Hou et al. Journal of Inequalities and Applications (2015) 2015:240 ® Journal of Inequalities and Applications

DOI 10.1186/513660-015-0762-9

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

A posteriori error estimates of mixed finite
element solutions for fourth order parabolic
control problems

Chunjuan Hou'", Yanping Chen? and Zuliang Lu®

"Correspondence:
houchunjuanhao@163.com
'Department of Accounting,
Huashang College, Guangdong
University of Finance, Guangzhou,
511300, PR. China

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, a fourth order quadratic parabolic optimal control problem is analyzed.
The state and co-state are discretized by the order k Raviart-Thomas mixed finite
element spaces, and the control is approximated by piecewise polynomials of order k
(k > 0). At last, the results of a posteriori error estimates are given in Lemma 2.1 by
using mixed elliptic reconstruction methods.
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1 Introduction

It is known that optimal control problems governed by partial differential equations
(PDEs, for short) play a great role in modern science, technology, engineering and so on.
There has been extensive theoretical research for finite element approximation of various
optimal control problems (see, e.g., [1-12]), and some scholars have been paying much
attention to the mixed finite element methods for PDEs (see, e.g., [13—21]). As a matter of
fact, the fourth PDEs of this method is always a hot special topic. For example, in 1978 (see
[22]), Brezzi and Raviart studied fourth order elliptic equations by mixed element meth-
ods. In [13], Brezzi and Fortin presented some results on the application of the mixed
finite element methods to linear elliptic problems. In [23], Li developed mixed finite el-
ement methods for solving fourth-order elliptic and parabolic problems by using RBFs
and gave similar error estimates as classical mixed finite element methods. Several recent
works have been devoted to the analysis of this field for the error estimates, for example,
Cao and Yang got the a priori error estimates using Ciarlet-Raviart mixed finite element
methods for the fourth order control problems governed by the first bi-harmonic equation
(see [24]). Hou studied a class of fourth order quadratic elliptic optimal control problems,
where the state and co-state are approximated by the order k Raviart-Thomas mixed finite
element spaces and the control variable is approximated by piecewise polynomials of or-
der k (k > 1), and he derived a posteriori error estimates for both the control and the state
approximations (see [25]). Although the error analysis for the finite element discretization
of optimal control problems for the fourth order PDEs is discussed in many publications,
there are only a few published results on this topic for parabolic problems. Therefore, we
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will study the error estimates using mixed finite element for the fourth order parabolic
optimal control problems.

This paper is organized as follows. Firstly, we discuss the semi-discrete mixed finite ele-
ment approximation for the fourth order parabolic optimal control problem in Section 2.
Next, a posteriori error estimates of mixed finite element approximation for the control
problem are given in Section 3. Finally, we analyze the conclusion and future work in Sec-
tion 4.

2 Mixed methods for optimal control problem
In the paper, we adopt the standard notation W”#(2) for Sobolev spaces on Q with a

norm || - ||, given by

Wiz, = > 1DV g

lee|<m

a semi-norm | - |,,,, given by

Vi, = Z ||Da"||1£p(9)'

la|=m

For p = 2, we denote H"(2) = W"*(2),and || - [l = I| - [lma2> | - | = I - llo2-
For the sake of simplicity, we take V = H(div; Q) = {v € (L>(R))%,divv € L*()} and W =
L?(R2), the Hilbert space V is defined by the following norm:

1
2 o2 )2
IVllkraiv) = (V15,0 + I1divvIig ) 2.

In this paper, the model problem that we shall investigate is the following two-

dimensional optimal control problem:

1T
min {5/ (LAY + VY + 1y = yall + llll) dt} (2.)
0

uellyq

subject to the state equations

ye(x,t) + A y(x, t) = f(x,t) + u(x,t), x€Q,te(0,T], (2.2)
Y 8) = Ay, ) =0, x€dQtel0,T], (2.3)
y(x,0) =yo(x), x€Q, (2.4)
Ay(x,0) =y1(x), x€, (2.5)

where the bounded open set 2 C R? is a convex polygon with the bounded 92, J = [0, T].
¥4 is continuously differentiable with respect to ¢; moreover, f,y; € L*(J; W). We let Uy,q

denote the admissible set of the control variable, which is defined by

T
L[adz{u(x,t)eLz(];W):/(; /Qu(x,t)zo,xesz,we]}. (2.6)
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We denote by L*(0, T; W1(2)) the Banach space of all L* integrable functions from
(0, T) into W™1(Q2) with the norm

T s
VIl s 0,75 wma () = (/ IvIyma) df) , forse(l,00),
0

and the standard modification for s = co. Similarly, one can define the spaces H*(0, T;
W4(Q2)) and CX(0, T; W™4(2)).
Throughout this paper, (-, -) denotes the inner product in L2(£2), the form is as follows:

(u,v)=/ uv, Y(u,v)e W xW.
Q

Let p = —Vyand y = —Ay, then we can rewrite (2.1)-(2.5) as

min L [ 050 1 = ) e .7)
subject to
p=-Vy, xeQ,te], (2.8)
divp=y x€Q,te], (2.9)
p=-Vy, xeQte], (2.10)
ye+divp=f+u, xeQte], (2.11)
y(x, ) =y(x,t) =0, x€dQ,te], (2.12)
y(x,0) =yo(x), x€Q, (2.13)
¥, 0) =y1(x), x€Q. (2.14)

