φ, Ayk+ + �(yk+)} ≤  and yk+ ∈ S . �

In Theorem ., we assume that A is an M-matrix. This assumption can be replaced by
the following conditions:

null
(
AT) ≡ span(v), null(A) ≡ span(w) and A + � is an M-matrix (.)

for some v >  and w >  (componentwise), and for any diagonal matrix � satisfying � ≥ 
and � �= O. This case may occur for elliptic problems with Neumann boundary condi-
tion. Let further vT�(φ) ≥ . Similar to Lemma ., for any nonnegative diagonal ma-
trix �, and any diagonal matrix P �= I , whose diagonals are zeros or ones, the matrices
I – P + AP + � and I – P + PA + � are M-matrices, which imply (I – P + AP + �)– ≥  and
(I – P + PA + �)– ≥  (see, e.g., []). According to the proof in Lemma ., for Pk �= I ,
problem (.) is well defined and (.) and (.) hold. If Pk = I �= Pk–, we have xk ≥ φ and
then Pk–(xk – φ) + φ ≥ φ. By (.), we have

(
I – Pk– + APk–)(xk – φ

)
+ �

(
Pk–(xk – φ

)
+ φ

)
+ Aφ = .

Noting that

(
Pk – Pk–)(xk – φ

)
=

(
I – Pk–)(xk – φ

) ≥ ,

for positive vector v given in (.), we have

 ≤ vT(
Pk – Pk–)(xk – φ

)

= vT(
I – Pk–)(xk – φ

)

= vT(
I – Pk– + APk–)(xk – φ

)

= vT(
–Aφ – �

(
Pk–(xk – φ

)
+ φ

))

≤ –vT�(φ)

≤ ,

which implies (Pk – Pk–)(xk –φ) = , where the second inequality is from v > , null(AT ) ≡
span(v) and the monotonicity of � . Therefore, Algorithm . stops at kth iteration if Pk = I .
Consequently, we have the following convergence result.
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Theorem . Let A satisfy (.) and �i (i = , , . . . , n) be monotonically nondecreased
functions with vT�(φ) ≥ . Then Algorithm . is well defined. Let {xk} and {Pk} be gener-
ated by Algorithm ., and let

yk+ = Pk(xk+ – φ
)

+ φ, k = , , , . . . .

Then {yk} is in S and converges monotonically to the solution of problem (.) in at most n
iterations.

The above theorem also implies the existence of the solution for problem (.) under the
conditions of Theorem ..

4 Some extensions
In this section, we make some extensions. First, let us consider the upper obstacle problem
of finding an x ∈ Rn such that

x ≤ φ, Ax + �(x) ≤ , (x – φ)T(
Ax + �(x)

)
= , (.)

where A = (aij) is a given matrix, φ = (φi) ∈ Rn is a given vector, and � : Rn → Rn is a given
diagonal mapping defined as before.

For any given vector x ∈ Rn, let the diagonal function Pφ(x) be defined as

Pφ(x) = diag
(
pφ (x), pφ (x), . . . , pφn (xn)

)
(.)

with

pφi (xi) =

⎧
⎨

⎩
, if xi ≤ φi,

, if xi > φi.

Similar to Lemma ., we have the following lemma.

Lemma . Let x be the solution of the following nonsmooth equations:

[
I – Pφ(x) + APφ(x)

]
(x – φ) + �

(
Pφ(x)(x – φ) + φ

)
+ Aφ = ,

where Pφ(x) is defined by (.). Then y = Pφ(x)(x – φ) + φ = min{x,φ} is the solution of the
almost linear upper obstacle problem (.).

According to Lemma ., a semi-iterative algorithm for solving upper obstacle problem
(.) can be constructed as follows.

Algorithm . Let P = O. Set k := .
Step : Solve the system finding xk+, such that

(
I – Pk + APk)(xk+ – φ

)
+ �

(
Pk(xk+ – φ

)
+ φ

)
+ Aφ = ,

where Pk = Pφ(xk) is defined by (.).
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Step : If (Pk+ – Pk)(xk+ – φ) = , let y = Pk(xk+ – φ) + φ = min{xk+,φ} and stop. Other-
wise, go to Step .

