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1 Introduction

Bilevel programming (BP), which is characterized by the existence of two optimization
problems in which the constraint region of the first-level problem is implicitly determined
by another optimization problem, has increasingly been addressed in the literature, both
from the theoretical and computational points of view (see the monographs of Dempe [1]
and Bard [2] and the reviews by Vicente and Calamai [3], Dempe [4] and Colson et al.
[5]). In the last two decades, many papers have been published about bilevel optimization,
however, there are only very few of them dealing with the bilevel multiobjective program-
ming (BMP) problem, where the upper level or the lower level or both of a bilevel decision
have multiple conflicting objectives [6-8].

Although solving the bilevel multiobjective programming problem is not an easy task,
some researchers have presented feasible approachers for this problem. Shi and Xia [9,
10] propose an interactive algorithm based on the concepts of satisfactoriness and di-
rection vector for the nonlinear bilevel multiobjective problem. Abo-Sinna [11], Osman
[12] present some approaches via fuzzy set theory for solving bilevel and multiple level
multiobjective problems, and Teng and Li [13] and Deb and Sinha [14] give evolutionary
algorithms for some bilevel multiobjective programming problems. Besides, for the so-
called semivectorial bilevel optimization problem, Bonnel and Morgan [15] construct the
penalized problem by the marginal function of the lower level problem and propose the
penalty function algorithm. However, no numerical result is reported. Based on the objec-
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tive penalty function approach for the single level programs, Zheng and Wan [16] propose
the corresponding penalty function algorithm, which contains two penalty parameters. A
recent study by Eichfelder [8] suggests a refinement-based strategy in which the algorithm
starts with a uniformly distributed set of points on upper level variable. Noted that if the
dimension of upper level variable is high, generating a uniformly spread upper level vari-
ables and refining the resulting upper level variable will be computationally expensive.

The linear bilevel multiobjective programming (LBMP) problem, i.e., both the objective
functions and the constraint functions are linear functions, has attracted more and more
attention. Nishizaki and Sakawa [17] give three Stackelberg solution definitions and pro-
pose the corresponding algorithms based on the idea of the Kth best method. However,
they do not give the numerical results. Ankhili and Mansouri [18] propose an exact penalty
function algorithm based on the marginal function of lower level problem for the LBMP
problem, where the upper level is a linear scalar optimization problem and the lower level
is a linear multiobjective optimization problem. Calvete and Gale [19] analyze the charac-
ters of the feasible region and give some algorithms frame for the LBMP problem, where
the upper level is a linear multiobjective optimization problem and the lower level is a
linear scalar optimization problem.

In this paper, inspired by the method presented in [20, 21] for the linear bilevel single
objective programming problem, we propose an exact penalty algorithm for the LBMP
problem, where both the upper level and the lower level are linear multiobjective opti-
mization problems. There are few reports on using exact penalty approach for solving the
above LBMP problem. Our strategy can be outlined as follows. By using the weighted sum
scalarization approach, we reformulate the LBMP problem as a special bilevel program-
ming problem, where the upper level is a linear multiobjective programming problem and
the lower level is a linear scalar optimization problem. Then the duality gap of the lower
level problem is appended to the objectives of the upper level problem with a penalty, and
a penalized problem for the LBMP is obtained. We prove that the penalty function is ex-
act, and an exact penalty function algorithm is proposed for the LBMP. In addition, for the
LBMP problem with given weights for the upper level objective functions, we analyze the
optimality conditions and propose a special algorithm. Finally, we give some numerical
examples to illustrate the algorithm proposed in this paper.

The remainder of the paper is organized as follows. In the next section we give the math-
ematical model of the LBMP problem and construct the penalized problem. In Section 3,
we analyze the characters of the penalized problem and give via an exact penalty method
an existence theorem of Pareto optimal solutions. In Section 4, we propose the algorithm
and give the numerical results. Finally, we conclude the paper with some remarks.

