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Abstract

We prove some weighted W??-a priori bounds for a class of elliptic second order
linear differential operators of Cordes type on unbounded domains of R”, n > 2.
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1 Introduction
Consider the Dirichlet problem

ue W>(2)N W(%2), "

Lu=f, felL*f),
where £2 is an open subset of R”, n > 2, with a suitable regularity property, and L is an
elliptic second order linear differential operator, with measurable coefficients, defined by

n 82 n a
L:—Zﬂljm+2ﬂia—xi + a. (2)

ij=1 i=1

If £2 is bounded and the coefficients a;; are continuous, it is well known that problem (1)
is uniquely solvable (see, for instance, the classical results in [1, 2]).

In the framework of discontinuous coefficients, special attention is paid to the so-called
Cordes condition introduced by HO Cordes in the study of Holder continuity of solu-
tions of (1) (see [2, 3]). It replaces the hypothesis on the continuity of the a;’s with the
requirement that the eigenvalues of the matrix of the coefficients A = (a;;) do not scatter
too much. The Cordes condition enabled Talenti in [4] to provide the well-posedness of
problem (1) for elliptic operators L without the lower order terms a;, 4, and on bounded
domains of R”, n > 3. Later on, the author studied the solvability of problem (1) also in
the planar case, only assuming the following condition on the leading coefficients:

aj=a; €L7(2), ij=12, @

together with the boundedness of the lower order terms a;, a of operator L defined in (2)
(see [5]).
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Next in [6] the above mentioned results in [3, 4] were extended to elliptic equations
of type (1) where the operator L of Cordes type has lower order coefficients in suitable
Lebesgue spaces. Uniqueness and existence results for problem (1), under a more gen-
eral assumption on the discontinuous leading coefficients a;;, known as Chicco-condition,
were proved in [7].

If £2 is an unbounded domain, problem (1) was studied, for instance, in [8], where the
leading coefficients satisfy Cordes type condition and the lower order terms a;, a belong
to suitable classes of Morrey type spaces.

It is well known that the primary tools in the proofs of existence and, sometimes, unique-
ness of solution of elliptic boundary value problems of type (1) are W22-a priori bounds.
Our aim in this paper is to prove some weighted a priori estimates for a problem similar to
(1) on unbounded domains of R”, n > 2, where the leading coefficients are in the class of
discontinuity of Cordes type. More precisely, we consider the following Dirichlet problem:

ue W2(2)N W2(), @

Lu=f, felL*$),
where s € R, W*%(2), VOVSM(.Q), L%($2) are weighted Sobolev spaces on an unbounded
domain £2 of R”, n > 2, whose weight is a power of a function p : 2 — R, of class C*(£2)
such that

u 10%p(x)|
xe2  P)

<+00, V|| <2. (5)

We recall that some W2>2-a priori bounds as well as the well posedness of problem (4)
were proved in [9] in the planar case, assuming that the matrix A is uniformly elliptic,
while the lower order terms satisfy hypotheses similar to those required in [8].

Here, we want to obtain the mentioned weighted a priori estimates in [9] also in the
case # > 2, under an assumption on the leading coefficients a;; of Cordes type and under
hypotheses on the coefficients a; more general than those in [8].

The paper is organized as follows. In the next section we present basic notation and
a class of Morrey type spaces where the lower order terms of our operator belong. In
Section 3 we recall the definitions of our specific weight functions. Then we focus on
certain classes of related weighted Sobolev spaces and we give auxiliary theorems to state
our main results. In the last section we first establish some W?2-a priori estimates and
then, using a result in [10] related to the existence of a topological isomorphism from
W22(£2) in W?2(£2), we are finally able to derive our weighted a priori bounds.

Taking into account the results of this paper, we are now in a position to approach the
study of solvability of problem (4).

2 Function spaces
In this section we recall the definitions and some properties of a class of Morrey type
spaces to which the lower order coefficients of our differential operator belong. These
spaces of Morrey type are a generalization of the classical Morrey spaces L and strictly
contain L7*(R") when £ = R” (see [11] and its bibliography).

Let us fix some notation. Let G be a Lebesgue measurable subset of R” and X(G) be the
o -algebra of all Lebesgue measurable subsets of G. Given F € X(G) we denote by |F]| its
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Lebesgue measure and by y its characteristic function. For every x € F and every ¢t € R,,
we set F(x,t) = F N B(x, t), where B(x, t) is the open ball with center x and radius ¢, and in
particular we put F(x) = F(x,1).