Then a possible weak formula for the state equation reads: find (p, 9, p, y, u) € (V x W)? x
U,q such that

urgg:d{% / S5 + 151 + Ly -l ||u||2)dt} (215)
subject to
®,v)-(,divv)=0, VveV,t€e], (2.16)
(divp,w)=(@,w), YweW,te], (2.17)
(p,v)-(,divv)=0, VveV,te], (2.18)
ew) + (divp,w) = (f +u,w), VYwe W,te], (2.19)
y(x,0) =yo(x), x €€, (2.20)
y(x,0) =nx), x€Q. (2.21)

It is well known (see [26]) that the above control problem has a unique solution
p:y.p,y,u) € (V x W)? x U,q, and that (p,y,p,y,u) is the solution of (2.16)-(2.21) if and
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only if there exists a co-state (¢,z,4,z) € (V x W)? such that (p,7, 9,9, 4,2 §, z, u) satisfies
the following optimal conditions for ¢ € J:

@v) - (n,divy), VveV,te], (2.22)
divp,w)=F,w), YweW,te], (2.23)
(p,v) - (F,div) =0, VveV,te], (2.24)
ow) + (divp,w) = (f +u,w), YweW,te], (2.25)
y(x,0) =yo(x), x€, (2.26)
§(x,0)=yx), xe (2.27)
@) - (zdivv) =0, VYveV,te], (2.28)
divg,w) = & w) + G,w), YweW,te], (2.29)
(V) - Z,divv) = —=(p,v), VveV,te], (2.30)
—(z,w) + (divg,w) = (y—ya,w), Ywe W,te], (2.31)
2%, T)=2(x, T) =0, x€g, (2.32)
/OT(u +zii—u)dt >0, Viie U (2.33)

In order to derive our final aim, we now give the following important result (see [27]).

Lemma 2.1 [27] Let (p,y,p,y, 9,2, 4z, u) be the solution of (2.22)-(2.33), then we have the
relation

u = max{0,z} — z,

fOT Jo zdxdt

where z =
JE Jqrdxat

denotes the integral average on Q2 x ] of the function z.

In the following, we will consider the semi-discrete finite element for the problem.

Let 7" denote a regular triangulation of the polygonal domain Q, 7" = {T;}, here 4 is
the maximum diameter of the element T} in 7". Moreover, let e, denote the set of element
sides of the triangulation 7" with E;, = | e;,. Furthermore, let V;, x W, C V x W be the
Raviart-Thomas space (see [28]) associated with the triangulations 7" of Q2. P denotes the
space of polynomials of total degree at most k (k > 0). Let V(T;) = {v e P,%(Ti) +x - Pr(T)},
W (T;) = P¢(T;), and we define

Wy, = {Wh e W:VT; e Th)Wh|T5€W(Ti)}’
V= {Vh eV VT, e T" Vh|T,-eV(Ti)}’
Ky = L2(J; W) O Ui,

The mixed finite element discretization of (2.15)-(2.21) is rewritten as follows: find
1> I i yis ) € (L2(J; Vi) x L2(J; Wi,))? x K, such that

gt .
min {—/ (U717 + 1217 + lly = yall® + llull®) dt}, (2.34)
0

wpeky | 2
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@ vn) - divey) =0, Vv, eV te], (2.35)
(divpy, wy) = O wi), Ywpe Wy, te], (2.36)
®nvi) = O, divvy) =0, Vv, e Vit e], (2.37)
Onewi) + (div pr, wy) = (f + up, wi), Ywp € Wiyt €], (2.38)
yi(x,0)=yp(x), xeQ, (2.39)
(0= (x), x€Q, (2.40)

where yg(x) € W), and y{’ (x) € W), are two approximations of yy and y;. The above optimal
control problem again has a unique solution (py, ¥, Pn, Y un), and that (pp, Y, Pn, yi, un) is
the solution of (2.35)-(2.40) if and only if there is a co-state (g, Zn, G, zn) € (L2(J; Vi) x
L2(J; W},))? such that (py, i, P Y Gus Zhs @iy 2) satisfies the following optimality condi-

tions:
Bnovn) — o divvy) =0, Vv, eV, te], (2.41)
(div pp, wi) = O, wi),  Ywp € Wit €, (2.42)
@nsvi) = G divey) =0, Vv, e Vi, te], (2.43)
e wh) + (divpr, wy) = (f + up, wi), Ywy € Wyt €], (2.44)
yu(x,0) = yh(x), x€Q, (2.45)
In(%,0) =y (x), xeQ, (2.46)
(Gnvi) — (zn,divvy) =0, VYveV,te], (2.47)
(div gn, wn) = Zn, W) + G wi),  Ywy € Wit €], (2.48)
(qnvi) — @n, divvy) = —(pn,vi),  Yvw e Vit €], (2.49)
—(zne; wi) + (divgn, wi) = 9n — Y2 W), Ywp e Wit €], (2.50)
znx, T)=2,(x, T) =0, x€&, (2.51)
T
/o (un + zpy by — up)dt >0, Vi, € K. (2.52)

Similar to Lemma 2.1, we can get the relationship between the control approximation

uy, and the co-state approximation z;, which satisfies

uy = max{0,z,} — zy,

JJ Jozndxdt

I fqrdxdt
In order to continue our analysis, we shall introduce some intermediate variables. For

where zj, = denotes the integral average on Q2 x J of the function zj,.

any control function u;, € Kj,, we define the state solution p(uy), ¥(up,), p(un), y(un), q(un),
Z(un), q(up), z(uy) satisfying

