Schrödinger type operators on generalized Morrey spaces

Pengtao Lii*, Xin Wan ${ }^{2}$ and Chuangyuan Zhang ${ }^{2}$

"Correspondence: ptli@qdu.edu.cn ${ }^{1}$ College of Mathematics, Qingdao University, Qingdao, Shandong 266071, China
Full list of author information is available at the end of the article

Abstract

In this paper we introduce a class of generalized Morrey spaces associated with the Schrödinger operator $L=-\Delta+V$. Via a pointwise estimate, we obtain the boundedness of the operators $V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}$ and their dual operators on these Morrey spaces.

MSC: Primary 42B35; 42B20 Keywords: generalized Morrey spaces; Schrödinger operator; commutator; reverse Hölder class

1 Introduction

The investigation of Schrödinger operators on the Euclidean space \mathbb{R}^{n} with nonnegative potentials which belong to the reverse Hölder class has attracted attention of many authors. Shen [1] studied the Schrödinger operator $L=-\Delta+V$, assuming the nonnegative potential V belongs to the reverse Hölder class $B_{q}, q \geq \frac{n}{2}$. In [1], Shen proved the L^{p}-boundedness of the operators $(-\Delta+V)^{i \gamma}, \nabla^{2}(-\Delta+V)^{-1}, \nabla(-\Delta+V)^{-1 / 2}$ and $\nabla(-\Delta+V)^{-1} \nabla$. For further information, we refer the reader to Guo et al. [2], Liu [3], Liu et al. [4, 5], Tang and Dong [6], Yang et al. [7, 8] and the references therein.
The purpose of this paper is to generalize the results of Shen [1] and Sugano [9] to a class of Morrey spaces associated with L, denoted by $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$. See Definition 2.8 below. The significance of these spaces is that for particular choices of the parameters p, q, λ, θ and α, one obtains many classical function spaces (see Table 1).
In Section 3, let T be one of the Schrödinger type operators $\nabla(-\Delta+V)^{-1} \nabla, \nabla(-\Delta+$ $V)^{-1 / 2}$ and $(-\Delta+V)^{-1 / 2} \nabla$. With the help of the L^{p}-boundedness of T, it is easy to verify that T is bounded on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$. For $b \in B M O\left(\mathbb{R}^{n}\right)$, we can also obtain the boundedness of the commutator $[b, T]$ on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$. See Theorems 3.2 and 3.3. For $\theta=0, p=q$ and $0<\lambda<1, L_{\alpha, 0, V}^{p, p, \lambda}\left(\mathbb{R}^{n}\right)$ becomes the spaces $L_{\alpha, V}^{p, \lambda}\left(\mathbb{R}^{n}\right)$ introduced by Tang and Dong [6]. Hence, the results are generalizations of Theorems 1 and 2 in [6].

Table 1 Special cases of $L_{\alpha, \beta, v}^{p, q, \lambda}$

$\theta=0, \alpha=0, p=q, 0<\lambda<1$	Morrey space $L^{p, \lambda}\left(\mathbb{R}^{n}\right)[10]$
$\theta=0, p=q, 0<\lambda<1$	Morrey type space $L_{\alpha, V}^{p, \lambda}\left(\mathbb{R}^{n}\right)[6]$
$\alpha=\lambda=0, \theta \in \mathbb{R}, 0<p, a<\infty$,	Herz spaces $K_{p}^{\theta, q}[11]$
$\alpha=0, \lambda \geq 0, \theta \in \mathbb{R}, 0<p, q<\infty$	Morrey-Herz spaces MK $K_{p, 9}^{\theta, \lambda}[12,13]$

© 2015 Li et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

In recent years, the fractional integral operator $I_{\alpha}=(-\Delta+V)^{-\alpha}$ has been studied extensively. We refer to Duong and Yan [14], Jiang [15], Tang and Dong [6] and Yang et al. [7] for details. Suppose that $V \in B_{s}, s \geq \frac{n}{2}$. For $0 \leq \beta_{2} \leq \beta_{1}<\frac{n}{2}$, let

$$
\left\{\begin{array}{l}
T_{\beta_{1}, \beta_{2}}=: V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \\
T_{\beta_{1}, \beta_{2}}^{*}=:(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}
\end{array}\right.
$$

Sugano [9] obtained the weighted estimates for $T_{\beta_{1}, \beta_{2}}, T_{\beta_{1}, \beta_{2}}^{*}, 0<\beta_{2} \leq \beta_{1}<1$. If $\beta_{2}=0$, we can see that $T_{\beta_{1}, 0}=I_{\beta_{1}}$. So $T_{\beta_{1}, \beta_{2}}$ and $T_{\beta_{1}, \beta_{2}}^{*}$ can be seen as generalizations of I_{α}. Moreover, for $\left(\beta_{1}, \beta_{2}\right)=(1,1)$ and $(1 / 2,1 / 2), T_{1,1}^{*}=(-\Delta+V)^{-1} V$ and $T_{1 / 2,1 / 2}^{*}=(-\Delta+V)^{-1 / 2} V^{1 / 2}$, respectively, which are studied by Shen [1] thoroughly. In Section 4, assume that $1<p_{1}<\infty$, $1<p_{2}<s / \beta_{2}$ and $1<q<\infty$. If the index $\left(q, \beta_{1}, \beta_{2}, \lambda, \alpha, \theta\right)$ satisfies

$$
\left\{\begin{array}{l}
1 / p_{2}=1 / p_{1}-2\left(\beta_{1}-\beta_{2}\right) / n \\
\alpha \in(-\infty, 0] \text { and } \lambda \in(0, n) \\
\lambda / q-1 / p_{1}+2 \beta_{1} / n<\theta<\lambda / q+1-1 / p_{1}
\end{array}\right.
$$

we prove that $T_{\beta_{1}, \beta_{2}}$ is bounded from $L_{\alpha, \theta, V}^{p_{1}, q, \lambda}\left(\mathbb{R}^{n}\right)$ to $L_{\alpha, \theta, V}^{p_{2}, q, \lambda}\left(\mathbb{R}^{n}\right)$. Specially, we know that $(-\Delta+V)^{-1} V$ and $(-\Delta+V)^{-1 / 2} V^{1 / 2}$ are bounded on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$. See Theorems 4.7 and 4.8 for details.
In the research of harmonic analysis and partial differential equations, the commutators play an important role. If T is a Calderón-Zygmund operator, $b \in B M O\left(\mathbb{R}^{n}\right)$, the L^{p}-boundedness of $[b, T]$ was first discovered by Coifman et al. [16]. Later, Strömberg [14] gave a simple proof, adopting the idea of relating commutators with the sharp maximal operator of Fefferman and Stein. In 2008, Guo et al. [2] introduced a condition $H(m)$ and obtained L^{p}-boundedness of the commutator of Riesz transforms associated with L, where $b \in B M O\left(\mathbb{R}^{n}\right)$. For further information, we refer to Liu [17], Liu et al. [4, 5], Yang et $a l$. [8] and the references therein.
In Section 5, by the boundedness of I_{α} and $(-\Delta+V)^{-\beta} V^{\beta}$, we can deduce that the commutators $\left[b, T_{\beta_{1}, \beta_{2}}\right]$ and $\left[b, T_{\beta_{1}, \beta_{2}}^{*}\right]$ are bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right)$ to $L^{p_{2}}\left(\mathbb{R}^{n}\right)$ (see Theorem 5.1). Theorem 5.1 together with Lemmas 4.1 and 2.7 can be used to prove that the commutators $\left[b, T_{\beta_{1}, \beta_{2}}\right]$ and $\left[b, T_{\beta_{1}, \beta_{2}}^{*}\right]$ are bounded from $L_{\alpha, \theta, V}^{p_{1}, q, \lambda}\left(\mathbb{R}^{n}\right)$ to $L_{\alpha, \theta, V}^{p_{2}, q, \lambda}\left(\mathbb{R}^{n}\right)$, respectively (see Theorems 5.2 and 5.3).

Remark 1.1 Unlike the setting of the Lebesgue spaces, it is well known that the dual of $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ is not $L^{p^{\prime},-\lambda}\left(\mathbb{R}^{n}\right)$. Hence, after obtaining Theorem 4.7, we cannot deduce Theorem 4.8 via the method of duality used by Guo et al. [2].

