Ceng et al. Journal of Inequalities and Applications (2015) 2015:217 ® Journal of Inequalities and Applications
DOI 10.1186/513660-01 5-0736-y a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Composite viscosity methods for common
solutions of general mixed equilibrium
problem, variational inequalities and
common fixed points

Lu-Chuan Ceng'?, Abdul Latif*" and Abdullah E Al-Mazrooei*

"Correspondence: alatif@kau.edu.sa
3Department of Mathematics, King Abstract

Abdulaziz University, PO. Box 80203, . . . . . . .
Jeddah. 21589 Saudi Arabia In this paper, we introduce a new composite viscosity iterative algorithm and prove

Full list of author information is the strong convergence of the proposed algorithm to a common fixed point of one
available at the end of the article finite family of nonexpansive mappings and another infinite family of nonexpansive
mappings, which also solves a general mixed equilibrium problem and a finite family
of variational inequalities. An example is also provided in support of the main result.
The main result presented in this paper improves and extends some corresponding
ones in the earlier and recent literature.

MSC: 49J30; 47H09; 47J20; 49M05

Keywords: composite viscosity iterative algorithm; general mixed equilibrium;
variational inequalities; nonexpansive mapping; inverse strongly monotone mapping

1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C be a nonempty
closed convex subset of H and P¢ be the metric projection of H onto C. Let S: C — C be
a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of all
real numbers. A mapping A : C — H is called o-inverse strongly monotone, if there exists

a constant « > 0 such that
(Ax — Ay, x —y) > a||Ax — Ay||*>, Vx,y€C.

A mapping A : C — H is called L-Lipschitz continuous if there exists a constant L > 0
such that

lAx - Ayl < Lllx-yll, VYx,yeC.

In particular, if L =1 then A is called a nonexpansive mapping; if L € (0,1) then A is

called a contraction.
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Let A : C — H be a nonlinear mapping on C. We consider the following variational
inequality problem (VIP): find a point x* € C such that

(Ax*,x —x*) >0, VxeC. 1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [1] and now is well known; there are a lot of dif-
ferent approaches toward solving VIP (1.1) in finite-dimensional and infinite-dimensional
spaces, and the research is intensively continued. The VIP (1.1) has many applications
in computational mathematics, mathematical physics, operations research, mathematical
economics, optimization theory, and other fields; see, e.g., [2—5]. It is well known that, if
A is a strongly monotone and Lipschitz continuous mapping on C, then VIP (1.1) has a
unique solution. Not only the existence and uniqueness of solutions are important topics
in the study of VIP (1.1), but also how to actually find a solution of VIP (1.1) is impor-
tant.

In 1976, Korpelevich [6] proposed an iterative algorithm for solving the VIP (1.1) in Eu-
clidean space R™:

Yn = Pc(x, — TA%,),
Xn+l = PC(xn - TAyn)) Vn >0,

with 7 > 0 a given number, which is known as the extragradient method. The litera-
ture on the VIP is vast and Korpelevich’s extragradient method has received much at-
tention by many authors, who improved it in various ways; see, e.g., [7—24] and references
therein, to name but a few. In particular, motivated by the idea of Korpelevich’s extragra-
dient method [6], Nadezhkina and Takahashi [11] introduced an extragradient iterative

scheme:

x9=x€ C chosen arbitrary,
Yn = PC(xn - )\nAxn): (12)
X1 = Ay + (1 — 0t)SPc(x, — }\nAyn)x Vn=>0,

where A : C — H is a monotone, L-Lipschitz continuous mapping, S: C — C is a non-
expansive mapping and {A,} C [a,b] for some a,b € (0,1/L) and {«,} C [c,d] for some
¢,d € (0,1). They proved the weak convergence of {x,} generated by (1.2) to an element
of Fix(S) N VI(C, A). Subsequently, given a contractive mapping f : C — C, an «-inverse
strongly monotone mapping A : C — H and a nonexpansive mapping 7 : C — C, Jung
([25], Theorem 3.1) introduced the following two-step iterative scheme by the viscosity
approximation method:

x9=x€ C chosen arbitrary,
In = of () + (1= 0ty) TP (% — ApAx), (1.3)
T = (1 - ﬁn)yn + B TPC(yn - )\nA}’n)r Vn=>0,

where {A,} C (0,2«) and {oy,},{B,} C [0,1). It was proven in [25] that, if Fix(T) N
VI(C,A) # @, then the sequence {x,} generated by (1.3) converges strongly to g =
Peix(rynvicaf (@)
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On the other hand, we consider the general mixed equilibrium problem (GMEP) (see
also [26, 27]) of finding x € C such that

O(x,y) + h(x,y) >0, VyeC, (1.4)

where ©,4 : C x C — R are two bi-functions. The GMEP (1.4) has been considered and
studied by many authors; see, e.g., [28—30]. We denote the set of solutions of GMEP (1.4)
by GMEP(®, h). The GMEP (1.4) is very general, for example, it includes the following
equilibrium problems as special cases.

As an example, in [14, 15, 31], the authors considered and studied the generalized equi-
librium problem (GEP) which is to find x € C such that

O(x,y) + (Ax,y—x) >0, VyeC.

The set of solutions of GEP is denoted by GEP(®, A).
In [22, 26, 32, 33], the authors considered and studied the mixed equilibrium problem
(MEP) which is to find x € C such that

O,y + ) —ex) =0, VyeC.

The set of solutions of MEP is denoted by MEP(®, ).
In [34-37], the authors considered and studied the equilibrium problem (EP) which is
to find x € C such that

Ox,y)>0, VyeC.

The set of solutions of EP is denoted by EP(®). It is worth to mention that the EP is an
unified model of several problems, namely, variational inequality problems, optimization
problems, saddle point problems, complementarity problems, fixed point problems, Nash
equilibrium problems, etc.

Throughout this paper, it is assumed as in [38] that ® : C x C — R is a bi-function
satisfying conditions (61)-(63) and /: C x C — R is a bi-function with restrictions (h1)-
(h3), where

(A1) ©(x,x)=0forallx € C;
(62) © is monotone (i.e., O (x,y) + O(y,x) <0, Vx,y € C) and upper hemicontinuous in the
first variable, i.e., for each x,7,z € C,

limsup ® (tz +(1-t)x, y) < O(x,y);

t—0%

(#3) © islower semicontinuous and convex in the second variable;

(h1) A(x,x) =0 for allx € C;

(h2) & is monotone and weakly upper semicontinuous in the first variable;
(h3) % is convex in the second variable.

Forr>0and x € H, let T, : H — 2 be a mapping defined by
1

T,x = {ze C:0(z,y)+h(z,y) + -(y—z,z—x) zO,VyeC}
r

called the resolvent of ® and #.
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In 2012, Marino et al. [30] introduced a multi-step iterative scheme

@(un!y)+h(un’y)+ i(y_un:un_xn) 201 VyEC’
Y1 = lsn,lslun + (1 - ,Bn,l)un;

Yni = ,Bn,iSiMn + (1 - ,Bn,i)yn,i—l; i= 2¢ .. -;Ny

Xn+l = anf(xn) + (1 - an)Tyn,N,

(1.5)

with f : C — C a p-contraction and {«,},{8,:} C (0,1), {r,} C (0,00), which generalizes
the two-step iterative scheme in [39] for two nonexpansive mappings to a finite family of
nonexpansive mappings 7,S;: C — C,i=1,...,N, and proved that the proposed scheme
(1.5) converges strongly to a common fixed point of the mappings that is also an equilib-
rium point of the GMEP (1.4).

More recently, Marino et al.’s multi-step iterative scheme (1.5) was extended to develop
the following composite viscosity iterative algorithm by virtue of Jung’s two-step iterative
scheme (1.3).

Algorithm CPY (see (3.1) in [29]) Let f: C — C be a p-contraction and A : C — H be
an «-inverse strongly monotone mapping. Let S;, T : C — C be nonexpansive mappings
foreachi=1,...,N. Let ® : C x C — R be a bi-function satisfying conditions (61)-(63)
and /1 : C x C — R be a bi-function with restrictions (h1)-(h3). Let {x,} be the sequence
generated by

O (i, 9) + h(ttn,y) + -y = thny thy —%,) = 0, Vy€C,

Yn1 = /Bn,lslun + (1 - ,Bn,l)um

yl’l,i = :Bn,iSiM}’l + (1 - ﬂn,i)yn,i—l; i= 21 e 7Nr (16)
Yn = ar(f(yn,N) + (1 - an)TPC(yn,N - )"nAyn,N)f

Xn+l = (]- - ,Bn)yn + ﬂn TPC(yn - )"nA_yn), Vn>1,

where {1,} is a sequence in (0, 2«) with 0 < liminf, . A, <limsup,_, . Ax < 1, {&,}, {Bn}
are sequences in (0,1) with 0 < liminf,_. 8, <limsup,_, ., B, <1, {Bui} is a sequence in
(0,1) for each i =1,...,N, and {r,} is a sequence in (0, c0) with liminf,_, . 7, > 0.

It was proven in [29] that the proposed scheme (1.6) converges strongly to a common
fixed point of the mappings 7,S,;: C — C, i=1,...,N, that is also an equilibrium point of
the GMEP (1.4) and a solution of the VIP (1.1).