The class of restrictions to F of functions ¢ € C3°(R") with FNsupp ¢ C F is denoted by
®(F) and, for p € [1, +00|, Lfoc (F) is the class of all functions g : F — R such that ¢g € L (F)
for any ¢ € D(F).

From now on, §2 will be an unbounded open subset of R”, n > 2. A function g € I (£2),

loc

1 < p < +00, belongs to the space of Morrey type MP*(£2), 0 < A < n, if the following norm

is finite
_i
Igllam @)= sup T 7 ligllr(2ee)- ©)
7€]0,1]
xef
We point out that

A— Ao —
S (7)
Po

MPO*O(Q2) s MPH(2) if p < po and

(see [12, 13] for details).

We denote by MP*(£2) and M5 (£2) the closures of L™(£2) and C{°(£2) in MP*(£2), re-
spectively.

Furthermore, the following strict inclusion holds true:

MP*(£2) C MPH(82). ®)

Let us put MP(£2) = MPY(2), MP(Q) = A~/Ip'0([2), and M5 (2) = Mf,"o(.Q). For a general sur-
vey on Morrey type spaces MP(£2), we refer to [14].

In the end, we define the moduli of continuity of functions belonging to MP*(82) or
MEH(82). For h € R, and g € MP*(£2), we set

Flglh) =  sup  lgxallawr )
Aex(2)

sup [A()|<}
xe2

As shown in [11], given g € MP*(2), the following characterizations hold:

gEMPHR) Jim_Flgl(n) =0,
)

geMMNR) = (Flglm) + [ (1 = g i ) = O

lim
h—+00
where ¢y, for any /1 € R,, denotes a function of class C§°(R") such that

=1, supp & C B(0,2h).

BOH

05{1’151’ {h\

Thus, if g is a function in MP*(82), a modulus of continuity of g in MP(R2) is a map o [g] :
R, — R, such that

Flgln <olgltn,  lim olgl(h) =0.
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While if g belongs to MEH(82), a modulus of continuity of g in M2 (82) is an application
o,lg] : R, — R, such that

FI0) + | (1= gy o S 00l Tim alg)(h) =0,

3 Weight functions and weighted Sobolev spaces
Next we recall some properties of a class of weights we are interested in, and we adapt to
weighted framework some known embedding results.

Let §2 be an open subset of R”, not necessarily bounded, # > 2. Given k € Ny, we con-
sider a weight function p : 2 — R, such that p € C¥(£2) and

[0% p(x)]
xe2  PKX)

<+00, V|| <k (10)

As an example, we can think of the function
plx) = (1+ |x|2)t, teR.

From (10), by induction procedure, we can deduce the following property on the weight
function p, shown in Lemma 2.1 of [10].

Lemma 3.1 If assumption (10) is satisfied, then

0% p* ()|

<+00, VseR,V|u|<k. (11)
xe2 ,Os(x)

Some further interesting properties of the above weight functions can be found in [10].

Let us define now a class of weighted Sobolev spaces, with a weight function of the
above-mentioned type. For k € Ny, p € [1,+00[, s € R and given a weight function p satis-
fying (10), we denote by W (£2) the space of distributions % on £2 such that

letll oy = D 10°9u] gy < +00, (12)

| <k

equipped with the norm given in (12). Moreover, we put W/So’p (£2) = I5(£2) and we denote
by \;ﬂk’p (§2) the closure of C3°(£2) in Wsk’p (£2). A more detailed account of properties of
weighted Sobolev spaces Wsk’p (£2) can be found in [10]. In particular, in Lemma 2.5 of [10],
the authors proved the following result, which will be a fundamental tool in the proofs of

our main results.

Lemma 3.2 Let k € Ny, p € [1,+00[ and s € R. If assumption (10) is satisfied, then there
exist two constants ¢, co € R, such that

crllullyio gy < 0] o gy < calltllyio g, VEER Vi€ WEP(2), (13)

with ¢ = ¢1(t) and ¢y = c5(t).
Moreover, if 2 has the segment property, then the map

u— p'u
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defines a topological isomorphism from Wsk‘p (2) to WkP(2) and from VoVsk P(82) to
Wh?($2).

For reader’s convenience, we recall here an interpolation result which can be deduced
from Theorem 3.1 of [15].

Theorem 3.3 Ifassumption (10) is satisfied for k = 2, and 2 has the cone property, then for
anyp € [1,+00[, s € Rand forany u € Wsz’p(.Q), we have 3" u € L (2) for || = 1. Moreover,
there exists a constant ¢ € R, depending on $2 and p, such that

1 1
[0"u]1p ) < c(lluel p gy + ||u||L7€(Q) ”32u”ff(m), (14)

We end this section by proving some embedding results, adapted to our needs, which
concern the boundedness of the multiplication operator

u— gu, (15)

where the function g belongs to suitable Morrey type spaces. Here Lemma 3.2 will play a
crucial rule since it allows us to pass to no-weighted framework in order to exploit some
well-known embedding estimates.