2 Preliminaries

2.1 Schrödinger operator and the auxiliary function

In this paper, we consider the Schrödinger differential operator $L=-\Delta+V$ on $\mathbb{R}^{n}, n \geq 3$, where V is a nonnegative potential belonging to the reverse Hölder class $B_{s}, s \geq \frac{n}{2}$, which is defined as follows.

Definition 2.1 Let V be a nonnegative function.
(i) We say $V \in B_{s}, s>1$, if there exists $C>0$ such that for every ball $B \subset \mathbb{R}^{n}$, the reverse Hölder inequality

$$
\left(\frac{1}{|B|} \int_{B} V^{s}(x) d x\right)^{\frac{1}{s}} \lesssim\left(\frac{1}{|B|} \int_{B} V(x) d x\right)
$$

holds.
(ii) We say $V \in B_{\infty}$ if there exists a constant C such that for every ball $B \subset \mathbb{R}^{n}$,

$$
\|V\|_{L^{\infty}(B)}=\frac{1}{|B|} \int_{B} V(x) d x
$$

Remark 2.2 Assume $V \in B_{s}, 1<s<\infty$. Then $V(y) d y$ is a doubling measure. Namely, there exists a constant C_{0} such that for any $r>0$ and $y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\int_{B(x, 2 r)} V(y) d y \lesssim C_{0} \int_{B(x, r)} V(y) d y \tag{2.1}
\end{equation*}
$$

Definition 2.3 (Shen [1]) For $x \in \mathbb{R}^{n}$, the function $m_{V}(x)$ is defined as

$$
\frac{1}{m_{V}(x)}=: \sup \left\{r>0: \frac{1}{r^{n-2}} \int_{B(x, r)} V(y) d y \leq 1\right\} .
$$

Remark 2.4 The function m_{V} reflects the scale of V essentially, but behaves better. It is deeply studied in Shen [1] and plays a crucial role in our proof. We list a property of m_{V} which will be used in the sequel and refer the reader to Guo et al. [2] for the details.

We state some notations and properties of m_{V}.

Lemma 2.5 (Lemma 1.4 in [1]) Suppose that $V \in B_{s}$ with $s \geq \frac{n}{2}$. Then there exist positive constants C and k_{0} such that
(a) if $|x-y| \leq \frac{C}{m_{V}(x)}, m_{V}(x) \sim m_{V}(y)$;
(b) $m_{V}(y) \lesssim\left(1+|x-y| m_{V}(x)\right)^{k_{0}} m_{V}(x)$;
(c) $m_{V}(y) \geq \operatorname{Cm}_{V}(x) /\left\{1+|x-y| m_{V}(x)\right\}^{k_{0} /\left(k_{0}+1\right)}$.

Lemma 2.6 (Lemma 1.2 in [1]) Suppose that $V \in B_{s}, s>\frac{n}{2}$. There exists a constant C such that for $0<r<R<\infty$,

$$
\frac{1}{r^{n-2}} \int_{B(x, r)} V(y) d y \lesssim\left(\frac{R}{r}\right)^{\frac{n}{s}-2} \cdot \frac{1}{R^{n-2}} \int_{B(x, R)} V(y) d y
$$

Lemma 2.7 (Lemma 2.3 in [2]) Suppose $V \in B_{s}, s>\frac{n}{2}$. Then, for any $N>\log _{2} C_{0}+1$, there exists a constant C_{N} such that for any $x \in \mathbb{R}^{n}$ and $r>0$,

$$
\frac{1}{\left(1+r m_{V}(x)\right)^{N}} \int_{B(x, r)} V(y) d y \lesssim C_{N} r^{n-2}
$$

2.2 Generalized Morrey spaces associated with L

Suppose that $V \in B_{s}, s>1$. Let $L=-\Delta+V$ be the Schrödinger operator. Now we introduce a class of generalized Morrey spaces associated with L. For $k \in \mathbb{Z}$, let $E_{k}=$ $B\left(x_{0}, 2^{k} r\right) \backslash B\left(x_{0}, 2^{k-1} r\right)$ and χ_{k} be the characteristic function of E_{k}.

Definition 2.8 Suppose that $V \in B_{s}, s>1$. Let $p \in[1,+\infty), q \in[1,+\infty), \alpha \in(-\infty,+\infty)$ and $\lambda \in(0, n), \theta \in(-\infty,+\infty)$. For $f \in L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{n}\right)$, we say $f \in L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$ provided that

$$
\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q}=\sup _{B\left(x_{0}, r\right) \subset \mathbb{R}^{n}} \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{q}<\infty
$$

where $B\left(x_{0}, r\right)$ denotes a ball centered at x_{0} and with radius r.

Proposition 2.9

(i) For $\alpha_{1}>\alpha_{2}, L_{\alpha_{1}, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right) \subseteq L_{\alpha_{2}, \theta, V}^{p, \lambda, q}\left(\mathbb{R}^{n}\right)$.
(ii) If $\theta=0, p=q$ and $\alpha<0, L^{p, \lambda}\left(\mathbb{R}^{n}\right) \subset L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$.
(iii) If $\theta=0, p=q$ and $\alpha>0, L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right) \subset L^{p, \lambda}\left(\mathbb{R}^{n}\right)$.

2.3 Calderón-Zygmund operators

We say that an operator T taking $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ into $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ is called a Calderón-Zygmund operator if
(a) T extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$;
(b) there exists a kernel K such that for every $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$,

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y \quad \text { a.e. on }\{\operatorname{supp} f\}^{c} ;
$$

(c) the kernel $K(x, y)$ satisfies the Calderón-Zygmund estimate

$$
\begin{aligned}
& |K(x, y)| \leq \frac{C}{|x-y|^{n}} \\
& |K(x+h, y)-K(x, y)|+|K(x, y+h)-K(x, y)| \leq \frac{C|h|^{\delta}}{|x-y|^{n+\delta}}
\end{aligned}
$$

for $x, y \in \mathbb{R}^{n},|h|<\frac{|x-y|}{2}$ and for some $\delta>0$.
Shen [1] obtained the following result.

Theorem 2.10 (Theorem 0.8 in [1]) Suppose $V \in B_{n}$. Then

$$
\nabla(-\Delta+V)^{-1} \nabla, \quad \nabla(-\Delta+V)^{-\frac{1}{2}} \quad \text { and } \quad(-\Delta+V)^{-\frac{1}{2}} \nabla
$$

are Calderón-Zygmund operators.

Corollary 2.11 Suppose that $V \in B_{n}$ and $b \in B M O\left(\mathbb{R}^{n}\right)$. The commutator $[b, T]$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$.

In particular, let K denote the kernel of one of the above operators. Then K satisfies the following estimate:

$$
\begin{equation*}
|K(x, y)| \leq \frac{C_{N}}{\left(1+|x-y| m_{V}(x)\right)^{N}} \frac{1}{|x-y|^{n}} \tag{2.2}
\end{equation*}
$$

for any $N \in \mathbb{N}$. See (6.5) of Shen [1] for details.

Suppose $V \in B_{s}$ for $s \geq \frac{n}{2}$. Let $L=-\Delta+V$. The semigroup generated by L is defined as

$$
\begin{equation*}
T_{t} f(x)=e^{-t L} f(x)=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y, \quad f \in L^{2}\left(\mathbb{R}^{n}\right), t>0 \tag{2.3}
\end{equation*}
$$

where K_{t} is the kernel of $e^{-t L}$.
Lemma 2.12 ([18]) Let $K_{t}(x, y)$ be as in (2.3). For every nonnegative integer k, there is a constant C_{k} such that

$$
0 \leq K_{t}(x, y) \leq C_{k} t^{-\frac{n}{2}} \exp \left(-|x-y|^{2} / 5 t\right)\left(1+\sqrt{t} m_{V}(x)+\sqrt{t} m_{V}(y)\right)^{-k}
$$

Some notations Throughout the paper, c and C will denote unspecified positive constants, possibly different at each occurrence. The constants are independent of the functions. $\mathrm{U} \approx \mathrm{V}$ represents that there is a constant $c>0$ such that $c^{-1} \mathrm{~V} \leq \mathrm{U} \leq c \mathrm{~V}$ whose right inequality is also written as $\mathrm{U} \lesssim \mathrm{V}$. Similarly, if $\mathrm{V} \geq c \mathrm{U}$, we denote $\mathrm{V} \gtrsim \mathrm{U}$.