In this paper, we introduce a new composite viscosity iterative algorithm for find-
ing a common element of the solution set GMEP(®, /1) of GMEP (1.4), the solution set
ﬂﬁl VI(C,Ay) of a finite family of variational inequalities for inverse strongly mono-
tone mappings Ay : C — H, k =1,...,M, and the common fixed point set ﬂf\il Fix(S;) N
ﬂflozl Fix(T,) of one finite family of nonexpansive mappings S;: C — C,i=1,...,N, and
another infinite family of nonexpansive mappings T, : C — C, n =1,2,..., in the setting
of the infinite-dimensional Hilbert space. The iterative algorithm is based on viscosity ap-
proximation method [40] (see also [41]), Mann’s iterative method, Korpelevich’s extragra-
dient method and the W-mapping approach to common fixed points of finitely many non-
expansive mappings. Our aim is to prove that the iterative algorithm converges strongly
to a common fixed point of the mappings S;,7,: C — C,i=1,...,N, n=1,2,..., which
is also an equilibrium point of GMEP (1.4) and a solution of a finite family of variational
inequalities for inverse strongly monotone mappings Ay : C — H, k=1,...,M.
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2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by (-,-) and || - ||, respectively. Let C be a nonempty, closed, and convex
subset of H. We write x,, — x to indicate that the sequence {x,} converges weakly to x
and x, — «x to indicate that the sequence {x,} converges strongly to x. Moreover, we use
wy(x,) to denote the weak w-limit set of the sequence {x,} and w;(x,) to denote the strong

w-limit set of the sequence {x,}, i.e.,

wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {x,,}}
and

wg(xy,) := {x € H : x,, — x for some subsequence {x,,} of {x,,}}.

The metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € H the unique point Pcx € C satisfying the property

ll = Pex|| = inf ||lx — y|| =: d(x, C).
yeC

The following properties of projections are useful and pertinent to our purpose.

Proposition 2.1 Given any x € H and z € C. One has
(i) z=Pcx & (x—2z,y-2) <0,Vy e C;
(i) z=Pcx & lx—z|* < |lx-ylI*> - lly -zl Vy € C;
(iii) (Pcx — Pcy,x —y) > |Pcx — Pcy||?, Yy € H, which hence implies that Pc is
nonexpansive and monotone.

Definition 2.1 A mapping T : H — H is said to be
(a) nonexpansive if

”Tx— T)’H = ”x_y”r eryeH;

(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if 7' is 1-inverse

strongly monotone (1-ism),
(w—y,Tx-Ty) > | Tx - Ty|*>, Va,y€H;
alternatively, T is firmly nonexpansive if and only if T can be expressed as
1
T=-U+3S),
S+5)
where S: H — H is nonexpansive; projections are firmly nonexpansive.

Definition 2.2 Let T be a nonlinear operator with the domain D(T) C H and the range
R(T) C H. Then T is said to be

(i) monotone if

(Tx - Ty,x—y) >0, Vx,ye€D(T);
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(ii) B-strongly monotone if there exists a constant 8 > 0 such that
(Tx - Ty,x—y) = nllx-yI°, V¥x,y€D(T);

(iii) v-inverse strongly monotone if there exists a constant v > 0 such that
(Tx - Ty,x—y) > v||Tx = Ty||>, Vx,y € D(T).

It can easily be seen that if T is nonexpansive, then / — T is monotone. It is also easy to see
that the projection P¢ is 1-ism. Inverse strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if A is n-inverse strongly monotone, then A is
monotone and %—Lipschitz continuous. Moreover, we also have, for all 4,v € Cand A > 0,

| = 2A)u = (L = 2AW||” = || (u=v) - M(Au - AV)|?
= |lu—v||* =20 {Au — Av,u — v) + A2 ||Au — Av|®

<|lu=v|®+ 1k -2n)|Au - Av|* (2.1)

So, if . <25, then I — LA is a nonexpansive mapping from C to H.
We need some facts and tools in a real Hilbert space H, which are listed as lemmas
below.

Lemma 2.1 Let X be a real inner product space. Then we have the following inequality:
o+l < 2 +2(px +9), VxyeX.

Lemma 2.2 Let H be a real Hilbert space. Then the following hold.:
(@) llx—yl2 = %l = llyll2 - 2(x - 3,) for all x,y € H;
(b) 112 + eyl = Allxll2 + pliyll® = hpellx = yI|? for all x,y € H and &, p € [0,1] with
A+u=1
(c) if{xy} is a sequence in H such that x, — x, it follows that

limsup ||, — y||* = limsup ||, — x| + [|x —y||>, VyeH.
n— 00 n— 00
Let {T,,}52, be an infinite family of nonexpansive self-mappings on C and {},};°; be a
sequence of nonnegative numbers in [0,1]. For any # > 1, define a mapping W), on C as
follows:

un,n+l =1,

un,n = )Vn Tn un,n+1 + (1 - )»,,)1,

un,n—l = )‘n—l Tn—l Un,n + (1 - )Wz—l)ly

Ui = M Tl + (1= M), (2.2)
U1 = i1 TieeaUp e + (1= M),

Upo = 2 Tollys + (1= 22)1,

Wn = LI,,,I = )Ll Tlun,z + (1 - A.l)]
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Such a mapping W, is called the W-mapping generated by T}, T,_1,..., 71 and A, A,_1,
C A

Lemma 2.3 (see [42]) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let {T,}%2, be a sequence of nonexpansive self-mappings on C such that
Moo, Fix(Ty,) # ¥ and let {1,}32, be a sequence in (0,b] for some b € (0,1). Then, for ev-
eryx € C and k > 1 the limit lim,,_, o, U, xx exists where U, is defined as in (2.2).

Remark 2.1 (see Remark 3.1 in [36]) It can be known from Lemma 2.3 that if D is a
nonempty bounded subset of C, then for € > 0 there exists 7o > k such that, for all n > ny,

sup [|Unix — Urx|| < €.

xeD
Remark 2.2 (see Remark 3.2 in [36]) Utilizing Lemma 2.3, we define a mapping W : C —
C as follows:

Wx = lim Wyx= lim U,;x, VxeC.

n—00 n—00

Such a W is called the W-mapping generated by 71, Ts,..., and A3, Xy,.... Since W, is
nonexpansive, W : C — C is also nonexpansive. Indeed, observe that, for each x,y € C,

[Wx — Wyl = lim [[Wyx — Wyl < |2~ yll.

If {x,} is a bounded sequence in C, then we put D = {x, : n > 1}. Hence, it is clear from
Remark 2.1 that for an arbitrary € > 0 there exists Ny > 1 such that, for all n > N,

” ann - Wxn” = ”Un,lxn - len” <sup ||Un,1x - le” <e.
xeD

This implies that
lim || W,x, — Wa,|| = 0.
n— o0

Lemma 2.4 (see [42]) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let {T,}52, be a sequence of nonexpansive self-mappings on C such that
Moo, Fix(Ty,) # 0, and let {1,}32, be a sequence in (0, b] for some b € (0,1). Then Fix(W) =
Mooy Fix(T,).

Lemma 2.5 (see [43], Demiclosedness principle) Let C be a nonempty, closed, and convex
subset of a real Hilbert space H. Let S be a nonexpansive self-mapping on C with Fix(S) # 0.
ThenI-S is demiclosed. That is, whenever {x,} is a sequence in C weakly converging to some
x € C and the sequence {(I — S)x,} strongly converges to some y, it follows that (I — S)x = y.
Here I is the identity operator of H.

Lemma 2.6 Let A: C — H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition 2.1(i)) implies

ueVI(C,A) & u=Pc(u—-rAu), Vr>O0.
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Lemma2.7 Letf:C — C bea p-contraction. ThenI—f : C — H is (1— p)-strongly mono-
tone, ie.,

(U-flx=U-fyx-y)=A-p)lx-yI>, VxyeC.
Lemma 2.8 (see [44]) Let {a,} be a sequence of nonnegative real numbers satisfying
A < (1 =$,)an + by +t,, Vn>1,

where {s,}, {t}, and {b,} satisfy the following conditions:
(i) {sx} C[0,1] and Y 2, s, = 00;
(i) either limsup,_, . b, <0 or Y 21 |suby| < 00;
(i) t, >0 foralln>1,and >, t, < co.
Then lim,,_, o a, = 0.

In the sequel, we will denote by GMEP(®, /) the solution set of GMEP (1.4).

Lemma 2.9 (see [38]) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H.Let ® : C x C — R be a bi-function satisfying conditions (01)-(03) andh: Cx C —
R is a bi-function with restrictions (h1)-(h3). Moreover, let us suppose that

(H) for fixed r > 0 and x € C, there exist a bounded K C C and x € K such that for all

z€ C\K, -0O(x,2) + h(z,x) + %(&—z,z—x) <0.
For r > 0 and x € H, the mapping T, : H — 2 (i.e., the resolvent of © and h) has the
following properties:
(i) T,x #0;

(i) Ty« is a singleton;
(iii) T, is firmly nonexpansive;
(iv) GMEP(O®, h) = Fix(T;) and it is closed and convex.

Lemma 2.10 (see [38]) Let us suppose that (61)-(63), (h1)-(h3), and (H) hold. Let x,y € H,
r,1p > 0. Then

ry

1Ty = Trxll < lly —xIl +

1 ‘ 1Ty =¥l
ry
Lemma 2.11 (see [30]) Suppose that the hypotheses of Lemma 2.9 are satisfied. Let {r,} be
a sequence in (0,00) with liminf,_, o r, > 0. Suppose that {x,} is a bounded sequence. Then
the following statements are equivalent and true:

(@) If 1, = T, xnll = 0 as n — 00, each weak cluster point of {x,} satisfies the problem

O(x,y) +h(xy) >0, VyeC,

ie., wy(x,) € GMEP(®,h).
(b) The demiclosedness principle holds in the sense that, if x, — x* and
%, — Ty, %]l = 0 as n — o0, then (I — T, )x* = 0 for all k > 1.

Finally, recall that a set-valued mapping T : H — 2 is called monotone if for all x,y € H,
fe Tx andg e Ty imply (x—y,f —g) > 0. A monotone mapping T:H — 2 is maximal if
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its graph G(T) is not properly contained in the graph of any other monotone mapping. It
is well known that a monotone mapping T is maximal if and onlyif for (x,f) € H x H, (x—
y,f—-g)=0forall(y,g) € G(T) implies f € Tx.LetA: C — H be a monotone, L-Lipschitz
continuous mapping and let N¢v be the normal coneto Catve C,ie, Ncv={we H:
(v—u,w) > 0,Vu € C}. Define

~ Av+ Ncv, ifveC,
Tv =
@, ifveC.