2 Linear bilevel multiobjective programming problem and penalized problem
In this paper, we consider the following linear bilevel multiobjective programming prob-
lem (LBMP), which can be written as

max Cx+C'y
(%920

s.t. maxDy
y>0

st. Aix+ Ay <b, 1)

where x € R", y € R™, b € R?, A € RP*", Ay € RP*™, C € RT*", C' € RT*™, D € RI*™,
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Let S ={(x,y) | A1x + A;y < b,x > 0,y > 0} denote the constraint region of problem (1),
and IT, = {x € R} | Iy € R}, A1x + Ayy < b} be the projection of S onto the upper level’s
decision space. To define problem (1), we make the following assumption.

(A) The constraint region S is nonempty and compact.

For fixed x € R”, let S(x) denote the efficiency set of solutions to the lower level prob-
lem

(Py): maxDy
20

st. Ax+Ayy <b.

Definition 2.1 A point (x,y) is feasible for problem (1) if (x,y) € S and y € S(x); the term
(x*,y*) is a Pareto optimal solution to problem (1), provided that it is a feasible point and
there exists no other feasible point (x,y) such that Cx* + C'y* < Cx + C'y.

Remark 2.1 Note that in problem (1) the objective function of the upper level is maxi-
mized with regard to x and y, that is, in this work we adopt the optimistic approach to
consider the bilevel multiobjective programming problem [8].

One way to transform the lower level problem (P,) into a scalar optimization problem
is the so-called scalarization technique, which consists of solving the following further
parameterized problem:

max AT Dy
y=0

st. A+ Ay <b, 2)

where the new parameter vector A is a nonnegative point of the unit sphere, i.e., > belongs
to Q2 ={i|AeR,Y" A =1} Since it is a difficult task to choose the best choice (y)
on the Pareto front for a given upper level variable x, our approach in this paper consists
to consider the set Q2 as a new constraint set for the upper level problem. Note that this
approach can also be used in [22] for the semivectorial bilevel optimization problem.

For any given parameter couple (x,A) € IT, x €, let y(x,1) denote the solution set of
problem (2). The following relationship (see, e.g., Theorem 3.1 in [22]) relates the solution
set of (P,) and that of problem (2).

Proposition 2.1 Let assumption (A) be satisfied. Then we have
S(x) = y(x, Q) IZU{y(x,)L):)LGQ}. 3)

Based on Proposition 2.1, problem (1) can be replaced by the following bilevel multiob-
jective programming problem:

max Cx+C'y
(%9,2)=0

l
s.t. in =1,
i=1
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max 27 Dy
y=0

sit. Ax+ Ay <b. (4)

The link between problem (1) and (4) will be formalized in the following proposition.

Proposition 2.2 Let assumption (A) be satisfied. Then the following assertions hold.
(i) Let (%,y) be a Pareto optimal solution of problem (1). Then for all » € Q with
y € ¥ (%, A), the point (%, %, L) is a Pareto optimal solution of problem (4).

(i) Let (x,¥,A) be a Pareto optimal solution of problem (4). Then (x,y) is a Pareto
optimal solution of problem (1).

Proof (i) Let (x,7) be a Pareto optimal solution of problem (1), and there exists A° € Q with
y € y(x,1°), such that (x,7, A°) is not a Pareto optimal solution of problem (4). Then there
exists a feasible point (x',y’,1") of problem (4), such that

Cx' +Cy >Cx+Cy. (5)

Following Proposition 2.1, we have ' € S(x'), i.e. (x',y') is also a feasible point of prob-
lem (1). That means that there exists a feasible point (x’,y’) of problem (1), such that (5) is
satisfied. It contradicts that (¥, y) is a Pareto optimal solution of problem (1).