3 Riesz transforms and the commutators on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$

Throughout this paper, for $p \in(1, \infty)$, denote by p^{\prime} the conjugate of p, that is, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Let $V \in B_{n}$. In this section, we assume that T is one of the Schrödinger type operators $\nabla(-\Delta+V)^{-1} \nabla, \nabla(-\Delta+V)^{-1 / 2}$ and $(-\Delta+V)^{-1 / 2} \nabla$. We study the boundedness on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$ of T and its commutator $[b, T]$ with $b \in B M O\left(\mathbb{R}^{n}\right)$. The bounded mean oscillation space $B M O\left(\mathbb{R}^{n}\right)$ is defined as follows.

Definition 3.1 A locally integrable function b is said to belong to $B M O\left(\mathbb{R}^{n}\right)$ if

$$
\|b\|_{B M O}=: \sup _{B} \frac{1}{|B|} \int_{B}\left|b(x)-b_{B}\right| d x<\infty,
$$

where the supremum is taken over all balls B in \mathbb{R}^{n}. Here $b_{B}=\frac{1}{|B|} \int_{B} b(x) d x$ stands for the mean value of b over the ball B and $|B|$ means the measure of B.

We first prove that T is bounded on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$.
Theorem 3.2 Suppose that $\alpha \in(-\infty, 0], \lambda \in(0, n)$ and $1<q<\infty$. If $1<p<\infty, \frac{\lambda}{q}-\frac{1}{p}<\theta<$ $\frac{\lambda}{q}+1-\frac{1}{p}$, then the operators T are bounded on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$.

Proof For any ball $B\left(x_{0}, r\right)$, write

$$
f(y)=\sum_{j=-\infty}^{\infty} f(y) \chi_{j}(y)=\sum_{j=-\infty}^{\infty} f_{j}(y),
$$

where $E_{j}=B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)$. Hence, we have

$$
\begin{aligned}
& \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k} T f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{q} \\
& \quad \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2}\left\|\chi_{k} T f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|\chi_{k} T f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
& +\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k} T f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
= & A_{1}+A_{2}+A_{3} .
\end{aligned}
$$

For A_{2}, by Theorem 2.10, we have

$$
\begin{aligned}
A_{2} & \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|T f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}}^{q} .
\end{aligned}
$$

We first estimate the term E_{1}. Note that if $x \in E_{k}, y \in E_{j}$ and $j \leq k-2$, then $|x-y| \sim 2^{k} r$. By Lemma 2.5 and (2.2), we can get

$$
\begin{aligned}
\left\|\chi_{k} T f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} & \lesssim\left(\int_{E_{k}}\left|\int_{\mathbb{R}^{n}} \frac{1}{\left(1+|x-y| m_{V}(x)\right)^{N}} \frac{1}{|x-y|^{n}}\right| f_{j}(y)|d y|^{p} d x\right)^{\frac{1}{p}} \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n}}\left|E_{k}\right|^{\frac{1}{p}} \int_{E_{j}}|f(y)| d y \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\left|E_{k}\right|^{\frac{1}{p}-1}\left|E_{j}\right|^{\frac{1}{p}}\left(\int_{E_{j}}|f(y)|^{p} d y\right)^{\frac{1}{p}}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Since $-\frac{1}{p}+\frac{\lambda}{q}<\theta<\left(1-\frac{1}{p}\right)+\frac{\lambda}{q}$, we obtain

$$
\begin{aligned}
A_{1} \lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2} \frac{\left|E_{k}\right|^{\frac{1}{p}-1}\left|E_{j}\right|^{\frac{1}{p^{\prime}}}\left\|\chi_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\right)^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2} \frac{2^{\frac{n(j-k)}{p^{\prime}}}\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\right. \\
& \left.\times\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{\frac{\alpha}{q}}\left(2^{j} r\right)^{-\frac{\lambda n}{q}}\left(\left|E_{j}\right|^{\theta q}\left\|\chi_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{q}\right)^{\frac{1}{q}}\right)^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2} 2^{\frac{n(j-k)}{p^{\prime}}}\left|E_{k}\right|^{\theta-\frac{\lambda}{q}}\left|E_{j}\right|^{\frac{\lambda}{q}-\theta}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2} 2^{(j-k) n\left(1-\frac{1}{p}+\frac{\lambda}{q}-\theta\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q} \\
\lesssim & \|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q}
\end{aligned}
$$

For A_{3}, we can see that when $x \in E_{k}, y \in E_{j}$, then $|x-y| \sim 2^{j} r$ for $j \geq k+2$. Similar to E_{1}, we have

$$
\begin{aligned}
\left\|\chi_{k} T f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} & \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{j} r\right)^{n}}\left|E_{k}\right|^{\frac{1}{p}} \int_{E_{j}}|f(y)| d y \\
& \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{j} r\right)^{n}}\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{\frac{1}{p^{\prime}}}\left(\int_{E_{j}}|f(y)|^{p} d y\right)^{\frac{1}{p}} \\
& \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{-\frac{1}{p}}\left\|\chi_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Since $-\frac{1}{p}+\frac{\lambda}{q}<\theta<\left(1-\frac{1}{p}\right)+\frac{\lambda}{q}$, choosing N large enough, we obtain

$$
\begin{aligned}
A_{3} \lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty} \frac{\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{-\frac{1}{p}}\left\|\chi_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\right)^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left\{\sum_{j=k+2}^{\infty} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\alpha}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\right. \\
& \left.\times 2^{(k-j) \frac{n}{p}}\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{\frac{\alpha}{q}}\left(2^{j} r\right)^{-\frac{\lambda n}{q}}\left(\left|E_{j}\right|^{\theta q}\left\|\chi_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{q}\right)^{\frac{1}{q}}\right\}^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty} 2^{(k-j)^{\frac{n}{p}}}\left|E_{j}\right|^{\frac{\lambda}{q}-\theta}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q} \\
\lesssim & \|f\|_{L_{\alpha,,, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q} .
\end{aligned}
$$

Let $N=\left[-\frac{\alpha}{q}+1\right]\left(k_{0}+1\right)$. Finally, $\|T f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}$. This completes the proof of Theorem 3.2.

Suppose that $b \in B M O\left(\mathbb{R}^{n}\right)$ and $V \in B_{n}$. Let T be one of the Schrödinger type operators $\nabla(-\Delta+V)^{-1} \nabla, \nabla(-\Delta+V)^{-1 / 2}$ and $(-\Delta+V)^{-1 / 2} \nabla$. The commutator $[b, T]$ is defined as

$$
[b, T] f=b T(f)-T(b f) .
$$

Theorem 3.3 Suppose that $V \in B_{n}$ and $b \in B M O\left(\mathbb{R}^{n}\right)$. Let $1<p<\infty, 1<q<\infty, \alpha \in$ $(-\infty, 0], \lambda \in(0, n)$. If the index (p, q, θ, λ) satisfies $\frac{\lambda}{q}-\frac{1}{p}<\theta<\frac{\lambda}{q}+1-\frac{1}{p}$, then

$$
\|[b, T] f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}} \leq C\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}}\|b\|_{B M O} .
$$

Proof For any ball $B=B\left(x_{0}, r\right)$, we can get

$$
f(y)=\sum_{j=-\infty}^{\infty} f(y) \chi_{E_{j}}(y)=\sum_{j=-\infty}^{\infty} f_{j}(y)
$$

where $E_{j}=B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)$. Hence, we have

$$
\begin{aligned}
&\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k}[b, T] f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2}\left\|\chi_{k}[b, T] f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|\chi_{k}[b, T] f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k}[b, T] f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&= B_{1}+B_{2}+B_{3} .
\end{aligned}
$$

For B_{2}, by Corollary 2.11, we have

$$
\begin{aligned}
B_{2} & \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|[b, T] f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q}\|b\|_{B M O}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