It is well known [45] that in this case T is maximal monotone, and
0eTv < veVIGA). (2.3)

3 Main results
Let M,N > 1 be two integers and let us consider the following new composite viscosity
iterative scheme:

O (ttn,y) + httns ) + 5 (9 = thny U = %0) 2 0, ¥y €C,

Y1 = BuaSithy + (L= B1)thy,

Ini = BuiSithn + (1= Bui)yni-1, i=2,...,N, (3.1)
V= Qf Oun) + (1= o) Wy AMy,, s

X1 = (L= Bu)yn + BaWu Ay, Vn>1,

where
the mapping f : C — C is an p-contraction;
Ay : C— H is ng-inverse strongly monotone for each k =1,...,M;
Si, T, : C — C are nonexpansive mappings foreachi=1,...,Nandn=1,2,...;
{1} is a sequence in (0, b] for some b € (0,1) and W, is the W-mapping defined by
(2.2);
®,h:C x C — Rare two bi-functions satisfying the hypotheses of Lemma 2.9;
{Akn} C lak, br) C (0,2m1), Yk €{1,...,M}, and
AN = Po(l = AagnAp) -+ - Po(I = Ay udy);
{a}, {Bn} are sequences in (0,1) with 0 < liminf,_, o B, <limsup,_, . By <1;

{ﬁn,i}fﬁl are sequences in (0,1) and {r,} is a sequence in (0, c0) with liminf,_, - r, > 0.

Lemma 3.1 Let us suppose that 2 = (22, Fix(T,,) N (Y, Fix($;) N (r, VI(C,Ax) N
GMEP(O, h) # (. Then the sequences {x,}, {yu}, {yun:} for all i, {u,} are bounded.

Proof Put y, N = Ayyn,N, Y = A‘,‘,/Iy,,, and
AK = Pl = hyo )Pl = A1 pAra) - - Poll = A uds)

forall k € {1,...,M}and n > 1, and A = I, where I is the identity mapping on H.
Let us observe, first of all that, if p € §2, then

1¥n1 -l < llun - pIl < 1%, = Pl
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For all from i = 2 to i = N, by induction, one proves that

”yn,i —17|| = lsn,i”un —P|| + (1 - lgn,i)”yn,i—l —19|| =< ”Mn —P|| =< ”xn —P||

Thus we obtain, for everyi=1,...,N,

1Yni =PIl < llttw = pll < lI%0 = pII- (3.2)

Since for each k € {1,...,M}, I — Ay, Ak is nonexpansive and p = Pc(I — Ag,Ax)p (due to
Lemma 2.6), we have

17n3 =PIl = |PcU = kagnAs) ANy = Pl = Aarudan) AV p |
< |0 = AnAr) AL yun = (= AagnAn) AL p|

< || AM 1y, N - AX |

< | A%yn - A%

= |lyun —pl (3.3)

and

175 = pll = |Pc = AptuAnd) AY 1y, — Po(l = ApuAar) AYp |
< = AgnAn) ALy = (0 = hagnAr) A |

< | Ay, — AV |

= [ A% - A%

= llyn = pl. 34

Since W, is nonexpansive and p = W,,p for all n > 1, we get from (3.2)-(3.4)

19 = 2l = ||etn (f Onn) = p) + (1 = ) (Wi — D) ||
< u[[f ) = || + L= )7 - p
< @u[[f Gun) —=f @) + @ul[f @) - | + A=) llynn - pl
< @upllynn = pll + o |[f(p) - p| + A = a)[yun - pll
= (1= A= p)tn) lynn — Pl + ul[f ) - |
< (1= - p)a) %, = pll + | f () - 1|

If ) - pll

=(1-@Q-p)an)lxy —pll + 1A= p)ay -
smax{nxn—pn,w},
1-p
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and hence

1011 = plIl = ” (1= Bu)Yn = p) + Bu(Wyyn — p) ”
=< (]- - ,Bn)”yn —P|| + ﬂn||5’n —P||
< (@ =Bllyn = pll + Bullyn - pll

= lyu —pl
I ) -l
smax{nxn—pn,lf(”—p .
1-p
By induction, we get
I/ () -l
||xn—p||smax{||xo—p||,wf% .zl

This implies that {x,} is bounded and so are {u,}, (¥}, (Jun} (¥n} {yui} for each i =

L...,N.Since |Wyynn = pll < llyun =PIl < %, = pll and W3, = pll < lyn =PIl {WnInn}
and {W,,y,} are also bounded. O

Lemma 3.2 Let us suppose that $2 # (). Moreover, let us suppose that the following hold:
(H1) lim, o0, =0and ) o) oy = 00;
(H2) Y07 loty — ] < 00 or limy,s o % =0;

) \
(H3) >"0% | Bui — But,il < 00 or lim,,, VBmi=P-til _ 0 foreachi=1,...,N;
)

(773

(H4) > 02 170 — ruea| < 00 or limy,_, o % =0;
(H5) ZEZI |8y — Bu-1| <00 orlim,_, & VPPl _ 0;

Ay

[e%e} : ‘}Lk,n_)hk,n—ﬂ _ _
= /. M= n— 00 = =14..., .
(H6) D> 071 [Aien — i | < 00 or lim, —et Rl = 0 foreach k=1 M

(2972
Then lim,,_, o ||%,41 — %4l = 0, ie., {x,} is asymptotically regular.

Proof From (3.1), we have

Yn = C\lnf()’n,]\[) +(1- an)an’n,N;
Yn-1= an—]f(yn—l,N) + (1 - an—l) Wn—lj’n—l,N-

Simple calculations show that

Yn—Yn-1= (1 - Oln)(an}n,N - Wn—lyn—l,N) + (an - an—l)(f(yn—l,N) - Wn—lj}n—l,N)
+ oy (f(y;q,N) _f(yn—l,N)) . (3.5)

Note that

158 = Fnanll = || An'yun = AR 3|
= | Pc( = AatuAar) AN yun = Pell = Mg pr At ANy v |
< ||Pc(I = datnAn) AN yun = Pl = A1 Ant) ALy |
+ [Pl = AppnrAn) ANy = Pell = AptnaAnt) AN ynoav |

< T = AatnAat) ALY yun = T = Aagn1An) A Y |
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+ | = 21 An) AL yun = T = Aptn1An)) AT yoin |

< At = At | A ANy | + | AY Y — AV Ty |

IA

st = Mt |Am AL yun | + hatcin = Anrctnea || A AY 2y |

+ Ay = A5 |

IA

IA

Deatn = 2ot | [ A AN || + 1hatcrn = Aatcin-al | A1 ALy |

4 A = Ayt AL AYyun | + | Asyan = Ap_ |

<Mo Y hion = Monotl + 1¥mn = Yl (3.6)

M=

>
1l

1

and

13 = Fnall = | A9 = AZL 1 yca |
= |Pcl = A ANy = Pell = dpgns An) ANy |
< | Pcll = AatnAs) Ay, = Pell = MagnaAs) ALy, |
+ | Pell = Aat 1 Ant) AY ™y~ Poll = AagnrAng) AX s |
< [ = AatnAan) Ay = (T = hag s An) AL |
1 = AtnaAn) Ay = (0 = hopg 1 An) ANy |
< Aot = | A A5y | + | A5y = AT 9 |
< 1Mt = At | [AM ANy | + hatcan = Mat | [ A AY 2y,

L L TR e P

< st = At | A AY 7y | + Aot = Aatca o | | A1 AY 2, |

L |)\1,n - )\l,n—1| ||A1A2yn || + ” Agyn - Ag_lyn—l ||

M
< Mo Y Ihen = Monal + 1yn = Yuarll (3.7)
k=1

where sup,., {01, |4 A% 1y, vll} < Mo and sup,.; {33t A AX1y,ll} < My for some
Mo > 0.
Also, from (2.2), since W,,, T,,, and U,,; are all nonexpansive, we have

IWudn-1n = WoaaVnan | = 1M Tl pyuan — M Ty 10V |l
< MUY n — Unc1,29n-an |
= Ml Tolly3YnaN — Mo Tolly_13Yu-1n |l

< Mra | Un3Vu-1n — Un-13Yn-1n |l



Ceng et al. Journal of Inequalities and Applications (2015) 2015:217 Page 13 of 34

= )Ll)\Z t }\n—l ” un,nj’n—l,N - un—l,nj"n—l,N”

IA

n-1

M [ni (3.8)
i=1

and

IWodn-1 = WausiVuall = 1M Tilyo¥n-1 — M TiUp—1,2Vn |l
< MUy 2Vn1 — Up_12Vp |l
= Milldo Toly3¥u-1 — Ao Tolly1,39u1

< Ml UnsYu-1 — Unzyu-ll

IA

S )\1)‘-2 e )‘-n—IHUn,nj}n—l - Un—l,ni’n—l”

—

.
M| T, (3.9)

i

IA
il

where Supn21{||un+l,n+15/n,N” + U perYun|l} < M and Supn21{||un+1,n+15/n|| + | Unp1dull} <
M for some M > 0. Combining (3.5), (3.6), and (3.8), we get from {1,} C (0,5] C (0,1),
”yn —Yn-1 ”
S (M= a)IWuyun = WaarYn-in Il + |ty — | Hf(yn_LN) - Wy1Vnin ”
Ty “f(yn,N) ~fnn) H
< U= @)[IWFnn = Waduan |l + 1 WoFnan = WoFuan 1]
+ ot — @ | |[f Q1) = Wneadnin | + @np lyun = Ynorn |
< =) 175N = Fna Nl + 1 WoFnan = WiaFnanll]
+ ot = @ | |[f Q1) = Wnerdnan | + @np lyun = Ynorn |
M n-1
< (1 - an) |:M0 Z |)"k,}’l - )\k,n—1| + ”yn,N _yn—l,N” +M1_[ )"i:|
k=1 i=1