(ii) Let (x,7, ») be a Pareto optimal solution of problem (4), then there does not exist a
feasible point (x',7’, 1) of problem (4), such that

Cx+Cy<Cx +Cly. (6)

Suppose that (¥,y) is not a Pareto optimal solution of problem (1), then there exists a
feasible point (x”,y”), such that

Cx+Cy<Cx"+Cly'". (7)

Following Proposition 2.1, we see that for (x”,”), there exists A” € Q such that (x”,y",1”)
is feasible to problem (4). That means that there exists a feasible point (x”,y”,1”) of prob-
lem (4), such that (7) is satisfied, which contradicts (6). O

The dual of problem (2) is the following:

minw? (b — A;x)
s.t. wTAz > ATD,
w>0. 8)
Here w € R? is the duality variable.
Let 7 (x,, A, w) = wT (b — A1x) — AT Dy denote the duality gap of the lower level problem,

if 7w (x,y, 4, w) is equal to zero, the optimal solution of the lower level problem would be
reached.
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We can employ a penalty function approach to the LBMP problem (1), and formulate
the penalty problem P(K) as follows:

max)F(x,y, 2w, K)=Cx+C'y- K(wT(b —Ax) — ATDy)e

(9,0,
!
s.t. Z )"i = 1,
i=1
Ax+ Ayy <b,
wlA, > ATD,
%y w=>0, 9)

where e € R7 has all its components equal to unity, and K is the penalty factor. Clearly,
problem (9) will reach optimality when w? (b — A1x) — AT Dy — 0.

3 Main results
We will now analyze the main theoretical result, i.e., the exactness of the penalty function
approach, which means we can get the Pareto optimal solutions of problem (1) by solving
the penalized problem (9) for some finite positive constant K.

Before presenting some theoretical results, we introduce some useful notations first. Let
Z={(xy) | Aix + Ay <b,x >0,y > 0}, W = {(A,w) | Zﬁ:l ri=LwlAy > ATD,A>0,w>
0}, and we denote the extreme points of W and Z by W, and Z,, respectively.

Theorem 3.1 For a given value of (A\,w) € W and fixed K, a Pareto optimal solution to the

following programming problem:

max F(x,y, ., w,K)

(%)

st. (xy) €z, (10)
is achievable at some (x*,y*) € Z,.

Proof Note that for fixed (A, w) and K, problem (10) is a linear multiobjective program-
ming problem, then Theorem 3.1 is obvious. O

Theorem 3.1 yields the following theorem.

Theorem 3.2 For fixed K, a Pareto optimal solution to problem (9) is achievablein Z, x W,
and Z, x W, =(Z x W),.

Proof Let (x*,y*) € Z, be a Pareto optimal solution to problem (10). As F(x*,y*, ., w,K) is
an affine function of (A, w), and W is a polytope, the problem

* %
1(1/\1’3/))(F(x 750w, K)

s.t. (AL,weW
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will have some Pareto optimal solution (A*, w*) € W,. This proves the first part and the
second part is obvious following Theorem 2 in [20]. |

The above theorem is based on a fixed value of K. We now show that a finite value of K
would yield an exact Pareto optimal solution to the overall problem (9), where the penalty
term w! (b — A;x) — AT Dy becomes zero.

Theorem 3.3 There exists a finite value of K, K* say, for which the Pareto optimal solution
(x,9, A, w) to the penalty function problem (9) satisfies w! (b — A1x) — ATDy = 0.

Proof Suppose (x*,y*,1*) is the Pareto optimal solution to problem (4), i.e. the linear
bilevel multiobjective problem, then the optimality conditions of the lower level problem
are satisfied. That means (w*)7 (b — A1x*) — (A*)TDy* = 0.

Let (x,y, A, w) be a Pareto optimal solution to problem (9), then there exists an index i,
such that

Cx + Cly—K(w' (b—Ax) — 1" Dy) > Cix* + Cly* - K((w*)T(b - Awx*) - (A*)TDy*)
= Cix* + Cly,

where C; and C; are the ith rows of C and C’, respectively.
Thus,

max[Cix + Cly — Cix* — Cly*] - k
K - K

0<wl(b-Ax) - )LTDy <

where k is some constant. Thus, as K — oo, w (b — A;x) — ATDy =0 — 0. However, since
Z, x W, is finite, w! (b — A1x) — AT Dy = 0 for some large finite value of K, say K*. O

We now show that, by increasing K monotonically, we can achieve the Pareto optimal
solutions of the linear bilevel multiobjective programming problem (4).