Denote by $b_{2^{k} r}$ the mean value of b on the ball $B\left(x_{0}, 2^{k} r\right)$. For B_{1}, by Lemma 2.5 and (2.2), we have

$$
\begin{aligned}
&\left\|\chi_{k}[b, T] f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n}} \\
& \times\left[\int_{E_{k}}\left(\int_{E_{j}}|b(x)-b(y)||f(y)| d y\right)^{p} d x\right]^{\frac{1}{p}} \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n}}\left[\left(\int_{E_{k}}\left|b(x)-b_{2^{k} r}\right|^{p} d x\right)^{\frac{1}{p}} \int_{E_{j}}|f(y)| d y\right. \\
&\left.+\left|E_{k}\right|^{\frac{1}{p}} \int_{E_{j}}\left|b(y)-b_{2^{k} r}\right||f(y)| d y\right] \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n}}\left[\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{1-\frac{1}{p}}\|b\|_{B M O}\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right. \\
&\left.+\left|E_{k}\right|^{\frac{1}{p}}\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\left(\int_{E_{j}}\left|b(y)-b_{2^{k} r}\right|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}\right] \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{\left|E_{j}\right|^{1-\frac{1}{p}}}{\left|E_{k}\right|^{1-\frac{1}{p}}}(k-j)\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|b\|_{B M O},
\end{aligned}
$$

where in the third inequality, we have used John-Nirenberg's inequality [19]. Since $-\frac{1}{p}+\frac{\lambda}{q}<$ $\theta<\left(1-\frac{1}{p}\right)+\frac{\lambda}{q}$, we obtain

$$
\begin{aligned}
B_{1} & \lesssim \\
\lesssim & \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2} \frac{(k-j)\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}}{} \frac{\left|E_{j}\right|^{1-\frac{1}{p}}}{\left|E_{k}\right|^{1-\frac{1}{p}}}\right)^{q}\|b\|_{B M O}^{q} \\
& \lesssim \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left[\sum_{j=-\infty}^{k-2} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\|b\|_{B M O}^{q}\right. \\
& \left.\times(k-j)\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta} \frac{\left|E_{j}\right|^{1-\frac{1}{p}}}{\left|E_{k}\right|^{1-\frac{1}{p}}}\right]^{q}\|f\|_{L_{\alpha, \beta, V}^{p, q, \lambda}}^{q} \\
& \lesssim \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2}(k-j) 2^{(k-j) n\left(\theta-\frac{\alpha}{q}+\frac{1}{p}-1\right)}\right)^{q}\|f\|_{L_{\alpha, \alpha, V}^{p, q, V}}^{q}\|b\|_{B M O}^{q} \\
& \lesssim\|f\|_{L_{\alpha, q, V}^{q, q, \lambda}}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

For B_{3}, similar to B_{1}, we have

$$
\begin{aligned}
& \left\|\chi_{k}[b, T] f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \\
& \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{j} r\right)^{n}}\left(\int_{E_{k}}\left|\int_{E_{j}}\right|(b(x)-b(y)) f(y)|d y|^{p} d x\right)^{\frac{1}{p}} \\
& \\
& \lesssim \frac{j-k}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{-\frac{1}{p}}\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|b\|_{B M O} .
\end{aligned}
$$

Since $-\frac{1}{p}+\frac{\lambda}{q}<\theta<\left(1-\frac{1}{p}\right)+\frac{\lambda}{q}$, choosing N large enough, we obtain

$$
\begin{aligned}
B_{3} \lesssim & \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty} \frac{\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{-\frac{1}{p}}(j-k)\left\|f_{j}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\right)^{q}\|b\|_{B M O}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left[\sum_{j=k+2}^{\infty} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}}\right. \\
& \left.\times(j-k)\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}\left|E_{k}\right|^{\frac{1}{p}}\left|E_{j}\right|^{-\frac{1}{p}}\right]^{q}\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q}\|b\|_{B M O}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=k+2}^{\infty} 2^{(k-j) n\left(\frac{1}{p}-\frac{\lambda}{q}+\theta\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p, q}\left(\mathbb{R}^{n}\right)}^{q}\|b\|_{B M O}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

Let $N=\left[-\frac{\alpha}{q}+1\right]\left(k_{0}+1\right)$. We finally get

$$
\|[b, T] f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)}\|b\|_{B M O} .
$$

4 Schrödinger type operators on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$

Let $L=-\Delta+V$ be the Schrödinger operator, where $V \in B_{s}, s>n / 2$. For $0<\beta<\frac{n}{2}$, the fractional integral operator associated with L is defined by

$$
L^{-\beta}(f)(x)=\int_{0}^{\infty} e^{-t L}(f)(x) t^{\beta-1} d t
$$

Denote by $K_{\beta}(x, y)$ the kernel of $L^{-\beta}$. By Lemma 2.12, Bui [20] obtained the following pointwise estimate.

Lemma 4.1 (Proposition 3.3 in [20]) Let $0<\beta<\frac{n}{2}$. For $N \in \mathbb{N}$, there is a constant C_{N} such that

$$
\begin{align*}
K_{\beta}(x, y) & =\int_{0}^{\infty} K_{t}(x, y) t^{\beta-1} d t \\
& \leq \frac{C_{N}}{\left(1+|x-y| m_{V}(x)\right)^{N}} \frac{1}{|x-y|^{n-2 \beta}} \tag{4.1}
\end{align*}
$$

where $K_{t}(\cdot, \cdot)$ is the kernel of the semigroup $e^{-t L}$.

Definition 4.2 Let $f \in L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{n}\right)$. Denote by $|B|$ the Lebesgue measure of the ball $B \subset \mathbb{R}^{n}$. The fractional Hardy-Littlewood maximal function $M_{\sigma, \gamma}$ is defined by

$$
M_{\sigma, \gamma} f(x)=\sup _{x \in B}\left(\frac{1}{|B|^{1-\frac{\sigma \gamma}{n}}} \int_{B}|f(y)|^{\gamma} d y\right)^{\frac{1}{\gamma}} .
$$

Lemma 4.3 ([16]) Suppose $1<\gamma<p_{1}<\frac{n}{\sigma}$ and $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{\sigma}{n}$. Then

$$
\left\|M_{\sigma, \gamma} f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} \lesssim\|f\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} .
$$

As a generalization of the fractional integral associated with L, the operators $V^{\beta_{2}}(-\Delta+$ $V)^{-\beta_{1}}, 0 \leq \beta_{2} \leq \beta_{1} \leq 1$, have been studied by Sugano [9] systematically. Applying the method of Sugano [9] together with Lemma 4.1, we can obtain the following result for $V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}, 0 \leq \beta_{2} \leq \beta_{1} \leq n / 2$. We omit the proof.

Theorem 4.4 Suppose that $V \in B_{\infty}$. Let $1<\beta_{2} \leq \beta_{1}<\frac{n}{2}$. Then

$$
\left|V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f(x)\right| \lesssim M_{2\left(\beta_{1}-\beta_{2}\right),} f(x) .
$$

In a similar way, by (4.1), we can get the following estimate for the operators $(-\Delta+$ $V)^{-\beta_{1}} V^{\beta_{2}}, 0 \leq \beta_{2} \leq \beta_{1}<\frac{n}{2}$.

Theorem 4.5 Suppose that $V \in B_{s}$ for $s>\frac{n}{2}$. Let $0 \leq \beta_{2} \leq \beta_{1}<\frac{n}{2}$. Then

$$
\left|(-\Delta+V)^{-\beta_{1}}\left(V^{\beta_{2}} f\right)(x)\right| \lesssim M_{2\left(\beta_{1}-\beta_{2}\right)}(f)(x),
$$

where $\left(\frac{s}{\beta_{2}}\right)^{\prime}$ is the conjugate of $\left(\frac{s}{\beta_{2}}\right)$.