+ ety = et | |[f Qo) = Wt Iuaan | + €nplyun = Yuoil

M
< (1=t = ) 1y = Yuan |l + Mo Y Ak = Ainat
k=1
. n-1
+ |an - Oln—1| Hf(Yn—l,N) - Wn—lj"n—l,N ” + Ml_[ Aj. (3'10)
i=1

Furthermore, from (3.1) we have

Xn+l = (1 - ﬂn)yn + ﬁn an’m
Xp = (1 - ﬁn—l)yn—l + lgn—l Wn—lj/n—l'

Simple calculations show that

Xl —Xy = (1 _,Bn)(yn _yn—l) +,Bn(an;n - Wn—lj’n—l) + (,Bn _ﬁn—l)(Wn—l_&n—l _yn—l)- (311)
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Combining (3.7) and (3.9)-(3.11), we get from {A,,} C (0,b] C (0,1),

141 = %
< (1 - ﬂn)”yn _yn—IH + ,Bn” an”n - Wn—lj’n—l” + |,8n - ,Bn—1| ” Wn—lj’n—l _yn—IH
= (1 - ﬂn)”yn _yn—IH + ﬂn[” an’n - an’n—l” + ” an’n—l - Wn—lj’n—l”]
+ |,3n - ,Bn—ll ” Wn—lj/n—l _yn—IH
= (1 - IBVI)Hyn _yn—IH + ﬁn[”j’n _j}n—l” + ||Wn5/n—1 - Wn—lj’n—l”]
+1Bn = BuallWhc1¥n-1 = Yuar |l
M n-1
< (= Blyn = Yuar | + B |:M0 D i = Al + 19 = yuall + M | Al}
k=1 i=1

+ |,Bn - ,Bn—ll ” Wn—lj’n—l _yn—ln

M n-1
< 19n = ncall + Mo Y Vhion = Mol + 1Bn = Buct  WiacaFina = yuca | + M [ 2
k=1 i=1
M
< (U= an@ = P)Iynn = Ynan | + Mo Y [hien = hignot
k=1
n-1
+ ot = @ | |[f Q1) = Woeadnan || + MH Ai
i=1
M n-1
+ Mo Y~ Ihn = Mol + 1Bn = Bua Il WinaFina =y Il + M [ s
k=1 i=1
M
< (1 - 0[,,(1 - 10)) ”yn,N __yn—l,N” + Ml |:Z |)Vk,n - )\k,n—ll + |an — 0y
k=1
+1Bn — Bl + b”‘l} (3.12)

where sup,_ {[f ) = Wadinn | + | Wadin = all + 2M +2Mo} < M for some M; > 0.
In the meantime, by the definition of y,; one obtains, foralli =N, ...,2,

i = Yn-rill < Builltn — thnall + 1Sittn1 = Yn-1,i-1111Bri — Bu-1,i]
+ (L= Buid)lynict = Yn-viz1ll (3.13)

In the case i = 1, we have

”_yn,l _yn—l,IH = ﬁn.l”l'tn - un—l” + ”Slun—l — Up-1 ” |,Bn,1 - ;Bn—l,1| + (1 - ﬁn.l)”un - un—l”

=ty — thya |l + S1240-1 — U1 11 By — Bu-11]- (3.14)

Substituting (3.14) in all (3.13)-type one obtains, for i = 2,...,N,

1
1y = Ynovill < Notn = tna ||+ ISkthnor = Yus ot 1Bk = Bu-sil
k=2

+ 81241 = tnall1Bug — Bu-11l-
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This together with (3.12) implies that

%41 = %l
M
< (1 - 0[,,(1 - ,0)) ”yn,N _yn—l,N” + Ml |:Z |)Vk,n - )\k,n—ll + |Ol,, — 0y
k=1

+ |:3n - ,Bn—ll + bn_l:|

N
= (1 - Oln(l - ,0)) |:||un —Un ” + Z”Skun—l — Yn-1k-1 ” |ﬂn,k - ﬂn—l,k|

k=2
M
1818401 = 1 1Bt = Bua '} + My [Z Mn = Mt
k=1
+ 0, — Ol,,_1| + |,3n - ,Bn—1| + bn1:|
N
< (L=t = ) et =t | + D USkttn1 = Yot Bk = -l
k=2
M
+ 1S1tp-1 = thna [l By = Brora| + My |:Z 1Aen = M|
k=1
+ 10, — an—1| + |ﬁn - ﬁn—1| + bn_1:| . (315)
By Lemma 2.10, we know that
Tn-1
”un - un—l” = ”xn _xn—l” +L|1- ’ (316)
n

where L = sup,., ||, — %,||. So, substituting (3.16) in (3.15) we obtain

%41 = %l

Vy—
= (1_an(1_p))(||xn —%p1ll +L‘1_ 2

T'n

N
) + 3 ISkttnas = Yu-rit 1 Buk = Bu-vi]
k=2

M
+ 11S1tt1 =t all| By = Bura| + My [Z M = Mkt
k=1

-1
+ |0y —Ol,,_1| + |,3n _,Bn—1| +b" i|

Tp-1

= (l_an(l _p))”xn — %1l +L’1_

T'n

N
+ ) 1Skttn-1 = Yunvit 1Bk = Buiil
k=2

M
+ 1S1ttn1 =ty 1By = Bucra| + My [Z A = M|
k=1



Ceng et al. Journal of Inequalities and Applications (2015) 2015:217 Page 16 of 34

+ oy — | + [By — ﬁn—1|:| + ji;Illy’_1

N
~ | 7w = rua
< (1- @ = p)) Il — Za | +M2[”r—“ + 3 1Buk — Bu-il

n

k=2
M
Y -1
1B = Bural + D Phion = Mo + Loty = ctua | + B - ﬁnu} + Myb"
k=1

N
~ | Py = rpal
= (1 —a(l- p))”xn = x|l + Mp [% + Z“gn,k — Bu-1kl

k=1

M

£ ) Dhdn = Mo |+l = | + 1By - ﬁn_u} + Myb", (317)
k=1

where y > 0 is a minorant for {r,,} and sup .., {L +M, + Zi\[zz ISkt — Vg1 | + | S1tt — 1141} <
M, for some M, > 0. By hypotheses (H1)-(H6) and Lemma 2.8, we obtain the claim. [

Lemma 3.3 Let us suppose that 2 # (). Let us suppose that {x,} is asymptotically regular.
Then ||x, — yull = 0, |y — Wyull = 0, and ||x, — uy || = |2 — Ty, %4l = 0 as n — oo.

Proof Takinginto account 0 < liminf,_, «, B, < limsup,_, ., B, <1 we may assume, without
loss of generality, that {8,} C [¢,d] C (0,1). Let p € 2. Then from (2.1) and (3.2) it follows
that, for all k € {1,2,...,M},
. 2
Fnn =2l = | A3y — |
2
< | A%yun -1l
_ 2
= [ Pedl = AnAi) Ay Y = Pell = henAi)p |
_ 2
< || = M AR) ALy = (T = AiuAi)p ||
_ 2 _ 2
< | A5 yun = 2| + Mo = 200 [ Ak ARy — Arp|

_ 2
< Nyun =PI + Mo Cien — 200 || A Ay — Asp || (3.18)

Similarly, we have

15 - plI* = | AMy, - p|?

< 9 =PI + Ao — 200) | Ax AX Ty = Aup || (3.19)

So, utilizing the convexity of || - ||, we get from (3.1)-(3.2) and (3.18)-(3.19)

”yn —P||2 = Han(f(yn,N) —P) + (1 - an)(WnAyyn,N —P) H2

< o, |[fOun) - p|” + A=) | W AMy,x - ||
< au|fOun) = 2| + | AYyun - p|

< 6 [fOun) = || + 19mn =PI + hionCrin = 200) | Ak AX Yy — Asp |
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and hence

%1 —2I% = [ (L= B = P) + Bu( W Ay, - p) ||

< (= Bllyn = pI% + Ba| W A2y, — p|*

< W= Blyn - b7 + Bul Ay~ p|*

< W= Blyn = P17 + Bal 117 =PI + hton (o — 200) | A AK Ly — Arp ]

= 1y =PI + BudtonOutn = 2110) | A ARy — Agp |

< oy |[fGun) —P”Z + 19nn =PI + Mnosen = 200) || A AR v —AkP”2
+ Bukdon et — 200) || Ak A%y, —Aka2

< |[f ) —1!7||2 + 1% =PI + Ak hin = 200 | Ak Ay —AkPH2

+ Buion(Min = 200) | Ac ARy —AkPHZ-
This together with {Ax,} C [ax, bk] C (0,2nk), k =1,..., M, implies that
a2k — bi) | Ak Ay —AkP||2 + cag(2n — by) | Ac Ay, —AkP“2
< )\k,n(znk - )"k,n) ||AkA];71yn,N - Akp“2 + lgn)"k,n(znk - Ak,n) ||AkA];71yn _14/(]9”2
< @[ fOun) = 2| + 190 = PI% = 21 — 21
< & [[f Onn) = |* + 120 = st I (16 =PIl + 101 = p1I).

