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Abstract

Recently, Mursaleen et al. (On (p, g)-analogue of Bernstein operators, arXiv:1503.07404)
introduced and studied the (p, g)-analog of Bernstein operators by using the idea of
(p, @)-integers. In this paper, we generalize the g-Bernstein-Schurer operators using

(p, @)-integers and obtain a Korovkin type approximation theorem. Furthermore, we
obtain the convergence of the operators by using the modulus of continuity and
prove some direct theorems.
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1 Introduction and preliminaries
In 1912, Bernstein [1] introduced the following sequence of operators B, : C[0,1] — C[0,1]
defined for any n € N and f € C[0,1]:

(1.1)

Bu(f;%) =) (Z)xk(l —x)"-kf<§>, x€[0,1].

k=0

By applying the idea of g-integers, the g-Bernstein operators were introduced by Lupas
[2] and later by Philip [3]. Since then, many authors introduced g-generalization of various
operators and investigated several approximation properties. For instance, the g-analog of
Stancu-Beta operators in [4] and [5]; the g-analog of Bernstein-Kantorovich operators in
[6]; the g-Baskakov-Kantorovich operators in [7]; the g-Szdsz-Mirakjan operators in [8];
the ¢g-Bleimann-Butzer-Hahn operators in [9] and in [10]; the g-analog of Baskakov and
Baskakov-Kantorovich operators in [11]; the g-analog of Szdsz-Kantorovich operators in
[12]; and the g-analog of generalized Bernstein-Schurer operators in [13]. Besides this, we
also refer to some recent related work on this topic: e.g. [14] and [15].

First we give here some notations on the (p, g)-calculus.

The (p, g)-integer was introduced in order to generalize or unify several forms of g-
oscillator algebras well known in the earlier physics literature related to the representation
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theory of single parameter quantum algebras [16]. The (p, g)-integer [#], , is defined by

v n

[n]Mzu, n=0,12,...,0<g<p <1
p—q

The (p, g)-binomial expansion is
@+, = @+ px+ @) (P°x+q%y) - (" x+q"y)

and the (p, g¢)-binomial coefficients are defined by

|:n:| _ [1]p,4!
k e [Klpq!ln — Klpq!

Details on the (p, g)-calculus can be found in [17]. For p = 1, all the notions of the (p, q)-
calculus are reduced to the g-calculus [18].
In 1962, Schurer [19] introduced and studied the operators S, : C[0,¢ + 1] — C[0,1]

defined by
E(m+t k
Sme(fix) = ( ) (1 —x)™ (—) x€[0,1], (12)
o\ k m

for any m € N and fixed £ € N.
The g-analog of the Bernstein-Schurer operators is defined as follows (cf. [20]):

_ m+l 4l . m+l—k-1 [k]q
Bo(fs q;%) =Z . x ]_[ (l—qsx)f<[—>, x €[0,1], (1.3)
k=0 < q s=0 Mlq

forany m € N, f € C[0, € + 1], and fixed £.

Recently, Mursaleen et al. [21] applied (p, g)-calculus in approximation theory and intro-
duced first (p, q)-analog of Bernstein operators. They have also introduced and studied the
approximation properties of the (p, g)-analog of the Bernstein-Stancu operators in [22].

In this paper, we introduce the (p, g)-analog of these operators. We investigate some
approximation properties of these operators and obtain the rate of convergence by using

the modulus of continuity. We also establish some direct theorems.

2 Construction of (p, g)-Bernstein-Schurer operators

Let 0 < g < p <1. We construct the class of generalized (p, q)-Bernstein-Schurer operators

as follows:
o m+l M+l km+£—/<—1 . [k]p,q
By (fin) =) “ I @ —fx)f(—), x€[0,1], (2.1)
’ oLk pa 5=0 [m]pq

forany m e N, f € C[0, £ + 1], and fixed €. Clearly, the operators defined by (2.1) are linear
and positive. If we put p =1 in (2.1), then the (p, g)-Schurer operators are reduced to the
q-Bernstein-Schurer operators.
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Lemma 2.1 For B"? e () given by (2.1), we have the following identities:
(i) Byeo;x) =1;
¢
(i) B, (ex) = Gt

[m+0]p,q(px+(1-x) )m*'e 1

[m+L]pqlm+l-1]pq

2 2,
(iii) B 4(62, x) = il i, qx’;

(iv) By, (es;%) = “f*fQ” (7 + (-0 o+ (g + 2) "l e

1- x))m+£ 2 [m‘f“]pq[”’” Up,qlm+t= 2]qu3x3
[m]3,q

where ej(t) =¥,j=0,1,2,....