Proof Let $r=1 / m_{V}(x)$. By Lemma 4.1 and Hölder's inequality, we have

$$
\begin{aligned}
& \left|(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}(x) f(x)\right| \\
& \quad \lesssim \sum_{k=-\infty}^{\infty} \int_{2^{k-1} r \leq|x-y| \leq 2^{k} r} \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}} V(y)^{\beta_{2}}|f(y)| d y \\
& \quad \lesssim \sum_{k=-\infty}^{\infty} \frac{\left(2^{k} r\right)^{2 \beta_{2}}}{\left(1+2^{k}\right)^{N}}\left(\frac{1}{\left(2^{k} r\right)^{n}} \int_{B\left(x, 2^{k} r\right)} V(y) d y\right)^{\beta_{2}} M_{2\left(\beta_{1}-\beta_{2}\right),\left(\frac{s}{\beta_{2}}\right)^{\prime}}(f)(x) .
\end{aligned}
$$

For $k \geq 1$, because $V(y) d y$ is a doubling measure, we have

$$
\begin{aligned}
\frac{\left(2^{k} r\right)^{2}}{\left(2^{k} r\right)^{n}} \int_{B\left(x, 2^{k} r\right)} V(y) d y & \lesssim C_{0}^{k} \cdot 2^{(2-n) k} \frac{r^{2}}{r^{n}} \int_{B(x, r)} V(y) d y \\
& \lesssim\left(2^{k}\right)^{k_{0}}
\end{aligned}
$$

where $k_{0}=2-n+\log _{2} C_{0}$. For $k \leq 0$, Lemma 2.6 implies that

$$
\begin{aligned}
\frac{\left(2^{k} r\right)^{2}}{\left(2^{k} r\right)^{n}} \int_{B\left(x, 2^{k} r\right)} V(y) d y & \lesssim\left(\frac{r}{2^{k} r}\right)^{\frac{n}{s}-2} \frac{r^{2}}{r^{n}} \int_{B(x, r)} V(y) d y \\
& \lesssim\left(2^{k}\right)^{2-\frac{n}{s}}
\end{aligned}
$$

Taking N large enough, we get

$$
\left|(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f(x)\right| \lesssim M_{2\left(\beta_{1}-\beta_{2}\right),\left(\frac{s}{\beta_{2}}\right)^{\prime}} f(x) .
$$

By Theorem 4.5 and the duality, we can obtain the following.

Corollary 4.6 Suppose $V \in B_{s}$ for $s>\frac{n}{2}$.
(1) If $1<\left(\frac{s}{\beta_{2}}\right)^{\prime}<p_{1}<\frac{n}{2 \beta_{1}-2 \beta_{2}}$ and $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$, then

$$
\left\|(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} \lesssim\|f\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)},
$$

where $\frac{s}{\beta_{2}}+\left(\frac{s}{\beta_{2}}\right)^{\prime}=1$.
(2) If $1<p_{2}<\frac{s}{\beta_{2}}$ and $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$, then

$$
\left\|V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} \lesssim\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}
$$

Theorem 4.7 Suppose that $V \in B_{s}, s \geq \frac{n}{2}, \alpha \in(-\infty, 0], \lambda \in(0, n)$. Let $1<q<\infty, 1<\beta_{2} \leq$ $\beta_{1}<\frac{n}{2}$ and $1<p_{2}<\frac{s}{\beta_{2}}$ with $\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2 \beta_{1}-2 \beta_{2}}{n}$. If $\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}$, then

$$
\left\|V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda} .}
$$

Proof For any ball $B\left(x_{0}, r\right)$, write

$$
f(y)=\sum_{j=-\infty}^{\infty} f(y) \chi_{E_{j}}(y)=\sum_{j=-\infty}^{\infty} f_{j}(y)
$$

where $E_{j}=B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)$. Hence, we have

$$
\begin{aligned}
& \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k} V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}^{q} \\
& \lesssim \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2}\left\|\chi_{k} V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
& \quad+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|\chi_{k} V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
& \quad+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k} V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
& \quad=M_{1}+M_{2}+M_{3} .
\end{aligned}
$$

We first estimate M_{2}. For $1<p_{2}<\frac{s}{\beta_{2}}$, by (2) of Corollary 4.6, we can get

$$
M_{2} \lesssim \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q} .
$$

Now we deal with the terms M_{1} and M_{3}. We choose N large enough such that

$$
\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}+\alpha / q>0
$$

and take positive $N_{1}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$. For M_{1}, note that if $x \in E_{k}, y \in E_{j}$ and $j \leq k-2$, then $|x-y| \sim 2^{k} r$. By Lemmas 4.1 and 2.7 , we use Hölder's inequality to obtain

$$
\begin{aligned}
&\left\|\chi_{k} V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} \\
& \lesssim\left(\int_{E_{k}}\left|V^{\beta_{2}}(x) \int_{E_{j}} \frac{1}{\left(1+|x-y| m_{v}(x)\right)^{N}} \frac{1}{|x-y|^{n-2 \beta_{1}}} f(y) d y\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \int_{E_{j}}|f(y)| d y\left(\int_{E_{k}}|V(x)|^{\beta_{2} p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
& \left.\lesssim \frac{\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \right\rvert\, f_{j} \|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\left(\frac{1}{\left|E_{k}\right|} \int_{E_{k}} V(x)^{s} d x\right)^{\frac{\beta_{2}}{s}} \\
& \left.\lesssim \frac{\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left|E_{k}\right| \frac{1}{p_{2}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \right\rvert\, f_{j} \|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\left(\frac{1}{\left|B_{k}\right|} \int_{B_{k}} V(x) d x\right)^{\beta_{2}} \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}+2 \beta_{2}}}\left|E_{k}\right|^{\frac{1}{p_{2}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)},}
\end{aligned}
$$

where $\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2 \beta_{1}-2 \beta_{2}}{n}$. Since $\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}$, we obtain

$$
\begin{aligned}
M_{1} \lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}+2 \beta_{2}}}\left|E_{k}\right|^{\frac{1}{p_{2}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q}
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}}{\left(2^{k} r\right)^{n-2 \beta_{1}+2 \beta_{2}}}\left|E_{k}\right|^{\frac{1}{p_{2}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\right)^{q}\|f\|_{L_{\alpha, v, \theta}^{p_{1}, \lambda, q}}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2} 2^{(j-k) n\left(\frac{\lambda}{q}-\theta-\frac{1}{p_{1}}+1\right)}\right)^{q}\|f\|_{L_{\alpha, v, \theta}^{p_{1}, \lambda, q}}^{q} \\
& \lesssim\|f\|_{L_{\alpha, v, \theta}^{p_{1}, \lambda, q}}^{q} .
\end{aligned}
$$

For M_{3}, note that when $x \in E_{k}, y \in E_{j}$ and $j \geq k+2$, then $|x-y| \sim 2^{j} r$. Similar to E_{1}, we have

$$
\begin{aligned}
& \left\|\chi_{k} V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} \\
& \quad \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{(2 j r)^{n-2 \beta_{1}}} \int_{E_{j}}|f(y)| d y\left(\int_{E_{k}}|V(x)|^{\beta_{2} p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
& \quad \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{1}}}\left|E_{j}\right|^{\frac{2 \beta_{1}}{n}-\frac{1}{p_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}-\frac{2 \beta_{2}}{n}}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

where $\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2 \beta_{1}-2 \beta_{2}}{n}$. Since $\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}$, we obtain

$$
\begin{aligned}
M_{3} \lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=k+2}^{\infty} \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{1}}}\left|E_{j}\right|^{\frac{2 \beta_{1}}{n}-\frac{1}{p_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}-\frac{2 \beta_{2}}{n}}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=k+2}^{\infty} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}-\frac{2 \beta_{2}}{n}}}{\left|E_{j}\right|^{\frac{2 \beta_{1}}{n}-\frac{1}{p_{1}}}}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1, q, \lambda}}}^{q} \\
\lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=k+2}^{\infty} 2^{(k-j) n\left(\theta-\frac{\lambda}{q}+\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}\right)}\right)^{q}\|f\|_{L_{\alpha,,, V}}^{q} \\
\lesssim & \|f\|_{L_{\alpha, q, V}^{p_{1, q, \lambda}}}^{q}
\end{aligned}
$$

Choosing N large enough, we obtain

$$
\left\|V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda} .}
$$

Theorem 4.8 Suppose that $V \in B_{s}, s \geq \frac{n}{2}, \alpha \in(-\infty, 0], \lambda \in(0, n)$ and $1<q<\infty$. Let $0<$ $\beta_{2} \leq \beta_{1}<\frac{n}{2}, \frac{s}{s-\beta_{2}}<p_{1}<\frac{n}{2 \beta_{1}-2 \beta_{2}}$ with $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$. If $\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac{1}{p_{2}}+1-\frac{2 \beta_{1}}{n}$, then

$$
\left\|(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}
$$

Proof For any ball $B\left(x_{0}, r\right)$, let $E_{j}=B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)$. We can decompose f as follows:

$$
f(y)=\sum_{j=-\infty}^{\infty} f(y) \chi_{E_{j}}(y)=\sum_{j=-\infty}^{\infty} f_{j}(y) .
$$