(P@n),v) = (Y(up),divv) =0, VveV,te], (2.53)

(div pun), w) = (F(un),w), Ywe W,t€], (2.54)

Page 5 of 20
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(p(un),v) — ((un), divv) =0, VveV,te],

(ve(un), w) + (divp(un), w) = (f + up,w), Ywe W,t€],
Y(up)(x,0) = yo(x), x€,

Yun)(x,0) =y (x), x€€,

(q(un),v) = (z(up),divv) =0, VveV,te],

(divg(un), w) = (Z(up), w) + (§(un), w), Ywe W,te],
(q(un),v) - (Z(up), divv) = —(B(un),v), VveV,te],
~(ze(un), w) + (divq(un), w) = (¥(wn) = yaw), Ywe W,te],
2(un) (%, T) = Z(uy)(x, T) =0, x€,

where the exact solutions y(u;,) and z(u;,) satisfy the zero boundary condition.

Now we define the following errors:

ey = y(Un) = Y ey = y(up) = Y, ey, = p(un) — pn, ep = p(un) — pn,

eq =q(un) — qn, ez = q(un) — qn, e, = z(uy) — zp, ez = zZ(uy) — zp,.
Next, from (2.41)-(2.50), (2.53)-(2.62), we can get the error equations as follows:

(ep,v) — (), divv) = —n(v), VYveV,te],

(divep, w) — (5, W) = —ra(w), Ywe W,te],

(ep,v) — (5, divv) = —r3(v), YveV,te],

(eye, W) — (dive,, w) = —r4(w), Ywe W,te],

(ez,v) — (s, divv) = —-r5(v), VYveV,te],

(diveg, w) — (ez, w) — (g5, w) = —16(w), Ywe W,te],
(egv) — (e3,divv) + (e5,v) = —17(v), VYveV,te],

—(ezew) + (dive, w) = (e, w) —13(w), Ywe W,te],
where r;-rg are given as follows:

rn(v):= pp,v) — (yp, divy), ra(w) := (div pp, w) — (Fp, w),
r3(v) := (pn, v) — O, divv), ra(w) := W, w) + (div pp, w) — (f + up, w),

rs(v) = (qnv) = (zndivy),  re(w):=(divgn,w) = @nw) — (n W),

Page 6 of 20

(2.55)
(2.56)
(2.57)
(2.58)
(2.59)
(2.60)
(2.61)
(2.62)

(2.63)

(2.64)
(2.65)
(2.66)
(2.67)
(2.68)
(2.69)
(2.70)

(2.71)

}"7(V) = (th V) - (Zh:div V) + (ﬁhtv)7 Vg(W) = (le Qh,W) - (Zh,t,W) - (yh —Yd, W)~

Then, we introduce mixed elliptic reconstructions y(¢),7(2),%(¢),2(t) € Hy(Q2) and

p@), p(t), p(t), p(t) € V of yu(t), yu(t), Zn(t), zu(t) and py(t), pu(t), Gu(t), qu(t) for t € J, re-
spectively. For given functions Y, ¥u, Zn, Zn, Pn» Ph» Gn» qn> let ¥(2), (¢), z(8), 2(¢) € H(l)(Q)
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and p(¢t), p(¢), p(t), p(t) € V satisfy the following equations:

B D) -G -ydivy)=—n(), WveV,te], (2.72)
(div(p - ), w) = G = I w) = -ra(w), Vwe W,te], (2.73)
B -pwv) -G - dive) = -rs(v), VveV,te], (2.74)
(div(p - pn),w) = —ra(w), VYwe W,t€], (2.75)
G- qnv) - G-z, divy) = —r5(v), VveV,te], (2.76)
(div(g = gu),w) = G =2, w) = (G =T w) = —re(w), Ywe W,te], (2.77)
@G- qnv) - E=Z,divv) = - - pp,v) -1 (v), WYveV,te], (2.78)
(div(g — qn),w) = G =y w) —rs(w), Vwe W,te]. (2.79)

We can derive r1(vy) = r3(vi) = r5(vir) = r7(vi), Yvi € Vi, and ra(wy,) = ra(wy,) = re(wy,) =
rs(wy), Ywy, € Wy, we note that py, ¥, pu, yi are standard mixed elliptic projections of p,
9, b, J, respectively, gy, Zy, qn, z; are nonstandard mixed elliptic projections of g, Z, g, 2.

We can define as follows by mixed elliptic reconstructions:

ey ==y = (G -y)=ny=8,  e=0G-n)—(-w)):=n-8&,
ep=O—pn)~ (P-pn)=n,~&,  e=0~pn)~ (D -Dwn)) =15~
eq=G-aqn) - (G-qun):=ng-&,  e3=(G-qn) —(q-qun)) :=nz - &
e;=(z-zp)— (2—2(up) :=n, - &, e:=(2-2p) — (2-2(up)) =1z — &.

