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Abstract
Inspired and motivated by results of Bnouhachem et al. (Hacet. J. Math. Stat.
41(1):103-117, 2012), we propose a new modified LQP method by using a new
optimal step size, where the underlying function F is co-coercive. Under some mild
conditions, we show that the method is globally convergent. Some preliminary
computational results are given to illustrate the efficiency of the proposed method.
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1 Introduction
The nonlinear complementarity problem (NCP) is to determine a vector x ∈ Rn such that

x ≥ , F(x) ≥  and xT F(x) = , (.)

where F is a nonlinear mapping from Rn into itself. Complementarity problems introduced
by Lemke [] and Cottle and Dantzig [] in the early s has attracted great attention of
researchers (see, e.g., [, ] and the references therein). On the one hand, there have been
many theoretical results on the existence of solutions and their structural properties. On
the other hand, many attempts have been made to develop implementable algorithms for
the solution of NCP. A popular way to solve the NCP is to reformulate as finding the zero
point of the operator T(x) = F(x) + NRn

+ (x), i.e., find x∗ ∈ Rn
+ such that  ∈ T(x∗), where

NRn
+ (·) is the normal cone operator to Rn

+ defined by

NRn
+ (x) =

{
{y ∈ Rn : yT (v – x) ≤ ,∀v ∈ Rn

+} if x ∈ Rn
+,

∅ otherwise.

The proximal point algorithm (PPA) is recognized as a powerful and successful algorithm
in finding a solution of maximal monotone operators, and it has been proposed by Mar-
tinet [] and studied by Rockafellar []. Starting from any initial x ∈ Rn and for positive
real βk ≥ β > , iteratively updating xk+ conforming to the following problem:

 ∈ βkT(x) + ∇xq
(
x, xk), (.)
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where

q
(
x, xk) =



∥∥x – xk∥∥, (.)

is a quadratic function of x. In place of the usual quadratic term many researchers have
used some nonlinear functions r(x, xk); see, for example, [–]. Auslender et al. [, ]
proposed a new type of proximal interior method through replacing the second term of
(.) by

x – ( – μ)xk – μX
k x– (.)

or

x – xk + μXk log

(
x
xk

)
, (.)

where μ ∈ (, ) is a given constant, Xk = diag(xk
 , xk

, . . . , xk
n), and x– is an n-vector whose

jth elements is 
xj

. It is easy to see that, at the kth iteration, solving (.) by the LQP method
is equivalent to the following system of nonlinear equations:

βkF(x) + x – ( – μ)xk – μX
k x– =  (.)

or

βkF(x) + x – xk + μXk log

(
x
xk

)
= . (.)

Solving the subproblem (.) or (.) exactly is typically hard demand in practice. To over-
come this difficulty, He et al. [], Bnouhachem [, ], Bnouhachem and Yuan [],
Bnouhachem and Noor [, ], Bnouhachem et al. [, ], Noor and Bnouhachem [],
and Xu et al. [] introduced some LQP-based prediction-correction methods which do
not suffer from the above difficulty and make the LQP method more practical. Each itera-
tion of the above methods contain a prediction and a correction, the predictor is obtained
via solving the LQP system approximately under significantly relaxed accuracy criterion
and the new iterate is computed directly by an explicit formula derived from the original
LQP method for [], while the new iterate is computed by using the projection operator
for [, , ]. Inspired and motivated by the above research, we suggest and analyze a
new LQP method for solving nonlinear complementarity problems (.) by using a new
step size αk to Bnouhachem’s LQP method []. We also study the global convergence of
the proposed modified LQP method under some mild conditions.

Throughout this paper we assume that F is co-coercive with modulus c > , that is,
〈F(x) – F(y), x – y〉 ≥ c‖F(x) – F(y)‖, ∀x, y ∈ Rn

+ and the solution set of (.), denoted by �∗,
is nonempty.

2 The proposed method and some properties
In this section, we suggest and analyze the new modified LQP method for solving NCP
(.). For given xk >  and βk > , each iteration of the proposed method consists of two
steps, the first step offers a predictor x̃k and the second step produces the new iterate xk+.
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Prediction step: Find an approximate solution x̃k of (.), called predictor, such that

 ≈ βkF
(
x̃k) + x̃k – ( – μ)xk – μX

k
(
x̃k)– = ξ k := βk

(
F
(
x̃k) – F

(
xk)) (.)

and ξ k which satisfies

∥∥ξ k∥∥ ≤ η
∥∥xk – x̃k∥∥,  < η < . (.)

Correction step: For  < ρ < , the new iterate xk+(αk) is defined by

xk+(αk) = ρxk + ( – ρ)PRn
+

[
xk – αkd

(
xk ,βk

)]
, (.)

where

d
(
xk ,βk

)
:=

(
xk – x̃k) +

βk

 + μ
F
(
x̃k) (.)

and αk is a positive scalar. How to choose a suitable αk we will discuss later.

Remark . Equation (.) can be written as

βkF
(
xk) + x̃k – ( – μ)xk – μX

k
(
x̃k)– = , (.)

and the solution of (.) can be componentwise obtained by

x̃k
j =

( – μ)xk
j – βkFj(xk) +

√
[( – μ)xk

j – βkFj(xk)] + μ(xk
j )


. (.)