Similar to the proof of Theorem 4.7, we have

$$
\begin{aligned}
&\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k}(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2}\left\|\chi_{k}(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&+C\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|\chi_{k}(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&+C\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k}(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
& \quad= L_{1}+L_{2}+L_{3} .
\end{aligned}
$$

For L_{2}, because $1<\frac{s}{s-\beta_{2}}<p_{1}<\frac{n}{2 \beta_{1}-\beta_{2}}$, we use Corollary 4.6 to obtain

$$
L_{2} \lesssim \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p, q, \lambda}}^{q} .
$$

For L_{1}, we can see that if $x \in E_{k}$ and $y \in E_{j}$, then $|x-y| \sim 2^{k} r$ for $j \leq k-2$. By Hölder's inequality and the fact that $V \in B_{s}$, we deduce from Lemmas 4.1 and 2.7 that

$$
\begin{aligned}
& \left\|\chi_{k}(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{q} \\
& \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \int_{E_{j}} V(x)^{\beta_{2}}|f(y)| d y \\
& \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left(\frac{1}{\left|B_{j}\right|} \int_{B_{j}} V(x) d x\right)^{\beta_{2}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} \\
& \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{2}}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left(2^{j} r\right)^{-2 \beta_{2}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

where $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$ and $N_{2}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$. Since $\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac{1}{p_{2}}+$ $1-\frac{2 \beta_{1}}{n}$, we obtain

$$
\begin{aligned}
L_{1} \lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{2}}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left(2^{j} r\right)^{-2 \beta_{2}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q}
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{2}}} \frac{\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}}{\left(2^{j} r\right)^{2 \beta_{2}}}\right)^{q}\|f\|_{L_{\alpha, V, \theta}^{p_{1}, \lambda, q}}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2} 2^{(k-j) n\left(\theta-\frac{\lambda}{q}+\frac{1}{p_{2}}-1+\frac{2 \beta_{1}}{n}\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1, \lambda, q}}}^{q} \\
& \lesssim\|f\|_{L_{\alpha, V, \theta}^{p_{1}, q, \lambda}}^{q} .
\end{aligned}
$$

For L_{3}, note that when $x \in E_{k}, y \in E_{j}$ and $j \geq k+2$, then $|x-y| \sim 2^{j} r$. Similar to E_{1}, we have

$$
\begin{aligned}
& \left\|\chi_{k}(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{q} \\
& \quad \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(2^{j} r\right)^{n-2 \beta_{1}}} \int_{E_{j}} V(x)^{\beta_{2}}|f(y)| d y \\
& \\
& \quad \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{2}}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left(2^{j} r\right)^{n-2 \beta_{1}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left(2^{j} r\right)^{-2 \beta_{2}}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}},
\end{aligned}
$$

where $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$ and $N_{2}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$. Since $\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac{1}{p_{2}}+$ $1-\frac{2 \beta_{1}}{n}$, we obtain

$$
\left.\left.\left.\begin{array}{rl}
L_{3} \lesssim & \left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=k+2}^{\infty} \frac{1}{\left(1+2^{j r m}\right.}{ }_{V}\left(x_{0}\right)\right)^{N_{2}} \\
& \left|E_{k}\right|^{\frac{1}{p_{2}}} \\
(2 j r)^{n-2 \beta_{1}}
\end{array} E_{j}\right|^{1-\frac{1}{p_{1}}}\left(2^{j} r\right)^{-2 \beta_{2}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q}\right)
$$

Let N be large enough. We finally get $\left\|(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}} f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}$.

5 Boundedness of the commutators on $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$

In this section, let $b \in B M O\left(\mathbb{R}^{n}\right)$. We consider the boundedness of commutators $[b,(-\Delta+$ $\left.V)^{-\beta_{1}} V^{\beta_{2}}\right]$ and its duality on the generalized Morrey spaces $L_{\alpha, \theta, V}^{p, q, \lambda}\left(\mathbb{R}^{n}\right)$. For this purpose, we prove the commutator $\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right]$ is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right)$ to $L^{p_{2}}\left(\mathbb{R}^{n}\right)$. For the sake of simplicity, we denote by $b_{2^{k} r}$ the mean value of b on the ball $B\left(x_{0}, 2^{k} r\right)$.

Theorem 5.1 Suppose that $V \in B_{s}, s \geq \frac{n}{2}$ and $b \in B M O\left(\mathbb{R}^{n}\right)$.
(i) If $0<\beta_{2} \leq \beta_{1}<\frac{n}{2}, \frac{s}{s-\beta_{2}}<p_{1}<\frac{n}{2 \beta_{1}-2 \beta_{2}}, \frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$, then

$$
\left\|\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} \lesssim\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}\|b\|_{B M O} .
$$

(ii) If $1<p_{2}<\frac{s}{\beta_{2}}$ and $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$, then

$$
\left\|\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\|b\|_{B M O} .
$$

Proof We only prove (i). (ii) can be obtained by duality. Because $\beta_{2} \leq \beta_{1}$, we can decompose the operator $(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}$ as

$$
(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}=(-\Delta+V)^{\beta_{2}-\beta_{1}}(-\Delta+V)^{-\beta_{2}} V^{\beta_{2}} .
$$

Denote by $L^{\beta_{2}-\beta_{1}}$ and $T_{\beta_{2}}$ the operators $(-\Delta+V)^{\beta_{2}-\beta_{1}}$ and $(-\Delta+V)^{-\beta_{2}} V^{\beta_{2}}$, respectively. Then we can get

$$
\begin{aligned}
{[b,} & \left.(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f(x) \\
& =\left[b,(-\Delta+V)^{\beta_{2}-\beta_{1}}(-\Delta+V)^{-\beta_{2}} V^{\beta_{2}}\right] f(x) \\
= & b L^{\beta_{2}-\beta_{1}} T_{\beta_{2}} f(x)-L^{\beta_{2}-\beta_{1}} T_{\beta_{2}}(b f)(x) \\
= & b L^{\beta_{2}-\beta_{1}} T_{\beta_{2}} f(x)-L^{\beta_{2}-\beta_{1}}\left(b T_{\beta_{2}} f(x)\right) \\
& +L^{\beta_{2}-\beta_{1}}\left(b T_{\beta_{2}} f(x)\right)-L^{\beta_{2}-\beta_{1}} T_{\beta_{2}}(b f)(x) \\
= & {\left[b, L^{\beta_{2}-\beta_{1}}\right] T_{\beta_{2}} f(x)+L^{\beta_{2}-\beta_{1}}\left[b, T_{\beta_{2}}\right] f(x) . }
\end{aligned}
$$

By (1) of Corollary 4.6, we can get

$$
\begin{aligned}
& \left\|\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} \\
& \quad \lesssim\left\|\left[b, L^{\beta_{2}-\beta_{1}}\right] T_{\beta_{2}} f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}+\left\|L^{\beta_{2}-\beta_{1}}\left[b, T_{\beta_{2}}\right] f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} \\
& \quad \lesssim\left\|T_{\beta_{2}} f\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}+\left\|\left[b, T_{\beta_{2}}\right] f\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}} \\
& \quad \lesssim\|f\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}} .
\end{aligned}
$$

This completes the proof.

In the rest of this section, we prove the boundedness of the commutators $\left[b, V^{\beta_{2}}(-\Delta+\right.$ $\left.V)^{-\beta_{1}}\right]$ and $\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right]$ on $L_{\alpha, \theta, V}^{p_{2}, q, \lambda}\left(\mathbb{R}^{n}\right)$, respectively.