Proof
(i) For 0 <g < p <1 we use the well-known identity from [21]

k=0

n n—k-1
»q s=0

Suppose we choose n =m + £.

Since
m+E—k-1
a- x)mHZ —k _ 1_[ (ps —qSJC),
s=0
we get

m+l . m+l—k-1
Z[ X } # ] (-
pq

k=0

Consequently, B”% (eg; x) = 1.

mL’

(i) Clearly we have

m+l m+l—k-1
By (e;x) = Y |:m /+ £:| “ [] @'-a%) [[k]p A
K
pq

k=1

= xmfl |:m * £i| 2 m+ﬁ(_2(ps - zfx)w {ask — k+1}
q

Py k+1 ) o [m],q
. [+ €], " |:m +0— 1:| N m+sz72(p ~
[lpq k=0 k pa 5=0
_ [m +£] e
[m]p,q

(iii)
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m+£ k-1
* [ @ -a%)klpg {using (K2, = [k]pq. (K]}
s=0
[m+ L]y WIZM m+l-1
pa k-
= b
m+l k-1

* J] @ -ax) @ +alk—1,,),
s=0

by using [k],4 = P + qlk — 1] 4.
Therefore we have

Drq [m + Z]Pq m+t-1 k_ k-1 et K
B2, (e3;%) Z P s D )
bq

s=0
[Wl + e]pq m+l matl—1 . m+l—k-1
T g k-1 s _
g, 2| ke | Hatkethe [0
2 k=1 pa =0
) [Wl + g]p’q m+l-1 mal—1 i m+l—k—=2 .
=x 2, kX_O: ' *p 1:! (¢ - g’x)
= rq 5=
[m + £] m+l—1 mitkl
qa [ ]zqu|: :| k=1l l—[ (r' - q'x)
pa 5=0
[m+€pqm+ﬁ Hmre-1 P k-1
=x— [m]2 Z P (px)*(1 —X)pa
pa

—k-1
[m+2],,m+€-1] i lmre—2 e
+q Pq p:q XX l_[ (ps_qsx)
pq s=0

(m]},

[m + L pqg(px + (1 - x))"‘*‘z 1

[m]},
+x2q (m+ L] pglm+E—-1],4 mfz |:m +0 - 2]
2
[l k=0 k-2 pa
m+l—k-3

l:o[ (7" - 7).

Hence the desired result is proved.

(iv)

k=1

e m+l m+l km+K—k—1 . [k];,q
A N I G Ll
P4 = Mg

) [m + E]p,q m+l mab—1 m+l—k-1
- [Wl]z,q Z|: k-1 ]p,q 1_[ (p qsx [kpq

k=1

[+ €]y e e-1 k. 2(k-1) itk s
Sas 2 ] KR I (v -a%)
-1
k=1 pa s=0
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m m+l—k-1
[m+ 1], + m+4i-1 -
pq xk 2 k—l]zq (p _
P 5=0

+2 [m+ 0y Clmre-1 Pk -1], m+f‘f I(P %)
q m .
= pa

A small calculation shows that

m+l—k-1
[m + E pq Z |:m +4 - 1:| xkpz(kfl) 1_[ (ps _ qu)
pq

k-1

pq k=1 s=0
14 b
- xM( x+(1-x)) =
[m]3, P
[m + Z m+f-1 et s
g Z ‘-1, ] (-4
ml 4o »a 5=0
=x2q2 [m+ L], qlm+ 1L - 1pq(px+(1 x))m% )