Theorem 3.4 There exists some K* > 0, such that for all K > K*, the Pareto optimal so-
lution (x,y, A, w) to problem (9) is also a Pareto optimal solution to problem (4).

Proof Following Theorem 3.3 and the essentials of the penalty function method for mul-
tiobjective programs (Theorem 2.1 in [23]), we know that there exists some K* > 0,
such that for all K > K*, the Pareto optimal solution (x,y, 1, w) to problem (9) satisfy-
ing w!' (b — A1x) — AT Dy = 0, and there does not exist a point (&, , X, W) which is feasible to
problem (9), satisfying

Cx+Cy<Cix+Cy. (11)

Suppose that (x, y, 1, w) (feasible to problem (4)) is not a Pareto optimal solution to prob-
lem (4), then there exists a feasible point (%, 7, X, W) to problem (4) (also feasible to prob-
lem (9)), satisfying

Cx+Cy<Cx+C5, (12)

which contradicts (11). Then (x, y, 1) is also a Pareto optimal solution to problem (4). O
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4 Algorithm and numerical results

Following the above results, we know that we can obtain the Pareto optimal solution of
problem (1) by solving the penalized problem (9). Then we can propose the following
exact penalty function algorithm for the linear bilevel multiobjective programming prob-
lem (1).

Original algorithm

Step 0. Choose an initial point (x°,7°, A%, w®) € W, x Z,, a positive constant K > 1 and
stopping tolerance € > 0, and set k := 0.

Step 1. Find a Pareto optimal solution (x*, y%, AX, w¥) of problem (9).

Step 2. If (W) T (b— A1xF) — (AX)TDyk < €, stop, a Pareto optimal solution is obtained; else
go to Step 3.

Step 3. Set (a¥*1, Y} AR+ wk+l) .= (wk, 9K 0K, wK), k:= k + 1, K := 2K, and go to Step 1.

The following theorem states the convergence of the above algorithm.

Theorem 4.1 Let assumption (A) be satisfied, then the last point in the sequence (x*, y*, 1),
which is generated by the original algorithm, is a Pareto optimal solution to prob-
lem (4).

Proof Following Theorem 3.3, we know that the penalty function is exact. Then it means
that the sequence (x*,y%, AX), which is generated by the above algorithm, is finite. Let
(x*,5*,1*) be the last point in the sequence (x,y%, AX). Following Theorem 3.4, it is ob-
vious that (x*,y*, 1*) is a Pareto optimal solution to problem (4). O

It is clear that we can obtain the Pareto optimal front of problem (1) by solving problem
(9) using some appropriate approaches. In the following, we consider the situation that
the decision maker gives the positive weights for the upper level objective functions, and
propose a special algorithm for this problem.

Let the decision maker give the positive weights i = (i1,..., )" € RIwith 37 ;=1
for the upper level objective functions. Then the Pareto optimal solution to the given

weights p can be obtained by solving the following programs:

max " (Cx + C'y) = K(w" (b - Aix) - A" Dy)

st. (xy)eZ (hweW. @13)

Let Q(A, w,K) = maxyyez[u” (Cx+C'y) - K(w' (b—A1x) - AT Dy)], we have the following

result.

Theorem 4.2 For (A, W), (A, W) € W, we have
QG w, K) = Q(h, w, K) = K[(w = #)" (b - Arx) — (A — 1) " Dy]. (14)
Proof For all (A, w) e W,

Q(, w,K) = u" (Cx + C'y) = K[(#" (b - Arx) — 1" Dy)] (15)
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and
Q(,w,K) = u” (Cx + C'y) - K[(w" (b - A1x) - 17 Dy)]. (16)
Subtract (15) from (16) and the result follows. O

Following Theorem 4.2, if (A, W) = ming, e w [(w — )7 (b — A1x) — (A — 2) T Dy] < 0, then
(W) # (W, w*) € argmax{Q(X, w,K) : (A,w) € W}.