Moreover, for any xk >  we have always x̃k > .

We now consider the criterion for αk , which ensures that xk+(αk) is closer to the solution
set than xk . For this purpose, we define

�(αk) =
∥∥xk – x∗∥∥ –

∥∥xk+(αk) – x∗∥∥. (.)

Theorem . [] Let x∗ ∈ �∗, xk+(αk) be defined by (.), then we have

�(αk) ≥ ( – ρ)
{

αk
(
xk – x̃k)T D

(
xk ,βk

)
– α

k
(∥∥D

(
xk ,βk

)∥∥ + D
(
xk ,βk

)T(
xk – x̃k))

+
(

αk

 + μ

(
 – μ –

βk

c

)
– α

k

)∥∥xk – x̃k∥∥
}

, (.)

where

D
(
xk ,βk

)
:=

(
xk – x̃k) +


 + μ

ξ k .
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Lemma . [] For given xk ∈ Rn
++, let x̃k satisfy the condition (.), then we have the

following:

(
xk – x̃k)T D

(
xk ,βk

) ≥
(

 – η

 + μ

)∥∥xk – x̃k∥∥ (.)

and

(
xk – x̃k)T D

(
xk ,βk

) ≥ 

∥∥D

(
xk ,βk

)∥∥. (.)

From (.), we have

�(αk) ≥ ( – ρ)
{

αk
(
xk – x̃k)T D

(
xk ,βk

)
– α

k
(∥∥D

(
xk ,βk

)∥∥ + D
(
xk ,βk

)T(
xk – x̃k))

+
(

αk

 + μ

(
 – μ –

βk

c

)
– α

k

)∥∥xk – x̃k∥∥
}

= ( – ρ)
{

αk

((
xk – x̃k)T D

(
xk ,βk

)
+


 + μ

(
 – μ –

βk

c

)∥∥xk – x̃k∥∥
)

– α
k
(∥∥D

(
xk ,βk

)∥∥ + D
(
xk ,βk

)T(
xk – x̃k) +

∥∥xk – x̃k∥∥)}

= ( – ρ)
{

αk

((
xk – x̃k)T D

(
xk ,βk

)
+


 + μ

(
 – μ –

βk

c

)∥∥xk – x̃k∥∥
)

– α
k
∥∥D

(
xk ,βk

)
+ xk – x̃k∥∥

}

= ( – ρ)	(αk), (.)

where

	(αk) := αk

((
xk – x̃k)T D

(
xk ,βk

)
+


 + μ

(
 – μ –

βk

c

)∥∥xk – x̃k∥∥
)

– α
k
∥∥D

(
xk ,βk

)
+ xk – x̃k∥∥. (.)

3 Convergence analysis
In this section, we prove some useful results which will be used in the consequent analysis
and then investigate the strategy of how to choose the new step size αk .

Note that 	(αk) is a quadratic function of αk and it reaches its maximum at

α∗
k =

(xk – x̃k)T D(xk ,βk) + 
+μ

( – μ – βk
c )‖xk – x̃k‖

‖D(xk ,βk) + xk – x̃k‖ (.)

and

	
(
α∗

k
)

= α∗
k

((
xk – x̃k)T D

(
xk ,βk

)
+


 + μ

(
 – μ –

βk

c

)∥∥xk – x̃k∥∥
)

. (.)

In the next theorem we show that α∗
k and 	(α∗

k ) are lower bounded away from zero, when-
ever xk 
= x̃k and it is one of the keys to prove the global convergence results.
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Theorem . For given xk ∈ Rn
++, let x̃k satisfy the condition (.) and βk satisfy

 < βl ≤ ∞
inf
k=

βk ≤ ∞
sup
k=

βk ≤ βu < c( – μ),

then we have the following:

α∗
k ≥  – η

 – η + μ
>  (.)

and

	
(
α∗

k
) ≥ ( – η)

( – η + μ)( + μ)
∥∥xk – x̃k∥∥. (.)

Proof It follows from (.) and (.) that

α∗
k =

(xk – x̃k)T D(xk ,βk) + 
+μ

( – μ – βk
c )‖xk – x̃k‖

‖D(xk ,βk) + xk – x̃k‖

≥ (xk – x̃k)T D(xk ,βk)
‖D(xk ,βk) + xk – x̃k‖

=
(xk – x̃k)T D(xk ,βk)

‖D(xk ,βk)‖ + D(xk ,βk)T (xk – x̃k) + ‖xk – x̃k‖

≥ (xk – x̃k)T D(xk ,βk)
( + +μ

–η
)D(xk ,βk)T (xk – x̃k)

=
 – η

 – η + μ
> .