[m]3,

B (m+L],qm+€—1],4m+£-2],,

[m]3,
Also

m+l-k-1

[m +£] m+{-1 _ S

q [ ]3qu|: :| xkpk l[k—l]p,q 1_[ (p _qsx)
»a 5=0
L £-1 m
= 2pqx2 [ + ]p,q[m3+ pa (px +(1- )) = 2
(ml;,
This completes the proof. O

Lemma 2.2 Let B‘m(-; -) be given by (2.1). Then, for any x € [0,1] and 0 < g < p <1, we
have the following identities:
() B2 (g — L) = ooy

[mlpq
(i) B2 (er — %) = (% ~1)x;

(iii)

BM ((61 x)2;x)

[m + Z]pq m+l— 1
[m + L], 2 Im+ ],
+ ((77;;;;]1,,:[1 - 1) + 4”[17;][2%:(1 (qlm+€-1]p5—[m+ E]p,q)>x2.

3 On the convergence of (p, g)-Bernstein-Schurer operators
Let f € C[0, y]. The modulus of continuity of f, denoted by w(f, ), gives the maximum
oscillation of f in any interval of length not exceeding § > 0 and it is given by the relation

w(f!(s) = Ssup lf(y) _f(x)lr X,y € [Or J/]

ly—x]<é
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It is well known that lims_, o, @(f,8) = 0 for f € C[0, y] and for any § > O one has
ly — x|
F0) £ )] < (yT ; 1>w(f,8). (1)

For g € (0,1) and p € (g,1] obviously we have lim,,_, o [],,4 = ﬁ. In order to obtain the
convergence results of the operator Bffl, we take a sequence g, € (0,1) and p,, € (g, 1]

such that lim,,_, o0 pn = 1 and lim,_, oo g1 = 1, s0 we get lim,,,_, oo [m],,, 4,, = 0.

Theorem 3.1 Let p = py, g = qm satisfying 0 < g < pm <1 such that limy_,co pim = 1,
limy,—, oo g = 1. Then for each f € C[0,£ +1],

lim B (f;x) = f, (3.2)
is uniformly on [0,1].

Proof The proofis based on the well-known Korovkin theorem regarding the convergence

of a sequence of linear and positive operators, so it is enough to prove the conditions
Bl (e;x) =« j=0,1,2,{as m — oo}

uniformly on [0,1].

Clearly we have

lim B2 (eg;x) = 1.

m— 00

By making a simple calculation we get

hm [Wl + Z]PWMIWI

=1, asO<qgqu<pm =<1
m=o0 My,

Since 0 < gy, < pim <1, we get

+4
tim 2 owan _
oo [y, g

Hence we have

Jim B ) =

lim B[:Z'éqm (ez;x) = xz. (]

m— 00

Theorem 3.2 Iff € C[0,£ + 1], then

| B, (F5%) = ()] < 207 (8,),
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where
Sm=% lm+ lpg _ 1‘
[m]pq
. [(m+€],, . \/xZ(q[m + 0 =1y —[m+ L) +x(px+ (1 - x))m+z -1
[m]p,q [m]qu '
Proof

m+l m+€k1
!B’Zfe(fm—f(x)!fZ[m,ﬂ [T -a) () o)
pq

k=0

(Klpg

m+l mal km+£—k—l . |[m]pq — |
=531 i B D —q%c)(T l)a)(f,zS).
k=0 pa

s=0

By using the Cauchy inequality and Lemma 2.1, we have

[Boe (fi%) = f ()|
1 m+l M+l . [k]p,q 2 m+l—k-1 . %
R A o] s

s=0

1
:{E(B‘Zﬂ(ez,x) 2xB (er; %) + x°BL) (e0; %)) ? +1}w(f,6)

[m]3,

{1<[m+€pq(px+ (1- x));";rz 1
={= x
é

[+ Llpglm+ £ —1lpq [+ Elpg :
”( mIz, T2 g +1)> +1}w(ﬁ8)
ey
8 ””l]pq
+( lm+ tpg
[m]p,q
.\/xZ(Q[m+€—l] ~lm [Jrnz]”)”(prr(l Wi 1)2>% +1}w(f»5)
pa
S{l(xw_l‘
8 [m]p,q

(m+ L]y

[m]p,q

2 _ m+l-1
\/x (glm+€—1]pq — [m+L]pg) +x(px+ (1 - x)) )+1}w(f,6

[m]pq

by using (a® + )2 < (|a| + |b]).
Hence we obtain the desired result by choosing § = §,,.