Theorem 5.2 Suppose that $V \in B_{s}, s \geq \frac{n}{2}, \alpha \in(-\infty, 0]$ and $\lambda \in(0, n)$. Let $1<q<\infty, 1<$ $\beta_{2} \leq \beta_{1}<\frac{n}{2}$ and $1<p_{2}<\frac{s}{\beta_{2}}$ with $\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2 \beta_{1}-2 \beta_{2}}{n}$. If $\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}$, then for $b \in B M O\left(\mathbb{R}^{n}\right)$,

$$
\left\|\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}\|b\|_{B M O}
$$

Proof For any ball $B\left(x_{0}, r\right)$, we have

$$
f(y)=\sum_{j=-\infty}^{\infty} f(y) \chi_{E_{j}}(y)=\sum_{j=-\infty}^{\infty} f_{j}(y)
$$

where $E_{j}=B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)$. Hence, we have

$$
\begin{aligned}
&\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k}\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2}\left\|\chi_{k}\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|\chi_{k}\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
&+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k}\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
&= D_{1}+D_{2}+D_{3} .
\end{aligned}
$$

For D_{2}, by (ii) of Theorem 5.1, we have

$$
\begin{aligned}
D_{2} & \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}\right)^{q}\|b\|_{B M O}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

For D_{1}, by Lemmas 2.7 and 4.1, we obtain

$$
\begin{aligned}
\| \chi_{k} & {\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f_{j} \|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} } \\
\lesssim & \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left(\int_{E_{k}}\left|\int_{E_{j}} V^{\beta_{2}}(x)(b(x)-b(y)) f(y) d y\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
\lesssim & \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left[\left(\int_{E_{k}} V^{\beta_{2} p_{2}}(x)\left|b(x)-b_{2^{k} r}\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \int_{E_{j}}|f(y)| d y\right. \\
& \left.+\left(\int_{E_{k}} V^{\beta_{2} p_{2}}(x) d x\right)^{\frac{1}{p_{2}}} \int_{E_{j}}\left|b(y)-b_{2^{k} r}\right||f(y)| d y\right] \\
\lesssim & \frac{\|b\|_{B M O}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left[\left(\int_{E_{k}} V(x) d x\right)^{\beta_{2}}\left|E_{k}\right|^{\frac{1}{p_{2}}-\beta_{2}} \int_{E_{j}}|f(y)| d y\right. \\
& \left.+\left(\int_{E_{k}} V(x) d x\right)^{\beta_{2}}\left|E_{k}\right|^{\frac{1}{p_{2}}-\beta_{2}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}(k-j)\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right] \\
\lesssim & \frac{\|b\|_{B M O}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{k-j}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}} \frac{2 \beta_{2}}{n}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)},
\end{aligned}
$$

where $\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2 \beta_{1}-2 \beta_{2}}{n}$ and $N_{1}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$. Since $\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}<\theta<$ $\frac{\lambda}{q}+1-\frac{1}{p_{1}}$, we obtain

$$
\begin{aligned}
D_{1} \lesssim & \|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{k-j}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}-\frac{2 \beta_{2}}{n}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q}
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim\|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}-\frac{2 \beta_{2}}{n}}}{\left|E_{j}\right|^{\frac{1}{p_{1}}-1}}(k-j)\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q} \\
& \lesssim\|b\|_{B M O}^{q} \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2}(k-j) 2^{(j-k) n\left(\frac{\lambda}{q}-\theta-\frac{1}{p_{1}}+1\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

For D_{3}, because $\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2 \beta_{1}-2 \beta_{2}}{n}$ and $N_{1}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$, we have

$$
\begin{aligned}
\| \chi_{k} & {\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f_{j} \|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} } \\
& \lesssim \frac{1}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{(2 j r)^{n-2 \beta_{1}}}\left(\int_{E_{k}}\left|\int_{E_{j}} V(x)^{\beta_{2}}(b(x)-b(y)) f(y) d y\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
& \lesssim \frac{j-k}{\left(1+2 j r m_{V}\left(x_{0}\right)\right)^{N_{1}}}\left|E_{j}\right|^{\frac{2 \beta_{1}}{n}-\frac{1}{p_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}-} \frac{2 \beta_{2}}{n}}\|b\|_{B M O}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

where we have used the fact that $|x-y| \sim 2^{j} r$ for $x \in E_{k}, y \in E_{j}$ and $j \geq k+2$. Since $\frac{\lambda}{q}-\frac{1}{p_{1}}+$ $\frac{2 \beta_{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}$, we obtain

$$
\begin{aligned}
& D_{3} \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=k+2}^{\infty} \frac{j-k}{\left(1+2 j r m_{V}\left(x_{0}\right)\right)^{N_{1}}}\left|E_{j}\right|^{\frac{2 \beta_{1}}{n}-\frac{1}{p_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}-\frac{2 \beta_{2}}{n}}\|b\|_{B M O}\left\|f_{j}\right\|_{L^{p_{1}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
& \lesssim\|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=k+2}^{\infty} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{1}}} \frac{\left.\left|E_{k}\right|^{\frac{1}{p_{2}}} \frac{2 \frac{2 \beta_{2}}{n}}{\left|E_{j}\right|^{\frac{2 \beta_{1}}{n}-\frac{1}{p_{1}}}}(j-k)\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{q}}^{q}}{p_{1, q, \lambda}}\right. \\
& \lesssim\|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=k+2}^{\infty}(j-k) 2^{(k-j) n\left(\theta-\frac{\lambda}{q}+\frac{1}{p_{1}}+\frac{2 \beta_{1}}{n}\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

Let N be large enough. Finally, we get

$$
\left\|\left[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\right] f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}\|b\|_{B M O}
$$

Theorem 5.3 Suppose that $V \in B_{s}, s \geq \frac{n}{2}$ and $b \in B M O\left(\mathbb{R}^{n}\right)$. Let $\alpha \in(-\infty, 0], \lambda \in(0, n)$ and $1<q<\infty$. If $0<\beta_{2} \leq \beta_{1}<\frac{n}{2}, \frac{s}{s-\beta_{2}}<p_{1}<\frac{n}{2 \beta_{1}-2 \beta_{2}}, \frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}, \frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac{1}{p_{2}}+$ $1-\frac{2 \beta_{1}}{n}$, then

$$
\left\|\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}\|b\|_{B M O}
$$

Proof Similarly, we can decompose f based on an arbitrary ball $B\left(x_{0}, r\right)$ as follows:

$$
f(y)=\sum_{j=-\infty}^{\infty} f(y) \chi_{E_{j}}(y)=\sum_{j=-\infty}^{\infty} f_{j}(y)
$$

where $E_{j}=B\left(x_{0}, 2^{j} r\right) \backslash B\left(x_{0}, 2^{j-1} r\right)$. Hence, we have

$$
\begin{aligned}
&\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left\|\chi_{k}\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}^{q} \\
& \lesssim\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=-\infty}^{k-2}\left\|\chi_{k}\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
&+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|\chi_{k}\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
&+\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k+2}^{\infty}\left\|\chi_{k}\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f_{j}\right\|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}}\right)^{q} \\
&=F_{1}+F_{2}+F_{3} .
\end{aligned}
$$

Applying Theorem 5.1, we can get

$$
\begin{aligned}
F_{2} & \lesssim \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q}\left(\sum_{j=k-1}^{k+1}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q}\|b\|_{B M O}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}^{q}}^{q}, q \|_{B M O}^{q} .
\end{aligned}
$$

For F_{1}, by Hölder's inequality and the fact that $V \in B_{s}$, we apply Lemmas 4.1 and 2.7 to deduce that

$$
\begin{aligned}
&\left\|\chi_{k}\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f_{j}\right\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} \\
& \vdots \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left(\int_{E_{k}}\left|\int_{E_{j}}(b(x)-b(y)) V^{\beta_{2}}(y) f(y) d y\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
& \lesssim \frac{1}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{\left(2^{k} r\right)^{n-2 \beta_{1}}} \\
& \quad \times\left[\left(\int_{E_{k}}\left|b(x)-b_{2^{k} r}\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \int_{E_{j}}\left|V^{\beta_{2}}(y) f(y)\right| d y\right. \\
&\left.\quad+\left|E_{k}\right|^{\frac{1}{p_{2}}} \int_{E_{j}}\left|b(y)-b_{2^{k} r}\right|\left|V^{\beta_{2}}(y) f(y)\right| d y\right] \\
& \lesssim \frac{\left(\int_{E_{j}} V(y) d y\right)^{\beta_{2}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{k-j}{\left(2^{k} r\right)^{n-2 \beta_{1}}}\left|E_{k}\right|^{\frac{1}{p_{2}}}\left|E_{j}\right|^{1-\frac{1}{p_{1}}}\|b\|_{B M O}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} \\
& \lesssim\|b\|_{B M O} \frac{k-j}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{2}}}\left|E_{k}\right|^{\frac{1}{p_{2}}} \frac{2 \beta_{1}}{n-1}\left|E_{j}\right|^{1-\frac{1}{p_{1}}-\frac{2 \beta_{2}}{n}}\left\|f_{j}\right\| \|_{L_{1}\left(\mathbb{R}^{n}\right)},
\end{aligned}
$$