Based on the above analysis, we can propose an algorithm for solving the special prob-
lem (13).

Weights algorithm
Step 0. Give the weights u = (i1,..., 11g)7 € R? with Y7 | u; =1 for the upper level ob-
jective functions, and choose an initial point (A%, w°) € W,, a positive constant K > 1, and
stopping tolerance € > 0, and set k := 0.
Step 1. Solve max ez 7 (Cx + C'y) — K(WX)T (b — A1x) — (AX)TDy) and we obtain the
optimal solution (x*, y¥).
Step 2. Solve a (A%, wK) = ming,_ew [(w — wh)T (b — Ajxb) — (A — AX)TDy*], and obtain the
optimal solution (A*, w*).
Step 3.
1) If a(AX, wk) < 0, then (AF*, wk*1) = (A%, w*), k := k + 1, go to Step 1.
(2) Ifa(AK, w5) > 0 and (W) (b — A1xk) — (W) Dy* > ¢, then K := 2K, k := k, go to Step
1.
(3) If a(A%, w) > 0 and (WK)T (b — A1x*¥) — (AF)TDy* < €, then the optimal solution to
problem (13) is (xX, %, AK, wk).

To illustrate the weights algorithm, we solve the following linear bilevel multiobjective
programming problem using the above algorithm.

Example 1 [6]

min F(x,y) = (—x + 2y, 2x — 4y)7

(%9)=0
st. —x+3y<4,
mi(r)lf(x,y) = (—x+2y,2x -7
y=
st. x—y <0,
—-x—-y=<0.
For Example 1, following problem (4) and (9) we can get the following penalized prob-
lem:
max(x — 2y, —2x + 49)T — K(—wix — wax + 201y — Aoy)e
s.t. )»1 + )\2 = 1,

—x + 3y <4,
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x-y=<0,
-x-y =<0,
W1+ Wy —2A1 + Ay <0,

%9, Aw>0. 17)

The solution proceeds as follows.

Loop1

Step 0. Choose the weights 11 = (0.5,0.5)” for the upper level objective functions, and an
initial point (A%, w°) = (1/3,2/3,0,0)7, a positive constant K = 100, and stopping tolerance
€ =0.01, and set k:=1.

Step 1. Solve

max —0.5x + y

s.t. —x+3y<4,
x-y=<0,
-x—-y =<0,
x%y>0

and obtain the optimal solution (x°,5°) = (0, 3)”.
Step 2. Solve

8 4
a(ko,wo) =min4w; — gkl + gkz

s.t. )\.1+)\2=1,
W1+ Wy —2A1+ Ay <0,
A,w>0.

Obtain the optimal solution (1*,w*) = (1,0,0,0)”, and the optimal value ar(1%,w°) = -§.
Step 3. As (A%, w°) = -2 <0, let (\!,w') = (1,0,0,0)”, k=1, go to Step 1.

Loop 2
Step 1. Solve
max —0.5x — 199y
s.t. —x+3y<4,
x-y=<0,
-x—-y =<0,

%y >0,

and obtain the optimal solution (x',') = (0,0)7.
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Step 2. Solve

a (AL, wh) = mindw; +wy
s.t. )\1 + )»2 = 1,
W1+W2—2)»1+)\2§0,
A,w > 0.
Obtain the optimal solution (A*, w*) = (1,0,0,0)7, and the optimal value (A, w!) = 0.

Step 3. a(A!, w!) = 0,and (W')T (b — A1x!) — (A1) Dy! = 0 < 0.01. Then the Pareto optimal
solution of Example 1 to the weights u = (0.5,0.5)7 is (x,y, A, w) = (0,0,1.0,0,0,0)”.