Next, we will give some preliminary results about the intermediate solution. We define

the standard L2-orthogonal projection P;, : W — W/, which satisfies: for any w € W,

(w=Pyw,wy) =0, Vw, e W, (2.80)
I1Pyw —wllog < Cliwllegh', 0<t<k+1ifweWnWw"(Q), (2.81)
1Paw —wl_, < Cllw|lH*, 0<rt<k+1,ifweH(Q). (2.82)

Recall the Fortin projection (see [22] and [28]) ITj, : V — V},, which satisfies: forany v e V,

(div(v = TIyv),wp) =0, Vw, € W, (2.83)
lv=Tvllog < CH Wllg  lg<r<k+1L¥veVn(W(Q)?, (2.84)
|div(v - TIp) |, < CH'[[divv],, 0 <r<k+1Vdivve H'(RQ). (2.85)

We have the commuting properties

div ol‘[h = Ph odivV — Wh and diV([ - Hh)V 1 Wh, (286)

where I denotes an identity operator.
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3 A posteriori error estimates
In this section, we give some lemmas to prepare for our results, and then we give a pos-
teriori estimates for the mixed finite element approximation to the fourth order parabolic
optimal control problems. Let (p, y, p, ¥, 4,2, ¢, z, ) and (i, Y1, Pi> Yii» Gis Zh> @is 20> Uy) be the
solutions of (2.22)-(2.33) and (2.41)-(2.52), respectively. Now we decompose the errors as
the following forms:

p—-pL=p —p(uh) +p(uh) —Phi=Tp + )

Y=n =5 —y(up) +y(up) =y =15 + ¢,

P —DPn=p—plup) +plun) = pr =715 + ep,

Y=y =y=yun) +yun) —yn =1y +ey,

q—an=q-q(up) +q(up) —qn =714+ e,

Z2—Zp=2z—2(up) + Z(up) — Zp := 13 + €3,

q—qn=q—q(un) + q(un) — qn:=rz + ez,

z—zp=2z—2(up) + z(up) —zp := 1, + e,.

From (2.22)-(2.25), (2.53)-(2.56) and (2.59)-(2.62), we can get the error equations as

follows:
(rpv) = (ry,divy) =0, VvelV, (3.1)
(divrg, w) = (r5,w), Ywe W, (3.2)
(rp,v) = (r5,divy) =0, VveV, (3.3)
(ryow) + ([divry, w) = (u—up,w), Ywe W, (3.4)
(rzv) — (r,dive) =0, VvelV, (3.5)
(divrg,w) = (rz,w) + (15, w), Ywe W, (3.6)
(rgv) — (s, divy) = =(r,v), YveV, (3.7)
—(rzpw) + (divrg,w) = (ry,w), YweW. (3.8)

Lemma3.1 Letry, 15,15, 1y, I'q, 13, 75, T Satisfy (3.1)-(3.8), then there exists a constant C > 0
independent of h such that

7y lzoegiwy + r5llzoegswy + Irpllzzgwy + 1751l 25wy < Cllu = unll 2wy (3.9)

I7ellzoegswy + 17zl 2wy + g llz2gswy + 173112 gow) < Cllu = unll 25wy (3.10)

Proof Part 1. Let t = 0 and v = r3(0) in (3.1), since r,(0) = 0, so we find that r; = 0. Differ-
entiate (3.1) with respect to ¢, and set v = r,, as the test function, then we have

(Fp,0:7p) = (1, divry). (3.11)
Then, let v = r3, in (3.3), and from div r; = rj, we get that

(1, 15,0) = (r5,divry ) = (5, 75,0). (3.12)
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Now we set w = divr, in (3.4), we derive that

(rypdivr,) + (divr,,divr,) = (4 — uy,divr,). (3.13)
From (3.11)-(3.13), we have

(5, 15,0) + (divry, divr,) = (u — uy,divr,),
the above equation can be rewritten as follows:

5 g 1Tl + v l1* < C(llu = will® + [ divry|1%).
We integrate the above inequality from 0 to T and note r5(0) = 0, then we get
75l oo giwy + 1AV 7l 2wy < Cllae = unll 2wy (3.14)
Set v =r, and v = r; as the test functions in (3.1) and (3.3), respectively, we have
(ry,divry,) = (r5,divry) = (r5,75). (3.15)
Then, let w = r, in (3.4) and combine with (3.15), we derive that
(Fyerry) + (15, 15) = (U — up, 1),
which leads to
Egllryll2 +1l7511% < C(llee = unll® + 117y 11%).
On integrating the above inequality from 0 to £, using Gronwall’s lemma and noting r,(0) =

0, we can get

Iryllzeogiwy + 75l 2 gswy < Cll = unll 2wy (3.16)
In (3.13), let v = r,, we have

(ps1p) = (r5,divry).

Integrating the above equation with respect to time from 0 to T, combining with (3.14)

and (3.16), we arrive at
Irpll2gwy < Irsll2gwy + 1V rpli2gwy < Cllu — unll 2 g,w)- (3.17)
Let v =3, so we have

(r[ﬂrfﬂ) = (r)udivr[?) = (ryrrjf):
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we can get the following inequality from the above equation:
a1 < C(liryl* + 17511%).

Integrating the above inequality again from 0 to T and noticing (3.16), we can obtain
75l 205wy < Cllu = unll 2, (3.18)

By (3.14), (3.16)-(3.18), we derive (3.9).

Part 11. Choosing v = r, in (3.5) and v = r in (3.7), respectively, we obtain

(divry,r;) = (r3,divry) — (rs, 13). (3.19)
Let v =rz in (3.1), we have

(rp,17) = (1), divry). (3.20)
Set w = r, in (3.8), we arrive at

—(rze12) + (divrg, 1) = (ry, 12). (3.21)
Now from (3.19)-(3.21) we can get that

—(rzp 1) + (r3,divirg) — (ry, divrg) = (ry, 12). (3.22)
Then, set w = divr; in (3.6) and combine with (3.22), we obtain

(10 1) + (divrg, divry) = (ry,divrg) + (r5,divrg) + (ry, 72),
which leads to

1d 9 . 5 2 2 . 2 2
—— el + 1 divrg1? < C(Imy 12 + 175 1? + I divrg 1 + l1r211?).