Step : Set k := k +  and go to Step .

Similar to the proofs of Lemmas .-. as well as Theorems . and ., we have the
following finite convergence result.

Theorem . Let A be an M-matrix and �i (i = , , . . . , n) be monotonically nondecreased
functions. Then Algorithm . is well defined. Moreover, let {xk} and {Pk} be generated by
Algorithm .. Then

Pk(xk+ – φ
) ≤ Pk–(xk – φ

) ≤ · · · ≤ P(x – φ
)

= O,

Pk+ ≥ Pk ≥ O, k = , , , . . . ,

and

yk+ ≤ yk ≤ · · · ≤ y,

where

yk+ = Pk(xk+ – φ
)

+ φ, k = , , , . . . .

Therefore, Algorithm . stops at the solution of problem (.) in at most n iterations.

In the following, we consider the numerical solution of the almost linear mixed comple-
mentarity problem of finding an x ∈ Rn such that (see, e.g., [])

⎧
⎨

⎩
xi ≥ φi, (Ax + �(x))i ≥ , (xi – φi)T (Ax + �(x))i = , if i ∈ N,

(Ax + �(x))i = , if i ∈ N,
(.)

where N ∩ N = ∅ and N ∪ N = {, , . . . , n}.
Let ϕ ∈ Rn be any vector satisfying

ϕi = φi, ∀i ∈ N. (.)

For any given vector x ∈ Rn, let the diagonal function Pϕ(x) be defined as

Pϕ(x) = diag
(
pϕ (x), pϕ (x), . . . , pϕn (xn)

)
(.)

with

pϕi (xi) =

⎧
⎪⎪⎨

⎪⎪⎩

, if i ∈ N and xi ≥ ϕi = φi,

, if i ∈ N and xi < ϕi = φi,

, if i ∈ N.
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Noting that

(
APϕ(x)(x – ϕ) + Aϕ

)
i

=
∑

j∈N,xj≥φj

aij(xj – ϕj) +
∑

j∈N

aij(xj – ϕj) +
∑

j∈N∪N

aijϕj

=
∑

j∈N,xj≥φj

aijxj +
∑

j∈N,xj<φj

aijφj +
∑

j∈N

aijxj

and

(
Pϕ(x)(x – ϕ) + ϕ

)
i =

⎧
⎪⎪⎨

⎪⎪⎩

xi, j ∈ N and xj ≥ φj,

φi, j ∈ N and xj < φj,

xi, j ∈ N,

the following result becomes obvious.

Lemma . Let x be the solution of the following nonsmooth equations:

(
I – Pϕ(x) + APϕ(x)

)
(x – ϕ) + �

(
Pϕ(x)(x – ϕ) + ϕ

)
+ Aϕ = , (.)

where Pϕ(x) is defined by (.) and ϕ satisfies (.). Then y = Pϕ(x)(x – ϕ) + ϕ is the solution
of the almost linear mixed complementarity problem (.).

According to Lemma ., we construct the following algorithm for the solution of mixed
complementarity problem (.).

Algorithm . Let P = (p
i ) with

p
i =

⎧
⎨

⎩
, if i ∈ N,

, if i ∈ N.

Set k := .
Step : Solve the system finding xk+, such that

(
I – Pk + APk)(xk+ – ϕ

)
+ �

(
Pk(xk+ – ϕ

)
+ ϕ

)
+ Aϕ = , (.)

where Pk = Pϕ(xk) is defined by (.) and ϕ satisfies (.).
Step : If (Pk+ – Pk)(xk+ – ϕ) = , let y = Pk(xk+ – ϕ) + ϕ and stop. Otherwise, go to

Step .
Step : Set k := k +  and go to Step .

Similarly, we have the following conclusion.

Theorem . Let A be an M-matrix and �i (i = , , . . . , n) be monotonically nondecreased
functions. Then Algorithm . is well defined. Moreover, let {xk} and {Pk} be generated by
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Algorithm .. Then

Pk(xk+ – ϕ
)

– Pk–(xk – ϕ
) ≥ O, i = , , . . . ,

Pk+ ≥ Pk ≥ O, k = , , , . . . ,

and

yk+ ≥ yk ≥ · · · ≥ y,

where

yk+ = Pk(xk+ – φ
)

+ φ, k = , , , . . . .