where $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$ and $N_{2}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$. Since $\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac{1}{p_{2}}+$ $1-\frac{2 \beta_{1}}{n}$, we obtain

$$
\begin{aligned}
& F_{1} \lesssim\|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{k-j}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{2}}}\left|E_{k}\right|^{\frac{1}{p_{2}}+\frac{2 \beta_{1}}{n}-1}\left|E_{j}\right|^{1-\frac{1}{p_{1}}-\frac{2 \beta_{2}}{n}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
& \lesssim\|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=-\infty}^{k-2} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{k} r m_{V}\left(x_{0}\right)\right)^{N_{2}}}\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta} \frac{\left|E_{j}\right|^{1-\frac{1}{p_{2}}-\frac{2 \beta_{1}}{n}}}{\left.\left|E_{k}\right|^{1-\frac{1}{p_{2}}-\frac{2 \beta_{1}}{n}}(k-j)\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q}}\right. \\
& \lesssim\|b\|_{B M O}^{q} \frac{\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha}}{r^{\lambda n}} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=-\infty}^{k-2}(k-j) 2^{(k-j) n\left(\theta-\frac{\lambda}{q}+\frac{1}{p_{2}}-1+\frac{2 \beta_{1}}{n}\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}}^{q} \\
& \lesssim\|f\|_{L_{\alpha, \theta, V}}^{q},\|b\|_{B M O}^{q} .
\end{aligned}
$$

For F_{3}, note that when $x \in E_{k}, y \in E_{j}$ and $j \geq k+2$, then $|x-y| \sim 2^{j} r$. Similar to F_{1}, we have

$$
\begin{aligned}
\| \chi_{k} & {\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f_{j} \|_{L^{p_{2}\left(\mathbb{R}^{n}\right)}} } \\
& \lesssim \frac{1}{\left(1+2 j r m_{V}\left(x_{0}\right)\right)^{N / k_{0}+1}} \frac{1}{(2 j r)^{n-2 \beta_{1}}}\left(\int_{E_{k}}\left|\int_{E_{j}}(b(x)-b(y)) V(y)^{\beta_{2}} f(y) d y\right|^{p_{2}} d x\right)^{\frac{1}{p_{2}}} \\
& \lesssim \frac{j-k}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{2}}}\left|E_{k}\right|^{\frac{1}{p_{2}}}\left|E_{j}\right|^{-\frac{1}{p_{2}}}\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\|b\|_{B M O},
\end{aligned}
$$

where $\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2 \beta_{1}-2 \beta_{2}}{n}$ and $N_{2}<\left(N / k_{0}+1\right)-\left(\log _{2} C_{0}+1\right) \beta_{2}$. Since $\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac{1}{p_{2}}+$ $1-\frac{2 \beta_{1}}{n}$, we obtain

$$
\begin{aligned}
F_{3} \lesssim & \|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\theta q} \\
& \times\left(\sum_{j=k+2}^{\infty} \frac{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{-\frac{\alpha}{q}}}{\left(1+2^{j} r m_{V}\left(x_{0}\right)\right)^{N_{2}}}\left(2^{j} r\right)^{\frac{\lambda n}{q}}\left|E_{j}\right|^{-\theta} \frac{\left|E_{k}\right|^{\frac{1}{p_{2}}}}{\left|E_{j}\right|^{\frac{1}{p_{2}}}}(j-k)\left\|f_{j}\right\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\right)^{q} \\
\lesssim & \|b\|_{B M O}^{q}\left(1+r m_{V}\left(x_{0}\right)\right)^{\alpha} r^{-\lambda n} \sum_{k=-\infty}^{0}\left|E_{k}\right|^{\lambda}\left(\sum_{j=k+2}^{\infty}(j-k) 2^{(k-j) n\left(\theta-\frac{\lambda}{q}+\frac{1}{p_{2}}\right)}\right)^{q}\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q} \\
\lesssim & \|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}^{q}\|b\|_{B M O}^{q} .
\end{aligned}
$$

Let N be large enough. We finally get

$$
\left\|\left[b,(-\Delta+V)^{-\beta_{1}} V^{\beta_{2}}\right] f\right\|_{L_{\alpha, \theta, V}^{p_{2}, q, \lambda}} \lesssim\|f\|_{L_{\alpha, \theta, V}^{p_{1}, q, \lambda}}\|b\|_{B M O} .
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

College of Mathematics, Qingdao University, Qingdao, Shandong 266071, China. ${ }^{2}$ Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China.

Acknowledgements

Project was supported by NSFC No. 11171203; New Teacher's Fund for Doctor Stations, Ministry of Education No. 20114402120003; Guangdong Natural Science Foundation S2011040004131; Foundation for Distinguished Young Talents in Higher Education of Guangdong, China, LYM11063

Received: 25 October 2014 Accepted: 1 July 2015 Published online: 23 July 2015

References

1. Shen, Z: LL Estimate for Schrödinger operator with certain potentials. Ann. Inst. Fourier 45, 513-546 (1995)
2. Guo, Z, Li, P, Peng, L: LD Boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341, 421-432 (2008)
3. Liu, Y : The weighted estimates for the operators $V^{\alpha}\left(-\Delta_{G}+V\right)^{-\beta}$ and $V^{\alpha} \nabla_{G}\left(-\Delta_{G}+V\right)^{-\beta}$ on the stratified Lie group G J. Math. Anal. Appl. 349, 235-244 (2009)
4. Liu, Y, Huang, J, Dong, J: Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrödinger operators. Sci. China Math. 56, 1895-1913 (2013)
5. Liu, Y, Wang, L, Dong, J: Commutators of higher order Riesz transform associated with Schrödinger operators. J. Funct. Spaces Appl. 2013, Article ID 842375 (2013)
6. Tang, L, Dong, J: Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials. J. Math. Anal. Appl. 355, 101-109 (2009)
7. Yang, DC, Yang, DY, Zhou, Y: Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal. 30, 271-300 (2009)
8. Yang, DC, Yang, DY, Zhou, Y: Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators. Commun. Pure Appl. Anal. 9, 779-812 (2010)
9. Sugano, S : Estimates for the operators $V^{\alpha}(-\Delta+V)^{-\beta}$ and $V^{\alpha} \nabla(-\Delta+V)^{-\beta}$ with certain non-negative potentials V. Tokyo J. Math. 21, 441-452 (1998)
10. Peetre, J: On the theory of $\mathcal{L}_{p, \lambda}$ spaces. J. Funct. Anal. 4, 71-87 (1969)
11. Herz, C: Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283-323 (1968/1969)
12. Chen, X, Chen, J: Boundedness of sublinear operators on generalized Morrey spaces and its application. Chin. Ann. Math., Ser. A 32, 705-720 (2011)
 Math. J. 34, 299-314 (2005)
13. Duong, X, Yan, L: On commutators of fractional integrals. Proc. Am. Math. Soc. 132, 3549-3557 (2004)
14. Jiang, Y: Endpoint estimates for fractional integral associated to Schrödinger operators on the Heisenberg groups. Acta Math. Sci., Ser. B. 31, 993-1000 (2011)
15. Coifman, R, Rochberg, R, Weiss, G: Factorization theorems for Hardy space in several variables. Ann. Math. 103, 611-635 (1988)
16. Liu, Y: Commutators of $B M O$ functions and degenerate Schrödinger operators with certain nonnegative potentials. Monatshefte Math. 165, 41-56 (2012)
17. Dziubański, J, Zienkiewicz, J: Hp Spaces for Schrödinger operator. In: Fourier Analysis and Related Topics. Banach Center Publ., vol. 56, pp. 45-53 (2002)
18. John, F, Nirenberg, L: On function of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415-426 (1961)
19. Bui, T-A: Weighted estimates for commutators of some singular integrals related to Schrödinger operators. Bull. Sci. Math. 138, 270-292 (2014)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