2dt

Integrating the above equation with respect to time from ¢ to T, using Gronwall’s lemma
and (3.9), noting r,(T) = 0, we can derive that

7l eo giawy + 11 div 31200y < C(Ilt =l 7200)- (3.23)
Let v =r; in (3.5), we get

(rz,17) = (rz,divry).
We integrate the above equation from 0 to T and notice (3.14), then we can obtain that

17zl 2wy < Cll = wnll 2 g )- (3.24)
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Let w = r; in (3.6), so we arrive at
(rz,rz) = (divrg, rz) — (5, 72),
the above equation can be rewritten as follows:
71 < C(ILdivrg|® + 17207 + [I751%).
We integrate the above equation from 0 to 7, and from (3.9), (3.23), we have
720 25wy < C(llu = unll2g,wy)- (3.25)
Set v =r,in (3.7), it yields that
(rgs1q) = (rz,divry) — (r5,74),
then we have
g > < C(Il7ll® + 17112 + 1 divrg|?). (3.26)
Let w = divr, in (3.8), we have
(divrg,divry) = (1, divry) + (ry,divry),
it also can be restated as
Idivrgl* < C(llrzel? + 1 divrgI1* + [Im,11%),
where it leads to
divrg > < C(Irzel? + e = unll?). (3.27)
Now set w = r,; in (3.8), we get that
—(Pt:720) + (div rqrrz,t) = (Vy; Yz0)s
we can rewrite the above equation as follows:

1relZagngy < CUI2negany + 1 divrglag)

< C(llu- Mh||iz(,;w) + || div rq”iZ(];W))' (3.28)
From (3.26)-(3.28), we can obtain that
174172y < Clltt = allZ25, - (3:29)

Combining (3.29) with (3.23)-(3.25), we complete the result of (3.10). O
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Lemma 3.2 Let (0,5, 0,9, 9,% G,z u) and Dy, Yi> Pio Vi Gi> Zi @i 20 W) be the solutions of
(2.22)-(2.33) and (2.41)-(2.52), respectively. Suppose (uy + zy)|r, € H(T:) and that there
exists w € Ky, such that

T
/ (up + zp,w—u)dt
0

T
<C [ Y bt s iy = iy .
0
T;

Then we have
llot = unll 2g;w) < Ci + Clzn = 2(n) | g, (3.30)
where 1, = (fOT > hZT’, luy, + Zh'irl(Ti) dt)s.
Proof From (2.33), (2.52) and (3.10), we derive that
T
=y = [ (= =)
0
T T
= / (u+z,u—uh)dt+/ (zp + up,up —u)dt
0 0
T T
+ / (zh —z(up), u — uh) dt + / (z(uh) —-Z,U - uh) dt
0 0
T T
< / (zn + uh,w—u)dt+f (zh —z(uh),u—uh)dt
0 0
T
+ / (z(uh) —-Z,U - uh) dt
0

2
< C@)mg + 8l = unll o g + Cllzm = 2@ || + 17117200

L (3.31)

< CO)m, + 8llu = unllayy, + C|l2n = 2(un)

where § denotes an arbitrary small positive number, C(8) is dependent on §~!. By using
(3.31), we can easily obtain (3.30). O

Lemma 3.3 Let y(t), y(¢), 2(¢), 2(¢), p(t), p(t), 4(¢), q(¢) satisfy (2.72)-(2.79). Then we can
derive the following properties:

p=-Vy,  p=y,  p=-Vy  q=-Vz

Using (2.72)-(2.79) in (2.64)-(2.71), we obtain the following error equations:

(&,v) — (&, divv) =0, VveV,te], (3.32)
(divéz,w) - (&,w) =0, YweW,te], (3.33)
(&, v) - (&,divv) =0, VveV,te], (3.34)
Eyw) + (divéy,w) =y, w), YweW,te], (3.35)

(&5,v) — (&,divy) =0, VYveV,te], (3.36)
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(divEz, w) — (&,w) - (§,w) =0, Ywe W,te], (3.37)
(Eq! V) - (E,'Z: div V) = _(%‘1'7' V)r YveV,te], (338)
—(&w) + (divE,w) = (&, w) + (0 w), YweW,te]. (3.39)

Lemma 3.4 Let &), &, &,, &, &, &, &, & satisfy (3.32)-(3.39). Then we have the error
estimates as follows:

18 loogswy + 18l 23wy + 185 1205w

< C(|m @) + [lyo = 75 || + 1nyellzgw)s (3.40)
1€l 25wy < C([my O] + [lyo = 55 | + [m5O) | + |31 =97 | + Iyl 2w, (3.41)
18511zoogswy < C(|0500) | + [l =¥ + el z2g5m)» (3.42)

18z llzoogsw) + I8zl 2w + 18qll2g5w) + 1187 11225m)

= C(Imy@| + 30 =561 + llnyelzzgow + [ n(T)])). (3.43)
Proof First of all, we differentiate equation (3.32) with respect to ¢ and derive
&5v) = (§)1,divy) =0, VYveV,te]. (3.44)
Set v =§&;, in (3.34) as the test function, and from div &; = &5, we obtain
(6ps ) = (&5, divEpy) = (85, €5,0)- (3.45)
Choose w = div§, in (3.35) as the test function, we have
(&, divE,) + (divE,, divE,) = (1, divE,). (3.46)