Therefore, Algorithm . stops at the solution of problem (.) in at most n iterations.

For a matrix A satisfying (.), the monotone and finite steps convergence can be de-
duced in a similar way. We omit the details.

5 Numerical experiments
In this section, we present some numerical experiments in order to investigate the effi-
ciency of the proposed algorithms. The programs are coded in Visual C++ . and run on
a computer with . GHz CPU. We consider the following four problems.

Problem  (Michaelis-Menten reaction []) We consider the following free boundary
problem on the unit square � = (, ) × (, ):

�u – cut = f (x, y, u) + ε(x, y), u ∈ D,

where f (x, y, u) = u/( + u), ε(x, y) is a local threshold consumption rate, and D is a domain
in �. At the free boundary (x = s(y)), the concentration and its gradient vanish. We take
into account only the steady-state case, i.e., c =  with the following additional data on �:

⎧
⎪⎪⎨

⎪⎪⎩

ε(x, y) = (y – .),
∂u
∂n =  when y =  and y =  and s(y) = ,

u(, y) = y( – y),

with x = s(y) being the free boundary. We shall be interested in a nonnegative solution
of the above problem. We discretize the problem by using a five-point difference scheme
with a constant mesh step size: h = /(m + ), where m denotes the number of mesh nodes
in x- or y-direction. Then Problem  can be transformed to problem (.).

Problem  ([]) We consider the following nonlinear complementarity problem:

x ≥ , F(x) ≥ , xT F(x) = .
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Here, F(x) = Ax + D(x) + f , where

A =


h

⎛

⎜
⎜⎜
⎜⎜
⎝

H –I

–I H
. . .

. . . . . . –I
–I H

⎞

⎟
⎟⎟
⎟⎟
⎠

with

H =

⎛

⎜⎜⎜
⎜⎜
⎝

 –

– 
. . .

. . . . . . –
– 

⎞

⎟⎟⎟
⎟⎟
⎠

and h = √
n+ , D(x) = (Di) : Rn → Rn is a given diagonal mapping with Di : R → R, for i =

, , . . . , n, that is, the component Di of D is a function of the ith variable xi only. Set Di(xi) =
λexi and obtain a diagonal mapping D(x) = (Di(xi)). In our test, we fix λ = ., and let
fi = max{, vi – .} × wi–., where wi and vi are random numbers in [, ], i = , , . . . , n.

Problem  ([]) We discuss the following nonlinear complementarity problem:

x ≥ , F(x) ≥ , xT F(x) = ,

where

F(x) = Mx + D(x) + f .

The matrix M = AT A + B is produced as follows. Let A be an n × n matrix whose en-
tries are randomly generalized in the interval (–, ) and the skew-symmetric matrix B be
generated in the same way. Let the vector f be generated from a uniform distribution in
the interval (–, ). Let D(x) = (Di(xi)) : Rn → Rn be a given diagonal mapping with
Di(xi) = di ∗ arctan(xi), i = , , . . . , n, where di (i = , , . . . , n) are chosen randomly in (, ).

Problem  (Signorini problem []) We consider the contact problem of finding a u such
that

⎧
⎪⎪⎨

⎪⎪⎩

–�u = f in � = (, ) × (, ),

u =  on �p = {(x, y) : x = ,  ≤ y ≤ } ∪ {(x, y) :  ≤ x ≤ , y = },
u ≥ , ∂u

∂n ≥ , ∂u
∂n u =  on �s ∪ �s ,

where �s = {(x, y) :  ≤ x ≤ , y = }, �s = {(x, y) : x = ,  ≤ y ≤ }, and

f (x, y) =

⎧
⎨

⎩
–, if (x, y) ∈ (, /] × (, ),

, if (x, y) ∈ (/, ] × (, ).
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We discretize the problem by using a finite difference scheme with a constant mesh
step size: h = /m, where m denotes the number of mesh nodes in x- or y-direction. Then
Problem  can be transformed to a linear mixed complementarity problem.