Page 7 of 12
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4 Direct theorems on (p, g)-Bernstein-Schurer operators
The Peetre K-functional is defined by

K(f,8) =inf{(IIf —gll +58|g"|) : g € W?},
where
W?={geClo,0+1]:¢,¢" € C[0,£+1]}.

Then there exists a positive constant C > 0 such that Kx(f,8) < Caws(f,s 7 ), § > 0, where the
second order modulus of continuity is given by

a)z(f,é%): sup sup [f(x+2h)—2f(x+h)+f(x)‘.

O<hes? 1 x€[0,0+1]

Theorem 4.1 Let f € C[0,£ +1], g’ € C[0,£ + 1] and satisfying 0 < g < p < 1. Then for all
n € N there exists a constant C > 0 such that

= CwZ (f’ (SWI (x));

Blr)r’z,ql(f;x) _f(x) — xg’(x)<w _ 1)

[m]p,q
where
[m+£—1] m+
an(x)=W‘qpq(Px+(l_ )) ‘31
[m+ L], 2 m+ 2
(et -1) + Tt ==t )

Proof Let g € W2. Then from the Taylor expansion, we get

g(t) =glx) + £ x)(t —x) + f (t-uw)g"(u)du, tel0,A],A>0.

X

Now by Lemma 2.1, we have

Bp'qz(g;x)=g(x)+xg(x)([m+£]” ) B“(/ uw)du; p, q; )
" [m]pq x

¢
B’Z;‘.’z(g;x)—g(x)—xg’(x)<w[r;¢—1>‘SBIZ;‘,’@ ‘ / |(er - w)||¢" ()] dus p, g5 ¢

]P:‘I

)

< B ((er - x5p,45%) ¢

Hence we get

B2 (g) — g(x) — xg (x)<[mn:ﬂ —1)‘

[mly.q

< 1) (T e -

[m]?, P4
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2
+ ((m - 1) + M(q[m +l=1pg—[m+ Z]1%!1))’62)'

[m]p,q [m]}%’q

On the other hand we have

[m+€—1]p,q_1>’

(m]yq

B (f;x) — f (x) — xg (%) <

< [BY2((f - g)i%) - (f — 0 ®)]

(m+L—-1],4 _1)‘
[m]p,q ’

+ B‘;fe (g;%) —g(x) - xg’(x)(

Since

|BL(F;)| < IIf I,
we have

(m+L-1],, _1)‘

B (f;%) — f () — xg’(x)<

[m]p,q
=IF -l
£ P
o) (M e -
[ml;, P4
[m + £]), > [m+4),
+ ((LF};]%:‘I - 1) + 7;7;[-]127:6] (qlm+€-1]pq—[m+ Z]p,q))x2>.

Now taking the infimum on the right hand side over all g € W2, we get

(m+€-1],, _1)

[m]p,q

<CK>(f, 5., (x)).

B (f;%) — f () — xg’(x)<
In view of the property of the K-functional, we get

<Cw, (f’ Sm (x)) .

Blr’r’z,ql(f;x) _f(x) — xg’(x)<w _ 1)

[m]p,q

This completes the proof. O

Theorem4.2 Letf € C[0,¢+1] besuchthatf',f" € C[0,¢+1], and the sequence {p,,}, {qm}
satisfying 0 < q,, < pm < 1 such that p,, = 1, ¢, - 1 and p) — o, gl — B as m — oo,
where 0 < «, 8 < 1. Then

. s x(h — ax)
i (], (B () = @) = 22 )
is uniform on [0, € + 1], where 0 < A <1.