From (3.44)-(3.46), we derive

(85, 85.0) + (div §p, divEy) = (e, divEp),

it can also be read as

1d

E%II%II2 +1divE, 1> < C(llmyell? + [ div gy 1)

Integrating the above equation with respect to time from 0 to ¢, we have
&5 12wy + 11 div 2wy < C([| &) + el 2w - (3.47)

Setv =&, and v = &5 as the test functions in (3.32) and (3.34), respectively, and note that

div &5 = &5, we have

(&), divEy) = (55, div &p) = (&5, &5)- (3.48)
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Choose w =&, in (3.35), by using (3.48), we obtain

(éy,t: gfy) + (Ej/r 5}7) = (ny,t’gy)i

it can be rewritten as

1d

E%II%}II2 + 118512 < ClImyel® + 15 11%).

On integrating the above inequality with respect from 0 to £ and using Gronwall’s lemma,
it reduces to

18 llz2gw) + 151207 < CIyellzzgm + [€(0)]))- (3.49)
Let v=£, in (3.34), we have

(ps&p) = (§5,divEp),
integrate it from 0 to T, and from (3.47)-(3.49), we get

1€ 172 gy < 1551172000y + 1AV ER NI T,
W) ;W) W)

< C(|&O)] + [&O] + Imelzgm)’

it also means that

18 l12g,w) = C(|& O] + & + Nyl i2gw))- (3.50)
Choose v = &; in (3.32), we derive

(65, 6p) = (55, divEp) = (5),5),
which leads to

1€51> < C(I1E 11> + 155117).-
Integrate the above inequality from 0 to T, using (3.49), we can see that

1631 2wy < C(| &) + Imyell 2gwy)» (3.51)
and notice that

[6@] = C(In @] + [y -l 5O <O+ In-51)- G52

From (3.47) and (3.49)-(3.51), then (3.40)-(3.42) is proved.
Choose v =&, and v = £; as the test functions in (3.36) and (3.38), respectively, we get

(divEy, &) = (&, divE;) — (65,57)- (3.53)
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Let v = & in (3.32), we have
(5,867) = (&), divEy).
Set w = &, in (3.39), we obtain
(&2, €2) + (divEy, &) = (6, 62) + (020 62)-
From (3.53)-(3.55), we derive
—(&2082) + (52, divEy) - (§,,divEy) = (6, 82) + (4, &)
Set w = div&; in (3.37) and combine with (3.56), we can find that
(€2, €2) + (divEg, divEy) = (§),divEy) + (65, divEy) + (§),€2) + (nz, div ),

the above equality is equivalent to

1d . .
—E%IISZII2 + 1 divzl* < C(I6 1% + 1617 + 1| div & II> + &N + 17y 117).-

Integrating this inequality from ¢ to T and using Gronwall’s lemma, we have

&2 gy + 1 iV & 112200
2
< CIE 2y + 18122y + I3 2y + [E(D)

= CIn @1+ o 361"+ Inplizgar + 6D
Choose v =&; in (3.36), we get
(&3,53) = (&, divEy),
integrating the two sides from 0 to T and using (3.57), we obtain
121220y < CIm O + 30 =341 + 1y, + 16D
Let w = &; in (3.37), we derive
(&:,&) = (divEs, 2) - (85, &),
namely,
&> < C(Il divglI* + 181% + 11511°).
Integrating the two sides from 0 to T again and using (3.40) and (3.57), we get

1& 205wy < C(|mO)|| + |0 = 2| + Iyl 2wy + |E(T)])-
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(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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Let v=£,in (3.38), we get
(g:89) = (52, divEy) — (55, 6,),
it can be read as
€41 < C(IEN* + 15517 + Il div £, 11%).
Set w =div&, in (3.39), we can see that
(div &g, divEy) = (&2, divEy) + (&), divEy) + (12, divEy),
which equals
I div &g 11> < C(I1E 17 + 1E 17 + llmy,e %)
Choose w = £, in (3.39), we have

(gz 6z, ¢) + (div gq: &, t) = (gy: &, £) + (nz 6z, £)-

From inequality (3.60), we deduce that

1oy < CUEe 122y + 160y + e 22)-

Due to (3.51), (3.59)-(3.62), we can give that

€40l 2g) < C([[ny0)] +

[yo =98] + Inyell 2gawy + | (D)

Page 16 of 20

(3.60)

(3.61)

(3.62)

(3.63)

Note that e, + &, = n,, from (3.57)-(3.59) and (3.63), we obtain the results (3.42) and

(3.43).