Theorem 3.4 Let §2 be an open subset of R" having the cone property and assume (10)
withk=1.Ifg € M"*(2), withr>2and »=0ifn=2,andr €2, nl and . =n—rifn>?2,

and u € WY(2), with s € R, then we have gu € L*($2). Moreover, there exists a constant
c e R, depending only on §2, n, r and s, such that

gl 22y < llgllarra 14l 22 gy (16)
Furthermore, if g € M"*(82), then for any € > 0 there exists a constant c(¢) € R, such that

lgull 2y < €llull gz + c@lull 2y, Ve W), 17)
where c(€) depends on €, 2, n, r, s and o [g].

If g € M(2), then for any € > O there exist a constant ¢ (€) € R, and a bounded open

subset 2. CC §2 with the cone property such that

lgull 2y < €llullyizgg + ¢ @lullzo,,  Yue WAR), (18)
where c'(€) and 2. depend on €, 2, n, p, s, r and o,[g].

Proof Let u € W(£2) and g € M"*(£2). In view of Lemma 3.2 one has p’u € W(£2).
Hence, from Theorem 5.1 in [11] it follows that there exists a constant ¢ € R, such that

| p°gu] 20y = cligllneso) | 0°u] 12 )

where ¢ depends on £2, n, r. Then, according to Lemma 3.2 and (19), we get (16). Now
employing this embedding estimate we easily deduce (17) and (18). Indeed, fix € > 0 and



Caso et al. Journal of Inequalities and Applications (2015) 2015:238 Page 6 of 12

let ¢ be the constant in (16). If g € ZT/IM(Q), then there exists g. € L*>°(£2) such that ||g -
Zellari (@) < €. By (16), for any u € W*(£2), we get

gl 20y < cllg = &l 1l 12 ) + 1€l @ 1l 12(02)- (20)

Thus estimate (17) follows from (20).

On the other hand, if g € M7*(£2), there exists g € C5°(§2) such that ||g — g. () < %
Let £2. be a bounded open subset of §2, with the cone property, such that suppge C £2.
By (16) we have

g2l 2() = cllg = &ellprr () 1l 12 o) + Igettll 22,
< ellullyrzg) + 20" oo 1l 2(20)- (21)
From this last inequality we get (18). O
Theorem 3.5 Let 2 be an open subset of R" having the cone property and let (10) be sat-
isfied for k =2. If g e M'(2), witht =2 if2<n<4,t>2ifn=4,t=n/2 if n >4, and

ue VVSM(Q), with s € R, then we have gu LSZ(.Q). Moreover, there exists a constant ¢ € R,
depending only on $2, n, t and s, such that

g2l 2() = cllglar) el 22 ) (22)
Furthermore, if g € MH(82), then for any € € R, there exists a constant c(€) € R, such that

||gM||Lg(g) = EHZ"HWSM(Q) + C(G)”””Lg(g)x Yu e VVSZ’Z(Q): (23)
where c(€) depends on €, 2, n, t, s and 5 [g].

If g € M!(82), then for any € > 0 there exist a constant c'(¢) € R, and a bounded open
subset 2. CC §2 with the cone property such that

lgeel 2y < €llull 2o + € @llull 2, Yue W), (24)
where ' (€) and 2. depend on €, 2, n, p, s, t and o,[g].

Proof Assume u € W>*(2) and g € M'(£2). According to Lemma 3.2 we have p‘u €
W22(£2). Thus, in view of Theorem 5.1 in [11], there exists a constant ¢ € R, such that

| 0°gu] o) = cllglani) | 0°u] yan g )

where ¢ depends on £2, n, t. Therefore, Lemma 3.2 together with (25) give bound (22).
Now, arguing as in Theorem 3.4, we easily deduce estimates (23) and (24). O

4 A priori estimates

Our goal in this section is to give some W2?-a priori bounds for an elliptic second order
linear differential operator of Cordes type. Here, the crucial analytic tools will be again
Lemma 3.2 and certain unweighted a priori bounds, which we will prove at first.
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Let £2 be an unbounded open subset of R”, n > 2, such that:
(ho) £2 has the uniform C*-regularity property according to Adams [16].