Proof From the Taylor formula, we have

fO =f@) +f @)t -x)+ %f”(x)(t - %)%+ r(t,0)(er — %),
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where r(¢,x) is the remainder term and lim,_, , r(t,x) = 0, therefore we have

(1) gy (B ™" (f3%) = f ()
@)

= [Mlpgm <f "(x)BL, ™" ((e1 — x);%) + 5 oD ((er — %)%5 %)
+ Bfn”féqm (r(t, x)(t - %)% x)) .

Now by applying the Cauchy-Schwartz inequality, we have

B (6, %) (¢ - 20%52) < /B (26,05 28) /B (¢ - 20%52).
Since r%(x,x) = 0, and %(¢,x) € C[0, £ + 1], from Theorem 3.1, we have

Bpmz’q”‘ (rz(t, x);x) =r(x,x) =0,

m,

which implies that
Bfn’f’éq’” (r(t, x)(t — x)z;x) =0,

i [mly,, 4, (B,"" ((e1 — %);%)) = 1

¢
m [l 0 (M _ 1) -0,

i
- [m]Pm,q;'n

lim [m],,q,, (Boi™" ((e1 - x)%x))

m—0o0
[m+£] mm m+l-1
=x lgn P 5 Pt (pmx +(1- x))p%qm
i [ ]Pm:Qm
[m +£] 2
+x% lim [m]pm,qm<<4[ ] L —1)
W— 00 m Pimsdm
[m+£pam
%(qm [Wl +4- I]Pmﬂm - [m + E]Pmﬂm) 4
P

W}i_r)noo[m]pm,qm (Bpm'f’éqm ((e1 - x)z;x)) =ax —ax? = x(h — ax),

where A € (0,1] depends on the sequence {p,,}.
Hence we have

x(h—ax) ,

im (1], (Bor™ (3 %) - f (x)) = /().

m—> 00 2

This completes the proof. d

Now we give the rate of convergence of the operators Bf’ff (f;x) in terms of the elements
of the usual Lipschitz class Lip,,(v).

Letf € C[0,m + £], M >0 and 0 < v < 1. We recall that f belongs to the class Lip,,(v) if
the inequality

lf(t) _f(x)|§M|t_x|v (t,xe(O,l])

is satisfied.
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Theorem 4.3 Let 0 < g < p <1. Then for each f € Lip,,(v) we have

|Bo, (f; %) — f (%) < M8, (),

where
[Wl + Z] m+l-1
82,(x) [m]}?‘:q (px+(1- ))p,q
[ + €], > [m+d,
+ ((7’4&;]%;’1 - 1) + L[ln:];;q (qlm+€-1]pq - [m+ E]m))acz.

Proof By the monotonicity of the operators B.,’, (f;x), we can write

| B f5%) = f@)| < By (If(0) —f )] 2 g50)
m+l m+l—k-1 k
S T v () s
k=0 pa s=0 Pq

v

m+l mal m+l—k-1 [k]
= |: k :|pqu l:[ (ps_qsx)’ﬂ_x

where P, 0 x(x) = [’"k" l]p qu [ Be_k_l(ps - g’x).
Now applying the Holder inequality, we have

m+l k 2 % m+l 2%‘)
B (f3%) =f ()] <M <Z Pm,z,k(x)< Ky x> ) <Z Pm,l,k(x)>
k=0 k=0

[m]p,q -

= M(B2%,((er — )% %)) .
Choosing 8 : §,,(x) = Bffg((el —x)%;x), we obtain

|BL, (%) — £ (6)| < M5}, ().
Hence, the desired result is obtained. O

5 Conclusion

By using the notion of (p, g)-integers we introduced (p, q)-Bernstein-Schurer operators
and investigated some approximation properties of these operators. We obtained the rate
of convergence by using the modulus of continuity and also established some direct theo-
rems. These results generalize the approximation results proved for g-Bernstein-Schurer
operators, which are directly obtained by our results for p = 1.
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