O

Lemma 3.5 Considering Raviart-Thomas elements, there exists a positive constant C,

which is in relation to the domain 2, polynomial degree k and the shape regularity of the

elements, such that

Iy 2 < (|00 div oy + 30| + s>+ min [ = Viwn)|*),
wpeWy,
el < C (o0 i oy + e[+ lns 12+ min [ — V)|,
wpeW),
Il = C (I mo8 e + div s —f =) |* + min [ 1Gs— Viw) ),
wpeWy,

1% < C(|(div By + ) |* + Iy + [ 2T G- | + |- curlu @) || ),
s 1% < C(||hmne + divpn —f —ws)|* + |12 T - )| + |1 - curlu(on)])),
Ingl® < C(Umsll® + g + | 127G - )| + |- curlu@a)|) ),
(

Ingl> < C(|zne + divagn + i — 32| + Iy 1 + I 112

(3.64)

(3.65)

(3.66)

(3.67)
(3.68)

(3.69)
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BT (@ + ) - 0[5, + |- curlu@n + an)|?), (3.70)
Inell? < (1l + sl + min @~ Viwn)| ). (37
wpeWy,

i . 2
el < ([0 e+ iv g+ 3= 3| + oy 2 +

+ min ||h(]§h +4n— Vhwh)Hz), (3.72)
wpeWy,

where J(v - t) expresses the jump of v - t across the element edge I" with the time t being the
tangential unit vector along the edge I" € E, forallve V.

Proof First of all, we must refer to [29] and [30], based on which we can obtain a posteriori
error estimates for 7y, 1y 15, Np, Np» Ng» Ng» Nzr Nz. We only give the proof of L%-norm
estimate of n; for simplicity. Now, with the help of Aubin-Nitsche duality arguments, we
think about ® € H}(2) N H%(R2) as the following elliptic problem:

—div(AV®) =¥, inQ, (3.73)
which satisfies the elliptic regularity result as follows:
[®@ll2 = ClIV|. (3.74)

Exploiting (2.49), (2.79), (3.73) and the definition of I, furthermore, noting that g + p =
—VZin Lemma 3.3 and the equation of (V,wy, (I — I1;)(A®)) = 0, we gain
(2 V) = (nz,—div(VD))
= (2, - div(V®)) + (25, — div(V D))
= (VZ,V®) + (,,div(VD))
= (=4 - p, V®) + (21, div(TT,(VD)))
=~y V@) = 15, V) = (B + g, V) + (B1 + qn, TTn(V D))
= (divn,, ® — P, @) — (1, ® — P, @) + (1, P)
— (03, V®) = (Pn + g, I = TT}) VD)
= (div(g — qn) = = yn), @ — Py ®@) + (n,, D)
— (5, V®) = (1 + g, I = TT}) VD)
= (div(g — qn) = G = yn), @ = Py ®@) + (1, D)
— (03, V®) = (pn + g, I = T1}) VD)
= (zns —divgn + yn — Ya, © = Pp®) + (1, P)
= (1, V) = (Pn + qn — Viown, [ = T1;) VD)
< C(| I8 (2, — div gy + y = ya) | - (@12 + Iyl - 1P|
+npll - IV@I + | @n + gn — Vawn) | - IV )
< C([| 0 2y, — div gy + yn = ya) | + Inyll + 1
+ | B @n + i = Viwn) )1 @l- (3.75)



Hou et al. Journal of Inequalities and Applications (2015) 2015:240 Page 18 of 20

Combining (3.75) with (3.74), we can derive that

(7727 lII)
Tl

< C( | 2y, — div gy + 9 - ya) |

il + gl + min [5Gy + g = Vi ). (3:76)
wpeWy,

Next, taking supremum over W, we should get estimate (3.72). Using a similar method, we
can obtain the other estimates of Lemma 3.5 at last. O

Now, by the aid of Lemmas 3.1-3.5, we can obtain the final result.
Theorem 3.1 Let (p,y,p,9, 9,2, 4,2, u) and (pu Y Pi> Yii» Q> Zh> G Zn> W) be the solutions

of (2.22)-(2.33) and (2.41)-(2.52), respectively. Then, for Vt € ], the following a posteriori
estimates hold true:

ll = unll 2wy < C (0 + [10)] + |30 = || + Nmy,ell 2w

+ (D] + In:ll 2 gw)s (3.77)
Iy = yulleogiwy < Cllu = wnll 2wy + Iyl 2gawy)» (3.78)
17 = Inllzoegiw) < C(”M = unll2gw) + ||775/||L2(];W))r (3.79)
Ip = prllzegwy < Cllw = unll 2wy + 1yl 202w ) (3.80)
12 = Bullegiwy < C(Ilu = wnlli2gwy + 111l 220:w))» (3.81)
Iz = znllogsw) < Clu = unll 2wy + 12ll2g,m)) (3.82)
1Z = Znll rogsw) < C(llue = unll 2wy + 1021 22¢w)) (3.83)
g = gullzgw) < C(ll# = unll 2wy + gl 2gow)» (3.84)
17 = @nllzegswy < CIlw = unll 2wy + Ingllzzg,wy)s (3.85)

where 1, is introduced in Lemma 3.2, and 1y, 0yt M55 Nps Mps Ngs Ng» Nzr Nz are given in
Lemma 3.5.

4 Conclusion and future works

In this paper we discuss the semi-discrete mixed finite element methods of the fourth
order quadratic parabolic optimal control problems. We have established a posteriori error
estimates for both the state, the co-state and the control variables. The a posteriori error
estimates for those problems by finite element methods seem to be new.

In our future work, we shall use the mixed finite element method to deal with fourth
order hyperbolic optimal control problems. Furthermore, we shall consider a posteriori
error estimates and superconvergence of mixed finite element solution for fourth order
hyperbolic optimal control problems.

Competing interests
The authors declare that they have no competing interests.



Hou et al. Journal of Inequalities and Applications (2015) 2015:240 Page 19 of 20

Authors’ contributions
CH, YC and ZL participated in the sequence alignment and drafted the manuscript. All authors read and approved the
final manuscript.