Since o, — 0 and ||x,41 — %, || = 0 as n — 0o, from the boundedness of {x,} and {y, n} we

get
lim |ArAS Ty, —Akp| =0 and  lim ||Ac A%y, — Agp|| = 0. (3.20)
n—00 n—oo

We recall that, by the firm nonexpansivity of T}, , a standard calculation (see [37]) shows
that for p € GMEP(60, h),

lletw = pI* < 120 = pII* = [l = 101>
By Proposition 2.1(iii), we deduce that, for each k € {1,2,..., M},
2
”Aﬁyn,N —P”

= | Pell = AuAr) Ay = Pell = MiAi)p )

< (I = MenAD) A3 Y = (U = inA)P, Agyun =)

= (U200 Ay = = 2o |+ | Ay o
U = s A Ay~ (U = inAidp — (Ayun 1) )

< (145 =l + | Ak -l

- H Aﬁilyn,N - Aﬁyn,N - )"k,n (AkAﬁilyn,N _Akp) ”2)
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< =(lyun 21 + | AXyn - p|”

l\Jl’—‘

2)’

~ AN YN = ARy = hicn(Ak Ay YN — Aip)

which implies

”Aﬁyn,N —P”2 = ”_yn,N —19”2 - ”Af,_lyn,N - Al;yn,N - )\k,n (AkAf,_lyn,N _Akp) ”2
= lyun =PI = | A5 yn = Al |P = 22, | Ac AX Y yn — Arp |
+ 20t ANy — ARy, Ak ANy, N — Arp)
< 1pun — 217 = | A& yn = Ay |
+ 2hion || Ay = ARyun | | Ak A yn — Akp- (3.21)

Similarly, we have

”Anyn P”2 < lyn —p”Z - ”Alr(flyn - Aﬁyn ”2
+ 2hion || AS Ty — Aky | | Ak Ay, — Axp|. (3.22)

Thus, by Lemma 2.2(b), we get from (3.1)-(3.2) and (3.21)-(3.22)

1y =PI < 00 |[f Ou) = 2| + (0= )| Wo A¥y5 —

< &) = p|* + | Ay |

< aulfGun) =p[” + | Abyun - 2

< @ [fGun) = 2| + 1y — 212 = | AK yun — Abyn|®
+ 2hion | A%y = Alyun | || Ak AS Y — Arp |

< @[ fOun) = |+l =PI = | AK yun = Akyn|®
+ 20t | ANy = Afyun ||| Ak Ay ynn = Acp |

< & Oun) = 2| + 1960 = PI* = 100 =l = | AK 9 = Ay |®
4 2| Ay — ARy | [ ArAK Ly —

and hence

%001 = pII?
= (L= B llyn =PI + Ba| W A2y = p||* = Bul0 = B) |3 = W ALy, |
< (L= B lyn =PI + Bul AV y = b = BuQ = B) |90 — W A2y, ]*
< (U= Blyn =PI + Bul Akyu = 1| = BaQ = B) |70 — Wo A2y |)*
< (= Blyn = I + Bl Iy — 21> — | A&y — Ay, |
+ 2| A5y = ARy || A AX g = Ap||] = Ba@ = B) |9 = W A2y |
< llyn = pI? = Bu|| A5y — ALy |

+ 2)"/(,;1 H Aﬁilyn - Aln(yn ” ||AkA];71yn —AkP” - ,Bn(l - ,Bn) ||yn - WnAi\,/[yn ”2
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= oy ”f()/n,N) _17”2 + [, —P||2 = llxn — un”Z - “ Aﬁ_lyn,N - Aﬁyn,NHZ
+ 2)"k,rz || Aﬁilyn,N - Al;flyn,N || ||AkAI;71yn,N - Akp“ - ﬁn “ Aﬁilyn - Aln(yn HZ

+ 2un | ARy — ARy | A ARy — Arp | = BaL = i) |3 — WAy |
This together with {Ag,} C [ak, bk] C (0,2n%), k =1,..., M, implies that

6 = ) + | A% Ly = ARy |* + €] A%y — ALy |

+ (=) |y - Wa Ay, |

< ot = sl + | AK g = Akyan | + B A4Sy — ALy
+ Bull = Bo) |9 — WAy, ||

< [f@un) =2 + 10 =PI = 6001 - P11
+ 20| A5 yun = Aynn | |Ac AR yn - Avp |
+ 2hion | ANy = Ay | | Ak Ay - Ap |

< @ |[f @) = P + 120 = %t [ (120 = P + 12001 - )
+ 2bi ]| A Yy = Ay || Ak AE yn - Arp|
+ 26| Ay = Agya| Ak Ay yn = Avp]- (3.23)

Since a,, — 0 and ||%,41 —x,|| = 0 as n — oo, and {x,}, {y,}, and {y, n} are bounded, from
(3.20) and (3.23) we conclude that

lim ||x, — u,l = lim |y, — W, A3y, | =0 (3.24)
n—00 n—0o0

and
Tim [ A3y — Ay | = Tim [ A3y, — ALy, =0 (3.25)

forall k € {1,...,M}. Therefore we get

1nn = Iunll = | Ayun = AY |
< || A%yun = Apyun | + | Abynn — Ayun|
+ -+ ”A[){I_lyn’N — Ai,v[yn,N”

—0 asm— o0 (3.26)
and

1350l = | A%, - 4303
= ||A2yn _Ailynn + ||Ailyl’l —AﬁynH +-0t+ ||Ai1w*1yn _AZVI n”

—0 asun— oo. (3.27)
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We note that |[%,:1 — Yl = Bull Wy Ay, — || — 0 as n — oo. This, together with ||x,,,1 —

%]l = 0, implies that
lim ||x, —y,|l = 0. (3.28)
n— 00
In addition, observe that

” Wn_yn _yn” = || Wnyn - WnAi,VI n || + || WnAi\,/Iyn —Yn ||

= Ny = A9 + [ WAy = |
Hence from (3.24) and (3.27) it follows that
lim || Wn.yn _yn” =0.
n—00
Utilizing the boundedness of {y,} and Remark 2.2, we conclude that

W = yull < NIWy = Wyl + | Wy, — yull

— 0 asun— oo. (3.29)
a

Remark 3.1 By the last lemma we have w,,(x,) = @, (4,) and wy(x,) = ws(u,), i.e., the sets
of strong/weak cluster points of {x,} and {u,} coincide.

Of course, if B,,; = B; # 0 as n — o0, for all indices i, the assumptions of Lemma 3.2 are
enough to assure that
%241 — Xl _

lim

n—00

0, Viell,...,N}.

n,i

In the next lemma, we estimate the case in which at least one sequence {8,x,} is a null

sequence.

Lemma 3.4 Let us suppose that 2 # (. Let us suppose that (H1) holds. Moreover, for an
index ko € {1,...,N}, lim,_, o Bu, = 0, and the following hold:
(H7) foreachie{l,...,N}yand k €{1,...,M},

o NBui= Buril . ow—anal By = Bual
Iim ——=1lm——=lim ——
n—00 Q1 P,k n=>00 Uy Pu,ky n—00 anﬂn,ko
A=l g Men = Mgn-1
= lim M = lim = lim M = 0;
n—o0 an/gn,ko =00, Ppky, "> anﬂn,ko

(H8) there exists a constant T > 0 such that ~| - - L1 —
ap .Bn,ko ﬂn—l,ko

Then

| <t foralln>1.

. ||xn+1 _xn”
lim —.
n—00 ko
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Proof We start by (3.17). Dividing both terms by §,,«, we have

(15641 — %l [l = 21l
——— < [l-a,(l-p)|—F——
ﬁn,kg [ g ] ,Bn—l,ko
1 1
+ (1= au(l = p) Il = xpal -
[ " ] " " Buky  Bu-1k
N
~ 'y — Vy— — _
+ M, | n n1|+z|,3n,k ,Bn 1,/<|
yIBn,k() k=1 :3}'1,/(0
M n-1
Mk,n - )\k,n—1| Ian - an—ll |,Bn - ﬂn—ll b
+ Z + + +
k=1 ﬂn,ko ﬂn,ko ﬁn,ko ﬂn,ko
o — 21l 1 1
<[1-a,1-p)|—— + [Ix — X0l -
[ g ] :3}1—1,](0 . ! ﬁn,k() ﬁn—l,ko
N
+j\7[2 |7 — Tl + [Bnk — Bn-1.xl
V,Bn,ko k=1 ;371,/(0
M n
Mk,n - )‘«k,n—l| Ian - an—ll |,3n - /gn—ll b
+ Z + + +
k=1 lgn,ko ,Bn,ko ,Bn,ko bﬂn,ko
%0 = %nall
= [1 —ay(l- p)]# + o T | — X |l
ﬁn—l,ko
N
~ 'y — Vy— - _
+M2 | n n 1| +Z|/3n,k ,Bn 1,k|
yﬁﬂ,ko k=1 /Bn,ko
M n
[Akn = A1l oy —atal | Bu = Bual b
+ Z + + +
k=1 ﬂn,ko ﬁn,ko lgn,ko bﬂn,ko
%n = %nall 1
= [1-a,(1 - p)] ———— + s = p) - ——{ Tllxy — Xus |
ﬁn—l,ko 1- 1%

+ M
ya}’lﬂn,k() k=1 an,Bn,ko

N
~ [m—m_u 1Bk — Bu-il
2| Tt )

M
Mk,n - )\k,n—1| Ian - an—ll |,Bn - lgn—ll b" :| }
+ + .

P oy ﬁn,ko anﬂn,ko oy ﬂn,ko ba, ﬂn,ko

Therefore, utilizing Lemma 2.8, from (H1), (H7), and the asymptotical regularity of {x,}
(due to Lemma 3.2), we deduce that
(1241 = %l _

lim

n—00

0. N
n,ko

Lemma 3.5 Let us suppose that 2 # (. Let us suppose that 0 < liminf, ., B,; <
limsup,,_, o Bni <1 for each i =1,...,N. Moreover, suppose that (H1)-(H6) are satisfied.
Then lim,_, o ||Sitty, — u,|| = 0 foreach i =1,...,N.

Proof First of all, by Lemma 3.2, we know that {x,} is asymptotically regular, i.e.,
lim,,—s o0 [|%41 — %, || = 0. Let us show that for each i € {1,..., N}, one has ||S;u,, — y,,;1]| = O
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as n — 00. Let p € 2. When i = N, by Lemma 2.2(b) we have from (3.2) and (3.3)

lyn —pII?