Consider in £2 the second order linear differential operator in non-divergence form

L=- 2} e ax, Za, a. (26)
2

Concerning the leading coefficients, assume that

aj = aj € L¥(82), ij—l o

h
(ho) essinfo (D ) 1%)2(2,, 1 l] 1> n -1 (Cordes type condition)

while for the lower order terms coefficients suppose

() a; e M™(2),i=1,...,n,
withr>2,A=0ifn=2,
withrel2,n,A=n-rifn>2,

(hy) aeM (), witht=2if2<n<4,t>2ifn=4,t=n/2ifn>4.

Here we point out that the Cordes type condition, mentioned in hypothesis (h;), entails
that the operator L defined in (26) is uniformly elliptic in £2. Moreover, it corresponds to
uniform ellipticity if n = 2.

We explicitly observe that, in view of Theorem 5.1 in [11], under the assumptions (hy)-
(h3), the operator

L:W?2(2)— L*(2) (27)

is bounded.
We set

n 32
Lo=- i—.
0 Z”’axiaxj

ij=1

Let us begin by providing an a priori bound of global type.

Lemma 4.1 Under hypotheses (hy), (hy), (h}), (h), there exists a constant c € R, such that
lull o) < c(ILullpy + 1ull2),  Yue W (2) N WH(82), (28)

where c depends on $2, n, r, t, lagl|L<(2), 1aill s 2y 18]l (2)s 0 [a:] and o[al.

Proof Letu e W2*(2)N \;71'2(.(2). Employing (14) of Lemma 1 in [8] we get

lttell 22y < a1 (Lol 20y + Nullz2(@)), (29)
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where ¢; depends on £2, #, ||a;j||;>(x). Thus taking into account (29), Corollary 5.2 in [11]
and a well-known interpolation inequality (see Theorem 4.14 in [16]), we easily deduce
estimate (28). O

In order to prove another a priori bound of global type, we assume the following further

assumptions on the coefficients of the operator L:

b fim o)~

gy @M@,
} a=da +b, a €M(2),beL>®(2),essinfob>by >0,

hj=1,...,n,

where the exponents r, £ and A are as in assumptions (hj) and (hj).
We observe that under hypotheses (hy), (h;), (hy), (h3) the operator (27) is also bounded,

and the following a priori estimate holds.

Lemma 4.2 Under hypotheses (hy), (hy), (hy), (h3), there exist a constant c € R, and a
bounded open subset §2, of §2 with the cone property such that

lullw2ioy < c(IlLull 2oy + Ul 2), Y€ W(2) N WH(R), (30)

where ¢ and Q2o depend on 2, n, 1, t, laglli=(2), iy (o) 1allut@), a5y oolail, oola’],
”b”Loc(_Q) ﬂ}’ld bo.

Proof Assume u € W22(£2)N W2(02). According to Theorem 5 in [8] there exist ¢; € R,
and a bounded open subset £2; CC §2 with the cone property such that

Nl wz(o) < o1 (Lo + aull 20y + lull2(q,)), (31)

where c; and £2; depend on £2, 1, t, ||la;;ll1>o(2)s @l pe(2), zz?j, o,la'], |1bll1=(2) and by. More-
over, from Corollary 5.3 in [11] it follows that for any € € R, there exist ¢(¢) and a bounded

open subset £2. CC £2 with the cone property such that

n
D llaillzg) < ellullwezig) + (@)l 2o, (32)
i=1

where c(€) and £2. depend on €, £2, , 7, ||l 1 (@) Tolail.
Applying in (32) the classical interpolation inequality (see Theorem 4.14 in [16]) and
using (31), we easily get bound (30). O

Now we can use the estimates established above to obtain some W2>?-a priori bounds.

To this aim, from now on we consider a weight p : 2 — R,, p € C*(£2) and such that

0% p ()|

xesf2 :O(

(ha) +o0o, Vl|a|<2.
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Let L be the differential operator defined in (26). We explicitly observe that under assump-
tions (hy), (h1), (hj), (h;) and (hy), the operator

L: W2(2) — L*(£2) (33)

is bounded, as consequence of Theorem 3.4 and Theorem 3.5.
Let us give the first weighted a priori estimate.