Author details

'Department of Accounting, Huashang College, Guangdong University of Finance, Guangzhou, 511300, PR. China.
2School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, PR. China. *Key Laboratory for
Nonlinear Science and System Structure, Chongging Three Gorges University, Chongging, 404000, PR. China.

Acknowledgements

The authors express their thanks to the referees for their helpful suggestions, which led to improvements of the
presentation. This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,
Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008), National Science Foundation
of China (10971074, 11201510), Chongqing Research Program of Basic Research and Frontier Technology
(cstc2015jcyjA1193), Scientific and Technological Research Program of Chongging Municipal Education Commission and
Science and Technology Project of Wanzhou District of Chongging (2013030050).

Received: 19 October 2014 Accepted: 16 July 2015 Published online: 31 July 2015

References
1. Chen, C, Huang, Y: High Accuracy Theory of Finite Element Methods. Hunan Science and Technology Press,
Changsha (1995)
2. Chen, C, Thomee, V: The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. Ser. B 26,
329-354 (1995)
3. Chen, Y, Dai, Y: Superconvergence for optimal control problems governed by semi-linear elliptic equations. J. Sci.
Comput. 39, 206-221 (2009)
4. Hou, C, Chen, Y, Lu, Z: Superconvergence property of finite element methods for parabolic optimal control problems.
J.Ind. Manag. Optim. 7, 927-945 (2011)
5. Knowles, G: Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20,
414-427 (1982)
6. Kwak, D, Lee, S, Li, Q: Superconvergence of finite element method for parabolic problem. Int. J. Math. Sci. 23, 567-578
(2000)
7. Li, R Ma, H, Liu, W, Tang, T: Adaptive finite element approximation for distributed elliptic optimal control problems.
SIAM J. Control Optim. 41, 1321-1349 (2002)
8. Meyer, C, Résch, A: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 970-985
(2004)
9. Neittaanmaki, P, Tiba, D: Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications.
Dekker, New York (1994)
10. Nie, YY, Thomee, V: A lumped mass finite element method with quadrature for a nonlinear parabolic problem. SIAM J.
Numer. Anal. 5,371-396 (1985)
11. Thomee, V: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics.
Springer, Berlin (2006)
12. Thomee, V, Xu, J, Zhang, N: Superconvergence of the gradient in piecewise linear finite element approximation to a
parabolic problem. SIAM J. Numer. Anal. 26, 553-573 (2006)
13. Brezzi, F, Fortin, M: Mixed and Hybrid Finite Element Methods, pp. 15-32. Springer, New York (1991)
14. Chen, Y: Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int. J. Numer.
Methods Eng. 75, 881-898 (2008)
15. Chen, Y: Superconvergence of optimal control problems by rectangular mixed finite element methods. Math.
Comput. 77, 1269-1291 (2008)
16. Chen, Y, Liu, W: Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int.
J.Numer. Anal. Model. 3, 311-321 (2006)
17. Hou, T: A posteriori-error estimates of semidiscrete mixed finite element methods for hyperbolic optimal control
problems. Bull. Korean Math. Soc. 50, 321-341 (2013)
18. Kwon, Y, Milner, FA: L*°-Error estimates for mixed methods for semilinear second-order elliptic equations. SIAM J.
Numer. Anal. 25, 46-53 (1988)
19. Lu, Z, Chen, Y. A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control
problems. Adv. Appl. Math. Mech. 1, 242-256 (2009)
20. Lu, Z,Chen,Y: L*-Error estimates of triangular mixed finite element methods for optimal control problem govern by
semilinear elliptic equation. Numer. Anal. Appl. 12, 74-86 (2009)
21. Xing, X, Chen, Y: Error estimates of mixed methods for optimal control problems governed by parabolic equations.
Int. J. Numer. Methods Eng. 75, 735-754 (2008)
22. Brezzi, F, Raviart, A: Mixed finite element methods for 4th order elliptic equations. In: Topics in Numerical Analysis,
vol. 3, pp. 33-56 (1978)
23. Li, J: Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv. Comput. Math.
23, 21-30 (2005)
24. Cao, W, Yang, D: Ciarlet-Raviart mixed finite element approximation for an optimal control problem governed by the
first bi-harmonic equation. J. Comput. Appl. Math. 233, 372-388 (2009)
25. Hou, T: Error estimates of mixed finite element approximations for a class of fourth order elliptic control problems.
Bull. Korean Math. Soc. 50, 1127-1144 (2013)
26. Lions, JL: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
27. Chen,Y,Yi, N, Liu, W: A Legendre-Galerkin spectral method for optimal control problems governed by elliptic
equations. SIAM J. Numer. Anal. 46, 2254-2275 (2008)



Hou et al. Journal of Inequalities and Applications (2015) 2015:240 Page 20 of 20

28. Douglas, J Jr, Roberts, JE: Global estimates for mixed methods for second order elliptic equations. Math. Comput.
169, 39-52 (1985)

29. Carstensen, C: A posteriori error estimate for the mixed finite element method. Math. Comput. 218, 465-476 (1997)

30. Chen, Y, Liu, W: Superconvergence property of finite element methods for parabolic optimal control problems.
J.Comput. Appl. Math. 1, 76-89 (2008)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	A posteriori error estimates of mixed ﬁnite element solutions for fourth order parabolic control problems
	Abstract
	Keywords

	Introduction
	Mixed methods for optimal control problem
	A posteriori error estimates
	Conclusion and future works
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