< @[ fOun) 2| + 1 = ) | Wodiuy — pII>

< |[f @) = p* + (1= ) G — 211

< & |[fGur) =2 + 1y - pII?

= o [fn) = + Buni 1Snttn = pI? + (1 = Bu) yn-1 - P12
— B = B 1St = Vv I

< |[f @) = > + Bullitn = pI* + (= Bun) 1t — p1®
= Bun (= Bun) ISnttn = Y|l

= [fOun) = |* + Nt = P1I? = Bune @ = B 1Snthn — Y I

< & |[f D) =P + 1260 = 21 = Bun (1 = Bup) I Sxittn = Y1 I

So, we have

Bun( = Bun)ISnttn = Yun-1 |1
2
< |[fGun) = 2| + Ixn =21 = lyn - pII?
2
< au|foun) = 2| + 1% = yull (1% = Il + Iy = pII)-
Since o, — 0, 0 < liminf,, o By n < limsup,_, ., Bun <1and lim,, « [|%, — ¥, | = 0 (due to

(3.28)), and it is well known that {||Sy#, — ¥,n-1]|} is a null sequence.
Letie{l,...,N —1}. Then one has

lyn =21 < ctu|[f Q) = 2| + llymn - P12

< o |[fOun) = 2| + Bun ISxttn = pI? + (1 = Bup)9n-1 = oI
< au[f Oun) = 2| + Bun % = 211 + (1= Bur) ynn1 - pII
< @u|[fGun) = 2| + Bun 1% - pII?

+ (1= Bu) [ Bun-1l1Sn-1t4n = P> + A = Bun-1) lynn—2 — PII*]
< & [fOun) = 2| + (Bun + A = Bun) B 1 — 2112

N
+ [ @-Buollynn- - pll?,

k=N-1

and so, after (N — i + 1)-iterations,

N N
lyn =PI < aufOun) 2| + (ﬂn,N > (H(l - m)) ﬁn,,1> lx, - pII>

Jj=iv2 \ I=j

N
+ [Ta=Bu)lyni - pI?

k=i+1
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N N
<ay “f(yn,N) —P||2 + (,Bn,N + Z (H(l - ﬂn,l)) ﬂn,/—l) ||xn —19||2

j=i+2 \ I=j

N
+ [T =B [BuillSittn = pI* + (A = B ymics - pII?
k=i+1
= Bui(l = Bu) I Sithn = ymica|I*]

N

< & Oun) = 2| + 1960 = PI* = Bui ] [ = Buid ISt = yia >, (3.30)
k=i

Again we obtain

N
Bui [A = Bui)1Sithn = yica I

k=i
< & |[f3un) = p| + 120 = pII% = Ilyu — pII?

< au|[fOun) = 2|” + 190 = 3l (1% = pll + 13 - p1I).

Since o, — 0, 0 < liminf,_, o B,; < limsup,_, . Bui < 1, for each i =1,...,N — 1, and
lim,,_, o [|%, = ¥l = O (due to (3.28)), and it is well known that

lim ||S;u, = yuiall = 0.
n—0o0

Obviously for i = 1, we have ||Su, — u,|| — 0.

To conclude, we have
S22 — vl < (1Sott = Y1l + 11¥1 — tnll = S22 = Y1 | + B 1S1281 — 14|

from which ||Squ,, — u,|| = 0. Thus by induction ||S;u, — u,|| — 0 foralli=2,...,N since

it is enough to observe that

1S;28y — wp |l < NISithin = Yica Il + 1 Ynic1 — Sic1tbn || + | Sic128n — |

< NSittn = Vil + (1 = B I1Sic1tt — Ymicall + 1Sic1tt — . O

Remark 3.2 As an example, we consider M =1, N = 2, and the sequences:
@ App=m—y, Vn> ,]—11;
(b) ay= =21, Vns 1
© Bu=Bui=3-% Bur=3— 5 Vn>2.

Then they satisfy the hypotheses of Lemma 3.5.

Lemma 3.6 Let us suppose that 2 # ) and B,; — B for all i as n — co. Suppose there
exists k € {1,...,N} such that B, — 0 as n — oo. Let ko € {1,...,N} be the largest index
such that B, x, — 0 as n — o0o. Suppose that

(i) ﬂjzo — 0asn— o0;

(il) ifi <ko and B,; — O then ﬂ/;"kf’ — 0asn— oo;

(iif) if Bui — Bi #0 then B; lies in (0,1).
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Moreover, suppose that (H1), (H7), and (H8) hold. Then lim,,_, » ||Siu, — u,|| = 0 for each
i=1,...,N.

Proof First of all we note that if (H7) holds then also (H2)-(H6) are satisfied. So {x,} is
asymptotically regular.

Let ko be as in the hypotheses. As in Lemma 3.5, for every index i € {1,..., N} such that
Bni = Bi # 0 (which leads to 0 < liminfy, .~ B,,; < limsup,_, ., B < 1), one has ||S;u, —
Yn,i-1ll = 0 as n — oo.

For all the other indices i < ky, we can prove that ||S;u, — ¥,,.1]| = 0 as n — o0 in a
similar manner. By the relation (due to (3.1) and (3.30))

s = pI% = (1 = B = ) + Bu( W Ay, = p) |

< (L= B)lyn—pI> + Bu| W AMy, - p|?

<llyn - pl?
N

< o [fOun) = B[ + 10 = 1% = Bus ] [A = Bui) 1t~ yica |,

k=i

we immediately obtain

N 4n+1 ” (

[ 1= BukliSittn = ymiall?) < ;’— 1fOun) —p|” + L

%, = pll + %1 = pI).-
k=i IBn,z

By Lemma 3.4 or by hypothesis (ii) on the sequences, we have

1% — X ll 1% = % |l ,Bn,ko
= . — 0.
ﬂn,i ﬂn,ko ﬁn,i
So, the conclusion follows. O

Remark 3.3 Let us consider M =1, N = 3, and the following sequences:
@) a,= nl%,r,,:Z—niz,Vn>l;

(b) Aiw=m— -5, Vn> nl%;
1

(C) ,Bn,l = ﬁf Bn= 13;1,2 = % - nlzr lgn,S = },11%’ Vn>1.
It is easy to see that all hypotheses (i)-(iii), (H1), (H7), and (H8) of Lemma 3.6 are satisfied.

Remark 3.4 Under the hypotheses of Lemma 3.6, analogously to Lemma 3.5, one can see
that

im [[Sitty — ymiill =0, Vie{2,...,N}.
n—0o0

Corollary 3.1 Let us suppose that the hypotheses of either Lemma 3.5 or Lemma 3.6 are
satisfied. Then w,(x,) = @, (Uy) = 0, (Vy), ws(x,) = ws(U,) = 05(Y1), and wy,(x,) C 2.

Proof By Remark 3.1, we have w,(x,) = w,(u,) and ws(x,) = ws(u,). Note that by Re-
mark 3.4,

lim {|Sy#y = yun-1ll = 0.
n—00
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In the meantime, it is well known that
lim |Syu, —u,ll = lim ||u, —x,|| = lim [x, —y,|| = 0.
H—>0Q n— o0 n—0o0

Hence we have
lim ||Syuy, — yull = 0. (3.31)
n—0oQ

Furthermore, it follows from (3.1) that
lim |ly,n = yun-1ll = lim BunlISnttn = yun-1ll =0,
n—00 n—oo

which, together with lim,,_, o [|SN 2y, — Yun-1]| = 0, yields
lim (| Syt — yunll = 0. (3.32)
n—0o0

Combining (3.31) and (3.32), we conclude that
lim ||yn _yn,NH =0, (3'33)
n—00

which, together with lim,,_, » ||, — ¥l = 0, leads to
lim ||x, — yunll = 0. (3.34)
Hn—0Q

Now we observe that

%6 = Y1l < %60 — tnll + 11Yn1 = tull = 1% = tull + Bua1S126 — 1.

By Lemmas 3.3 and 3.5, ||x,, — u,|| — 0 and || S14,, — u,|| — 0 as n — 0o, and we have
lim [l — ¥yl = 0.
n— o0

So we get wy, (%) = Wy (Y1) and ws(x,) = @s(Vi1)-

Let p € w,(x,). Since p € w,(u,), by Lemma 3.5 and Lemma 2.5 (demiclosedness prin-
ciple), we have p € Fix(S;) foreach i=1i,...,N, i.e.,p € ﬂfil Fix(S;). Also, since p € w,,(y,)
(due to ||z, — ¥,/ = 0), in terms of (3.29) and Lemma 2.5 (demiclosedness principle),
we get p € Fix(W) = N2, Fix(T},) (due to Lemma 2.4). Moreover, by Lemmas 2.11 and
3.3 we know that p € GMEP(O, k). Next we prove that p € ﬂﬁil VI(C,A,,). Indeed, since

P € wy(yun) (due to (3.34)), there exists a subsequence {y,, x} of {y,n} such that y, y — p.
So, from (3.25) we know that A}'y,, v — p foreachm =1,..., M. Let

A,v+Ncv, veC,
a, veC,

T,v=

where m € {1,2,...,M}. Let (v,u) € G(Tm). Since u — A,,v € Ncv and Ay, n € C, we have

(v - ATy, u —Amv> > 0.
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On the other hand, from Ay, x = Pc(I = AyuApm) A7 'y, n and v € C, we have
(V = ANy A YnN — (Azn_lymN - )‘thnAmA:zn_lynvN» >0,

and hence

Anmyn,N - A:,nilyn,N
)‘-m,n

<v - A"y, N, + AmA;”_lyn,N> > 0.