Theorem 4.3 Under hypotheses (hy), (hy), (hy), (h3), (ha) and s € R, there exists a constant
c € R, such that

leellyy220) < c(ILull 2 + 1l 2()), Y€ WHA(2)N Wi (@), (34)
where c depends on 2, n, s, 1, t, ||a;jll 1@), |@illyrr @) @l vy, olail, olal.
Proof Fixu € W22(£2) N VOVSI’Z(Q). From Lemma 3.2 it follows that

o€ WA(2) N WH2(£2).
Therefore, in view of Lemma 4.1, there exists ¢; € R, such that

ol oy =L 0) gy + [l ) @)

where ¢; depends on 2, 1, 1, ¢, l|ajjllz(2), |aill sy 1@llmt@), o lai] and o[al.
Easy computations give

” ou ” W22(2)

< (| 1+ S anwiunmﬁ||p5unm), a0

1

where ¢, € R, depends on the same parameters as ¢; and on s.
Then, by Theorem 3.3, there exists a constant ¢ € R, depending only on §2 such that

Z it ey < € (llzy + Nl g it ) (37)

On the other hand, from Theorem 3.4 it follows that for any € € R, there exists ¢;(¢) € R,
such that

n
Y llaul 2y < €llullyra o)+ aa(@)lull 2oy (38)

where ¢;(€) depends on ¢, £2, #, r, s and o [a;].
Hence, combining (36)-(38) with Lemma 3.2, we have

ol 22y < calllLull 2oy + Nl 20y + €l 220

1 1
+e2() (Il 2y + 12l g Nt o)) (39)
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where ¢4 depends on the same parameters as ¢;, and ¢;(¢) depends on €, £2, n, r, s and
a[a,»].

If we choose € = i

3¢, Dy (39) we get

1 1
ltlhy22q0) < s (1Ll 20 + 1l 2y + sl g Nt o ) (40)

where ¢5 depends on the same parameters of ¢y.
Now, using Young’s inequality in (40), we deduce (34). O

In order to prove the second W2?-a priori bound, we need to add the following assump-
tion on the weight function:

o Pa() + o)
(hS) \x\lin;loo T =0

An example of a function verifying this hypothesis is given by
p@) = (1+x?), teR\{0}.

Theorem 4.4 Under hypotheses (hy)-(hs), and s € R, there exist a constant c € R, and a
bounded open subset §2; CC 2 with the cone property such that

leellyy220) < c(ILull 2 + 1l 2(2y),  Yue W2(2) N W(82), (41)

where c and Ql depend on Q: ns,r,t, tl;;, bO; P> ”aijllLOQ(Q)r ”ai”Mr’)‘(Q)r ”a”M‘(.Q)x ”b”Loo(.Q);
o,la;) and o,[a’].

Proof Fix u € W22(2) N W(2). Then by Lemma 3.2 we have
p’ue W(2)n VOVI’Z(.Q).

Hence, in view of Lemma 4.2, there exist ¢; € R, and an open bounded subset 2y CC 2
with the cone property such that

”pS”” w22(Q) = Cl(”L(pS”) ”LZ(Q) + ”pS””LZ(QO))’ (42)

where ¢; and 2y depend on £2, 1, 1, ¢, llajll>(2), laillprr () 1allme(e), agy oolail, oola'l,
”b”Loc(_Q) and ]90.
By (42), with simple calculations, we get the bound

n
|l o < cz(npuu oo+ S0 20umsl s
ij=1

n n
+ Z”ppriux/ ”LZ(Q) + ZH /’Sflpxixj"‘”ﬂ(m

ij=1 ij=1
n
+ ZHpsaiu”Lz(Q) + ||u||L2(QO)), (43)
i=1

where ¢, depends on the same parameters as ¢; and on s, p.
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Combining hypothesis (hs) with statement (1.6) of [14], we obtain that the functions
lp%‘ . #, % and Ip%le belong to the space MZ($2) for any g € [1, +oo[. Therefore, from

Theorem 3.5 it follows that for any € € R, there exist ¢1(€), c2(€), c3(€) € R, and bounded
open sets £21(¢€), §22(¢€), £23(¢) CC §2 with the cone property such that

n

Px; Px;
DI u|  <ellullyerg + al@llulzge) (44)
il P 12(%2)
| o
D ™ < €lltgll 12 ) + €2(E) |1t 2250
ij=1 L2(2)

/ 3 3
< ellull 22y + b1l 2y + 118l 2oy o it oy ) (45)

n

loxix*
Z —u < €llully22 ) + cs(€)llull 22, (46)
el Pl

where c1(€), c2(€), c5(€), cs(€), $21(€), $22(€), £25(¢) depend on €, §2, n, p and s.
On the other hand, in view of Theorem 3.4, there exist c4(¢) and a bounded open set
§24(e) CC £2 with the cone property such that

n
D Nl 2 < €llullyia g, + cal@)llull 22,0 (47)
i=1

where ¢4(€) and 24(¢) depend on ¢, §2, n, p, s, r and o, [a;] .
Bounds (43)-(47) together with Lemma 3.2 and Young’s inequality give estimate (41).
O
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