We compare different algorithms from the point of view of the iteration numbers. Here,
we consider three algorithms: the semi-iterative algorithms proposed in this paper (de-
noted by SIA), the semismooth equation approach proposed in [] (denoted by SSEA),
and two-level additive Schwarz method proposed in [] (denoted by TLASM).

For SIA, we choose the initial matrix P = O for all problems and adopt Newton iteration
with line search to solve the system of nonlinear equations at each iteration. The termina-
tion criterion of inner iteration is ‖αkdk‖ ≤ –, where dk is the Newton direction and
αk is the step length. The number of inner iterations is denoted by iterinn and the iteration
number of the algorithm is denoted by iter.

For SSEA proposed in [], we choose the initial point x = , the parameters ε = –,
p = , ρ = ., β = .. Hk ∈ ∂B� is defined by the procedure proposed in Section  of [].

For TLASM, we use PSOR to solve all subproblems relating to obstacle problems with
the tolerance – in ‖·‖ norm. The systems of nonlinear equations in TLASM are solved
by Newton iteration, and the termination criterion is the same as that in SIA. The relax-
ation parameter in the relaxation iterative method is chosen as ω = .. In order to get a
super-solution initial, we let x = A–e, with e = (, , . . . , )T and x = –A–f , respectively,
for Problems  and . In TLASM, iterinn and iter are the same as that in SIA.

It is easy to see from Tables - that the algorithms presented in this paper are com-
petitive as regards the above three algorithms in most cases. As for TLASM, we need
to find a super-solution initial of the problem, which may usually bring about some nu-
merical difficulties. While compared with TLASM, it is much easier for SIA to choose a
suitable initial point. Another advantage of SIA is that the subproblems in the algorithm

Table 1 Comparisons of iteration numbers for Problem 1

n SIA SSEA TLASM

iterinn iter iter iterinn iter

9 12 3 7 12 1
16 20 5 9 11 1
25 16 4 9 151 23
36 31 8 12 203 30
49 23 6 11 172 25
64 35 9 12 169 25
81 27 7 11 179 27
100 43 11 15 156 23

Table 2 Comparisons of iteration numbers for Problem 2

n SIA SSEA TLASM

iterinn iter iter iterinn iter

9 1 1 1 3 1
16 1 1 1 3 1
25 3 1 3 5 1
36 6 2 3 6 1
49 6 2 3 6 1
64 6 2 3 6 1
81 6 2 3 6 1
100 6 2 3 5 1
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Table 3 Comparisons of iteration numbers for Problem 3

n SIA SSEA

iterinn iter iter

100 11 3 20
225 14 4 15
400 15 5 54
625 18 6 58
900 18 6 48

1,600 18 6 62

Table 4 Algorithm 4.1 for Problem 4

n iter n iter n iter n iter

100 2 400 3 900 3 1,600 3

are systems of almost linear equations of dimensions less than n, while the subproblems
in two-level additive Schwarz method still include complementarity problems. In Table ,
we do not list the results for two-level additive Schwarz method. The reason is that it is
difficult for Problem  to find a super-solution initial point x and the algorithm may not
converge. Theoretically, we may not guarantee the convergence of SIA for Problem  since
A is not an M-matrix. However, it is interested to see from Table  that SIA is still stable
and effective since the iteration numbers are small and show almost no change with the
increase of the dimension.

As for SSEA and TLASM, some modifications are needed in order to solve the mixed
complementarity problems. So, we only run Algorithm . for Problem  and the iteration
numbers are listed in Table  to solve the mixed complementarity problems with difference
dimensions discretized by Problem . It is easy to see that Algorithm . is still effective
for the problem.

6 Final remark
In this paper, we present some finite algorithms to the numerical solution of almost linear
(mixed) complementarity problems. The algorithms are based on the systems of piecewise
almost linear equations, which are the reformulations of the problems. It is proved that
the algorithms converge monotonically to the solution of the problem in a finite number
of steps. Indeed, we can produce a monotone lower solution or upper solution by iterates
converging to the solutions of the problems by the algorithms. Numerical results show
that the proposed method is effective.
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