Therefore we have

(v— A:Zy,,l.,N, u)
> (V= A YnNs Am)

m m-1
Aniy"i,N_Ani ynin :

Z (V - A:Zy}'ll‘,NlAmV> - <V - A:Zyni,Nr AmA:Z_lyni,N>

)\m,ni
= (V - A:Z.yn,-,NrAmV _AmA:,niyni,N) + <V - ATL.yni,N:AmAZ;yn,-,N _AmA:,n;lyni,N)
AL YnN — Az_lym,N>

Amn;

- <V - AZJ’WN’

Z (V - A:Zyni,N;AmA:,’;yni,N - AmA:Z_lyni,N>

m m-1
Aniyn,',N - Ani ym,N>

)\m,n,-

- <V - Azyni,N;
From (3.25) and since A,, is Lipschitz continuous, we obtain lim,_,« |4, Ay.n —
A A YNl = 0. From A2y, n = p, {Amn} C [@m, bl C (0,21,,), Vm € {1,2,..., M}, and
(3.25), we have

(v—p,u)>0.

Since Tm is maximal monotone, we have p € 7";110 and hence p € VI(C,A,,), m =
1,2,...,M, which implies p € ﬂfn/lzl VI(C, A,,). Consequently,

00 N M
p e[ Fix(T,) N[ )Fix(S) N[ VI(C, A,) N GMEP(O, ) =: £2.

n=1 i=1 m=1

d

Theorem 3.1 Let us suppose that 2 # (. Let {a,}, {Bui}, i =1,...,N, be sequences in (0,1)
such that 0 < liminf,_, o B,; < limsup,_, . B < 1 for each index i. Moreover, let us sup-
pose that (H1)-(H6) hold. Then the sequences {x,}, {y.}, and {u,}, explicitly defined by the

scheme

O (un,y) + h(uy,y) + é Y=ttty —x,) >0, VyeC,
Y1 = BuaSithy + (L= Br1)thy,

Yni = BiSithn + (L= Bui)¥nic1, i=2,...,N,

Yn = ar(f(yn,N) +(L—o) WnAyyn,N,

Xne1 = (L= B)yn + B WnAyym Yn=>1,
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converge strongly to a unique solution x* in §2 of the following variational inequality prob-
lem (VIP):

(f(x*) -x%z —x*) <0, Vzef. (3.35)

Proof Since the mapping Py f is a p-contraction, it has a unique fixed pointx* € H;itis the
unique solution of VIP (3.35). Since (H1)-(H6) hold, the sequence {x,} is asymptotically
regular (according to Lemma 3.2). By Lemma 3.3, ||x, — y,|| — 0 and ||x,, — u,|| — 0 as
n — 0o. Moreover, utilizing Lemma 2.1 and the nonexpansivity of (I — At ,Ax), we get
from (3.1) and (3.2)
e

= || (1 - ﬂn)(J/n —P) + ﬂn(WnAyyn - x*) ||2

< (=B yn =PI + Bl W A1y, — |

< ="

< Ha,, (f ) —f(x*)) +(1- a,,)(W,,Afl"y,,yN - %) ”2 + 2a,,(f(x*) — x5y, = x*)

< aupl|yun —x* ||2 + (1= o) | Ay — 2 ||2 +20(f (6%) = &,y — &%)

< @up|an =27 + =) [ =5 + 200alf () = 2%, 30 — 2%)

= [1 -(1- p)an] ||y,,,N —x* ||2 + 2an<f(x*) — Xy, = x*>

<[1- (= p)an]||n —*|* + 20alf () — 5%, 7 — %)

2
<[1- - p)aa] | —a|” + (1 - platu m(f(x*) — &,y = &),
Now, let {x,, } be a subsequence of {x,} such that

liirisololp(f(x*) — & x, — &%) = klingo(f(x*) — &, %y, — X, (3.36)
By the boundedness of {x,}, we may assume, without loss of generality, that x,, — p €
@w(x,). According to Corollary 3.1, we know that w,(x,) C £2 and hence p € §2. Taking
into consideration that x* = P, f (x*) we obtain from (3.36)

limsup(f (x*) = &, y, — x*)

n— 00

= limsup[{f (x*) — &*, %, — &%) + {f (x*) — %",y — )]

n— 00

= lim sup(f (x*) — &%, %, — x*) = Jim (f(x*) = &%, %, — %)

n—0o0
= (f(x*) —x*,p—x*) <0.
In terms of Lemma 2.8 we derive x,, — x* as n — o0. O

In the following, we provide a numerical example to illustrate how our main theorem,
Theorem 3.1, works.
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Example Let H = R? with inner product (-,-) and norm || - || which are defined by
(%,9) = ac + bd, lx]| = Va2 + b?

forallx,y € R? withx = (a,b) and y = (¢,d). Let C = {(a, a) : a € R}. Clearly, C isa nonempty,
closed, and convex subset of a real Hilbert space H = R%. Let M = N =2. Let f : C — C be
a p-contraction mapping, A, A : C — H be n-inverse strongly monotone and n,-inverse
strongly monotone for each k = 1,2, and let S;, T, : C — C be nonexpansive mappings for

eachi=1,2and n=1,2,..., for instance, putting

|

1 2 2 1
fZESI’ A=1-8=1° 25 , Ay=1-8,=13 e
5 3

G
e G
[——

=

|

%)

N

|
P———
W= WIIN
W W=

[SSIE

[SSIy

Let ®,h: C x C — R be bi-functions satisfying the hypotheses of Lemma 2.8, for
instance, putting 4(x,y) = 0 and O(x,y) = (Ax,y). It is easy to see that ||f| = % and
ALl = ISl = 1S2ll = 1Tl =1, for each n =1,2,..., that f is a %-contraction mapping,
that A, A; and A, are %-inverse strongly monotone, and that S; and 7, both are non-
expansive for each i = 1,2 and n = 1,2,.... Moreover, it is clear that ﬂizzl Fix(S;) = C,
N2, Fix(T,) = C, M, VI(C,A,,) = CN {0} = {0} and GMEP(®, 1) = VI(C,A) = C. Hence,
2 := N, Fix(T,,) N2, Fix(S;) N, VI(C, A,,) NGMEP(®, k) = {0}. In this case, from

scheme (3.8), we obtain, for any given x; € C,

p = Ty, %0 = Pc(l = rpA)x, = %y,
Yt = BuiSittn + (1= B1)uy,
= BuiSix, + (1- ﬁn,l)xn
=Xny
V2 = BuiSittn + (1= Bui)yn1
= BuiSixn + (L = Bui)xn
=Xu,
Y = f On2) + (L= ) Wy ALy
oty + (1= ) WuPc(I = hanA2)Pc(l = Ay,
= 20, + (1= o) WPl = Ao uA2)(1 = Ay )
0%y + (1= ) Wy (1= Ay)xs
0%y + (1= ) (1= Ay)xy
(ot + (1= ) = Ap) ),
%1 = (L= Bu)yn + B Wi ALy
= (1= Bu)yn + BuWiPc( = k2,nA2)Pc(l = A1,,A1)Yn
= (1= B)yn + BuWiuPc( = X2,nA2)(1 = A1u)yn
= (1= B)yn + Bu Wil = Arn)yn
=@ = Bu)yn + Bu(l = A1,0)yn
= [(1 - ﬂn) + ,Bn(l - }\l,n)]yn
= (1 - ﬁn)tl,n)yn
= (L= Budrn) (50 + (1= ) (L = Ap) .

Page 28 of 34
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Whenever {a,}, {8} C (0,1) with > o2 &, = 00 and {Ax} C [ax, br] C (0,2n%) with i = %,
k=1,2, we have

| = (- ﬂnxl,n)[%an FA-a)- m)} Il
1
< [_an + (1 - an)(l - )Ll,n):| ”xn ”

2

< [%a L —an)} el

1
(1 - Ean) ll
1
exp(—gan) [l

1 n
< exp(—EZay,) l%1]] > 0 aswn— oo.

k=1

IA

That is,
lim ||x,] = 0.
n— 00
This shows that {x,} converges to the unique element of 2.

In a similar way, we can conclude to another theorem as follows.

Theorem 3.2 Let us suppose that 2 # . Let {a,}, {Bni}, i =1,...,N, be sequences in (0,1)
such that B,; — B; for each index i as n — 0o. Suppose that there exists k € {1,...,N} for
which B, — 0 as n — oo. Let ko € {1,...,N} be the largest index for which B,x, — O.
Moreover, let us suppose that (H1), (H7), and (H8) hold and

(i) 222 — 0asn— oo;
ﬂn,ko 5

(i) ifi < ko and B,; — B; then ﬁn? — 0asn— oo;
(ili) if By — Bi # 0 then B; lies in (0,1).
Then the sequences {x,}, {y,}, and {u,} explicitly defined by scheme (3.1) all converge

strongly to the unique solution x* in $2 to the VIP
(f(x*) —x*,z—x*) <0, Vzef2.

Remark 3.5 According to the above argument processes for Theorems 3.1 and 3.2, we
can readily see that if in scheme (3.1), the iterative step y, = o, f (yun) + (1 — 02y) W), Ail” VN
is replaced by the iterative one y, = a,f(x,) + (1 — a,) W, AMy, n, then Theorems 3.1 and
3.2 remain valid.

Remark 3.6 Theorems 3.1 and 3.2 improve, extend, supplement, and develop Theorems
3.12 and 3.13 of [29] and Theorems 3.12 and 3.13 of [30] in the following aspects.
(i) The multi-step iterative scheme (3.1) of [29] is extended to develop our composite
viscosity iterative scheme (3.1) by virtue of Korpelevich’s extragradient method and
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the W-mapping approach to common fixed points of infinitely many nonexpansive
mappings. Our scheme (3.1) is more general and more advantageous than schemes
(1.5) and (1.6) because it solves three problems: GMEP (1.4), a finite family of
variational inequalities for inverse strongly monotone mappings Ax, k=1,...,M,
and the fixed point problem of one finite family of nonexpansive mappings {S;}Y,
and another infinite family of nonexpansive mappings {7},}52;.