It is noted that in [6], a Pareto optimal solution to Example 1 is (x,y) = (0,0.5)7, and the
upper level objective value is F(x,7) = (1, -2)7. However, in this paper the Pareto optimal

solution of Example 1 is (x,y) = (0,0)7 obtained by the weights algorithm, and the cor-
)T

responding upper level objective function value is F(x,y) = (0,0)". Following the vector

partial order, it is obvious that the optimal solution (x, y) = (0, 0) obtained here is a Pareto
optimal solution to Example 1. It is shown that the weights algorithm is feasible to the
linear bilevel multiobjective programming problem.

To further show the viability of the weights algorithm proposed, we consider the follow-

ing two examples.
Example 2 [6]

(m?x F(x,y) = (%1 + 9%y + 10y1 + ¥ + 3y3,9x1 + 2% + 291 + 7y + 4y3)T
x%,y)=>0

s.t. 3x1 + 9% + 91 + 592 + 3y3 < 1,039,
—4x; — %9 + 3y1 — 3y2 + 2y3 < 94,

mag(f(x,y) = (4x1 + 6x9 + 7y1 + 4ys + 8ys, 6001 + 4oy + 8y1 + 7y + 4y3)T
y=

s.t. 3x1— 9% — 9y — 4y, <61,
5x1 + 9%y + 10y, — y5 — 2y3 < 924,

3x1 — 3%y + Y+ 5}’3 <420.

Example 3 [24]

max F(x,y) = (%1 + 2%, 3%1 +x5)7
(x,9)=0

s.t. X +ay <3,
r},1>ag<f(x,y) = (y1 + 392,201 +y2)"
st. —x1+9y1+y2 <6,
—xp +y1 <3,

X1+ X2 +y2§8.

Page 10 of 12
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Table 1 Pareto optimal solutions to the different penalty factors K

Examples number K =500 K =1,000 K =2,000
Example 2 (144.2,26.8,2.97,67.7,0) (144.2,26.8,2.97,67.7,0) (144.2,26.8,2.97,67.7,0)
Example 3 (0.6,2.4,0,0) (0.6,2.4,0,0) (0.6,2.4,0,0)

Table 2 Results in this paper comparing with the references

Examples in The Pareto optimal solution and the upper The Pareto optimal solution and the upper

this paper level objective value obtained in this paper level objective value given in the references
Example 2 (x*,y*)=(144.2,26.8,2.97,67.7,0) (x*,y*) = (146.30,28.94,0,67.93,0)

Flxe®,y*) = (482.7,1,831.4) F(x*,y*) = (474.7,1,850.1)
Example 3 (x*,y*)=(0.6,2.4,0,0) (x*,y*)=(15,15,4.1,34)

Fix*,y*)=(54,4.2) F(x*,y*) = (4.5,6.0)

In the above examples, we choose the fixed weights of the upper level objectives as u =
(i1, 12)T = (0.5,0.5)7, and we obtain the Pareto optimal solutions, which are presented in
Table 1.

In Table 2, we compare the upper level objective value obtained in this paper with that
in the corresponding references. From the above comparison, it is showed that the Pareto
optimal solutions obtained in this paper are the Pareto optimal solutions to the above two
examples. Then the exact penalty function approach presented here to the linear bilevel
multiobjective programming problem shows usefulness and viability.

5 Conclusion

In this paper, we introduce a new exact penalty function method for solving a linear bilevel
multiobjective programming problem. The method is based on appending the duality gap
of the lower level problem to the upper level objectives with a penalty. The numerical re-
sults reported illustrated that the exact penalty function method introduced in this paper
can be numerically efficient.

It is noted that, besides its theoretical properties, the original algorithm proposed in
this paper has one distinct advantage: it only requires the use of practicable algorithms
for solving the smooth multiobjective optimization problems, no other complex opera-
tions are necessary. In addition, for the LBMP problem with given upper level objective
functions weights, using the weights algorithm proposed we only need to solve a series of
linear programming problems to obtain the Pareto optimal solutions.
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