(i) The argument techniques in our Theorems 3.1 and 3.2 are a combination and
development of those in Theorems 3.12 and 3.13 of [30] and Theorems 3.12 and
3.13 of [29] because we make use of the properties of the resolvent operator
associated with & and / (see Lemmas 2.9-2.11), the inclusion problem 0 € Tv
(& v e VI(C,A)) (see (2.3)), and the properties of the W-mappings W, (see
Remarks 2.1 and 2.2 and Lemmas 2.3 and 2.4).

(iii) The problem of finding an element of (), Fix(T}) N ﬂf\il Fix(S;) N
ﬂﬁl VI(C,Ax) N GMEP(®, h) in our Theorems 3.1 and 3.2 is more general and
more subtle than the one of finding an element of
Fix(T)N ﬂf\il Fix(S;) N GMEP(®, /) in Theorems 3.12 and 3.13 of [30] and the one
of finding an element of Fix(7T) N ﬂf\il Fix(S;) N GMEP(®, k) N VI(C,A) in
Theorems 3.12 and 3.13 of [29].

(iv) Our Theorems 3.1 and 3.2 extend Theorems 3.12 and 3.13 of [29] from one
nonexpansive mapping T to infinitely many nonexpansive mappings {7,};°; and
from one variational inequality to finitely many variational inequalities. Moreover,
these also extend Theorems 3.12 and 3.13 of [30] from one nonexpansive mapping
T to infinitely many nonexpansive mappings {T},}52; and generalize Theorems 3.12

and 3.13 of [30] to the setting of finitely many variational inequalities.

4 Applications
For a given nonlinear mapping A : C — H, we consider the variational inequality problem
(VIP) of finding x € C such that

(A%,y-X) >0, VYyeC. (4.1)

We will denote by VI(C, A) the set of solutions of the VIP (4.1).
Recall that if u is a point in C, then the following relation holds:

ueVI(C,A) & u=Pc(I-rAu, Yir>O0. (4.2)

An operator A : C — H is said to be an «a-inverse strongly monotone operator if there
exists a constant « > 0 such that

(Ax — Ay,x —y) > a||Ax — Ay||*>, Vx,yeC.

As an example, we recall that the «-inverse strongly monotone operators are firmly non-
expansive mappings if @ > 1 and that every o-inverse strongly monotone operator is also
é—Lipschitz continuous (see [46]).

Let us observe also that, if A is «-inverse strongly monotone, the mappings Pc(I — AA)
are nonexpansive for all 1 € (0, 2«] since they are compositions of nonexpansive mappings
(see p.419 in [46]).
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Let us consider Sy,...,5¢ a finite number of nonexpansive self-mappings on C and
;11, . ..,ZN be a finite number of «-inverse strongly monotone operators. Let {T,}°; be
a sequence of nonexpansive self-mappings on C. Let us consider the mixed problem of
finding x* € (22, Fix(T,) N GMEP(®, k) N (L, VI(C, A) such that

(I=S)x*,y—x*) =0, Vye 2, Fix(T,) NGMEP(®,h) N N, VI(C, A,
(I=Sy)x*,y—x*) =0, Vye (2, Fix(T,) \GMEP(®, k) N[+, VI(C, Ay),

(( = S)x",y —a) 2 0, Vy € (V2 Fix(T,) NGMEP(O, h) N (4, VI(C, Av), (43)
(Ax*,y—x*) >0, VyeC,

~

(Axx*,y—x*) >0, VyeC,

cey

(Anx*,y—x*) >0, VyeC.

Let us call (SVI) the set of solutions of the (K + N)-system. This problem is equivalent to
ﬁEding a common fixed point of {T},}32;, {Prm1 Fix(T,)NGMEP(©,)n( 1, VI(CAk)Si}zI‘il’ {Pc(I -
LAY, So we claim that the following holds.

Theorem 4.1 Let us suppose that 2 = (-, Fix(T,,) N (SVI) N GMEP(®, h) N ﬂkM:1 VI(C,
Ax) # 9. Fix . > 0. Let {a,}, {Bui}, i =1,...,(K + N), be sequences in (0,1) such that 0 <
liminf,, o By < limsup,_, . Bu; < 1 for all indices i. Moreover, let us suppose that (H1)-
(H6) hold. Then the sequences {x,}, {y,}, and {u,} explicitly defined by the scheme

Oty 9) + h(ttn,y) + 3y = thny thy = %) = 0, Vy€C,

Yn1 = BniP oo pix(r,)neMep© 0, VI(C,Ak)flun + (1= Bu1)tn,

Ini = BriPrpe, Fix(T,) \GMEP(©,1)0} vicapSitn + A= Bui)yni-, i=2,...,K, (4.4)
Ini+j = BuxiPcl = Mpuy + 1= Buxij)¥nisj-t, j=1,...,N,

Y = of Wnscsn) + (L= o)) Wy AMy, o8,

K1 = (1 — ﬁn)yn + Bn WnAyym Vn>1,

all converge strongly to the unique solution x* in $2 to the VIP
(f(x*) —a*z-4") <0, Vxeg.

Theorem 4.2 Let us suppose that §2 # (. Fix X > 0. Let {ay}, {Buni}, i =1,...,(K + N), be
sequences in (0,1) and B,,; — B; for all i as n — co. Suppose that there existsk € {1,...,K +
N} such that B,y — 0 as n — oo. Let ko € {1,...,K + N} be the largest index for which
Bui, — 0. Moreover, let us suppose that (H1), (H7), and (H8) hold and

(i) 2= — 0asn— oo;
ﬂn,ko

(i) ifi < ko and B,; — 0O then % — 0asn— oo;
(ili) if By — Bi # 0 then B; lies in (0,1).
Then the sequences {x,}, {y,}, and {u,} explicitly defined by scheme (4.4) all converge

strongly to the unique solution x* in $2 to the VIP

(f(x*) —x*,z—x*) <0, Vzef.
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Remark 4.1 If in system (4.3), Ay = -+ = Ay = Zl == ZN =0,and T, = T a nonex-
pansive mapping, we obtain a system of hierarchical fixed point problems introduced by
Mainge and Moudafi [33, 47].

On the other hand, recall that a mapping I" : C — C is called « -strictly pseudocontrac-
tive if there exists a constant x € [0, 1) such that

2
ITx = Tyl? < llx=yI* + x| = Dx =T = D)y,

Vx,y e C.

If « = 0, then I" is nonexpansive. Put A = — I, where I" : C — C is a « -strictly pseudo-
contractive mapping. Then A is 1_T"—inverse strongly monotone; see [25].

Utilizing Theorems 3.1 and 3.2, we first give the following strong convergence theo-
rems for finding a common element of the solution set GMEP(®, /1) of GMEP (1.4) and
the common fixed point set (-, Fix(T},,) N ﬂf\il Fix(S;) N ﬂﬁl Fix(I%) of a finite family of
rx-strictly pseudocontractive mappings {I%}4%,, one finite family of nonexpansive map-
pings {S;}YY,, and another infinite family of nonexpansive mappings {7,,}%;.

Theorem 4.3 Let n; = 17;,( foreach k=1,...,M. Let us suppose that 2 = (\,-, Fix(T,,) N
ﬂf\il Fix(S;) N ﬂﬁl Fix(I'x) NGMEP(®, k) # 0. Let {a,}, {Bn,}, i =1,...,N, be sequences in
(0,1) such that 0 < liminf,_, o B,; < limsup,_, ., Bn; < 1 for all indices i. Moreover, let us

suppose that (H1)-(H6) hold. Then the sequences {x,}, {y,}, and {u,} generated explicitly
by

O(un,y) + h(uy,y) + é Y-ty by —x,) >0, VyeC,

Y1 = BuaSitky + (L= Br1)thy,

Yni = BuiSithn + (1- ,Bn,i)yn,i—l; i=2,...,N, (4.5)
Yn = ar(f(yn,N) +(1—o) Wnnﬁl((l - }\k,n)l + }\k,nrk)yn,Nx

% = (L= Ba)yn + B Wl Tiea (A= M + hin Ty Yz 1,

all converge strongly to the unique solution x* in $2 to the VIP
(f(x*)-a*z-2")<0, Vzeg.

Proof In Theorem 3.1, put Ay =1 — I’y for each k =1,...,M. Then Ay is 1_%—inverse
strongly monotone. Hence we deduce that Fix([}) = VI(C, Ax) and Pc(I — A,nA1)yun =
(1= A,)¥nn + A [1ynn- Thus, it is easy to see that Ay, x = ]_[gl((l = M) + M L) YnN -
Similarly, we also have Ay, = ]_[iw:l((l = din) + Xini)yn. Consequently, in terms of The-
orem 3.1, we obtain the desired result. O

Theorem 4.4 Let n; = 1_2'(’( foreach k =1,...,M. Let us suppose that §2 = (-, Fix(T,,) N

ﬂf\il Fix(S;)) N ﬂﬁl Fix(I'x) N GMEP(®, k) # 0. Let {ay,}, {Bni}, i =1,...,N, be sequences in
(0,1) such that B,; — B; for all i as n — 0. Suppose that there exists k € {1,...,N} for
which Bux — 0 as n — 0o. Let kg € {1,...,N} be the largest index for which B,x, — 0.
Moreover, let us suppose that (H1), (H7), and (H8) hold and

(i) ﬁ‘:—zo—>0asn—>oo;

(i) if i < ko and By; — O then 2222 — 0 as n — oo;
’ B
M,

(iii) if Bui — Bi £ 0 then B; lies in (0,1).
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Then the sequences {x,}, {yn}, and {u,} generated explicitly by (4.5) all converge strongly to
the unique solution x* in S2 to the VIP

(f(x*) —x*,z—x*) <0, Vzef.
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