Using (.), (.), and (.), we have

	
(
α∗

k
) ≥

(
 – η

 – η + μ

)(
 – η

 + μ
+


 + μ

(
 – μ –

βk

c

))∥∥xk – x̃k∥∥

≥ ( – η)

( – η + μ)( + μ)
∥∥xk – x̃k∥∥. �

Remark . Note that α∗
k

= min{( – μ – βk
c )/( + μ), (xk –x̃k )T D(xk ,βk )

‖D(xk ,βk )‖+D(xk ,βk )T (xk –x̃k )
} is the op-

timal step size used in []. Since α∗
k is to maximize the profit function 	(αk), we have

	
(
α∗

k
) ≥ 	

(
α∗

k

)
. (.)

Inequality (.) shows theoretically that the proposed method is expected to make more
progress than that in [] at each iteration, and so it explains theoretically that the pro-
posed method outperforms the method in [].

For fast convergence, we take a relaxation factor γ ∈ [, ) and set the step size αk in (.)
by αk = γα∗

k , it follows from (.), (.), and Theorem . that

�(αk) ≥ γ ( – γ )( – ρ)	
(
α∗

k
)

≥ γ ( – γ )( – ρ)
( – η)

( – η + μ)( + μ)
∥∥xk – x̃k∥∥. (.)
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Then from definition of �(αk) and (.) there is a constant

τ := γ ( – γ )( – ρ)
( – η)

( – η + μ)( + μ)
> 

such that

∥∥xk+(αk) – x∗∥∥ ≤ ∥∥xk – x∗∥∥ – τ
∥∥xk – x̃k∥∥, ∀x∗ ∈ �∗. (.)

The following result can be proved by similar arguments to those in [, , , ].
Hence the proof will be omitted.

Theorem . [, , , ] If inf∞k= βk = βl > , then the sequence {xk} generated by the
proposed method converges to some x∞ which is a solution of NCP.

The detailed algorithm is as follows.
Step . Let β = , η(:= .) < ,  < ρ < ,  < μ < , γ = ., ε = –, k = , and x > .
Step . If ‖min(x, F(x))‖∞ ≤ ε, then stop. Otherwise, go to Step .
Step . (Prediction step)

s := ( – μ)xk – βkF
(
xk), x̃k

i :=
(

si +
√

(si) + μ
(
xk

i
)

)
/,

ξ k := βk
(
F
(
x̃k) – F

(
xk)), r :=

∥∥ξ k∥∥/
∥∥xk – x̃k∥∥

while (r > η)

βk := βk ∗ ./r,

s := ( – μ)xk – βkF
(
xk), x̃k

i :=
(

si +
√

(si) + μ
(
xk

i
)

)
/,

ξ k := βk
(
F
(
x̃k) – F

(
xk)), r :=

∥∥ξ k∥∥/
∥∥xk – x̃k∥∥.

end while
Step . (Correction step)

D
(
xk ,βk

)
:=

(
xk – x̃k) +


 + μ

ξ k , d
(
xk ,βk

)
:=

(
xk – x̃k) +

βk

 + μ
F
(
x̃k),

α∗
k =

(xk – x̃k)T D(xk ,βk) + 
+μ

( – μ – βk
c )‖xk – x̃k‖

‖D(xk ,βk) + xk – x̃k‖ , αk = γα∗
k ,

xk+ = ρxk + ( – ρ)PRn
+

[
xk – αkd

(
xk ,βk

)]
.

Step .

βk+ =

{
βk∗.

r , if r ≤ .;
βk , otherwise.

Step . k := k + ; go to Step .
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4 Preliminary computational results
In this section, we consider two examples to illustrate the efficiency and the performance
of the proposed algorithm.

4.1 Numerical experiments I
We consider the nonlinear complementarity problems

x ≥ , F(x) ≥ , xT F(x) = , (.)

where

F(x) = D(x) + Mx + q,

D(x) and Mx + q are the nonlinear part and linear part of F(x), respectively.
We form the linear part in the test problems similarly to Harker and Pang []. The matrix

M = AT A + B, where A is an n × n matrix whose entries are randomly generated in the
interval (–, +) and a skew-symmetric matrix B is generated in the same way. The vector
q is generated from a uniform distribution in the interval (–, ) or in (–, ). In
D(x), the nonlinear part of F(x), the components are chosen to be Dj(x) = dj ∗ arctan(xj),
where dj is a random variable in (, ).

In all tests we take the logarithmic proximal parameter μ = ., ρ = ., and c = .. All
iterations start with x = (, . . . , )T and β = , and we have the stopping criterion when-
ever

∥∥min
(
xk , F

(
xk))∥∥∞ ≤ –.

All codes were written in Matlab, and we compare the proposed method with that in
[]. The test results for problem (.) are reported in Tables  and . k is the number of
iteration and l denotes the number of evaluations of mapping F .

Tables  and  show that the proposed method is more efficient. Numerical results in-
dicate that the proposed method can be save about  ∼  percent of the number of
iterations and about  ∼  of the amount of computing the value of function F .

4.2 Numerical experiments II
In this subsection, we apply the proposed method to the traffic equilibrium problems and
present corresponding numerical results.

Consider a network [N , L] of nodes N and directed links L, which consists of a finite
sequence of connecting links with a certain orientation. Let a, b, etc. denote the links, and

Table 1 Numerical results for problem (4.1) with q ∈ (–500, 500)

n The method in [18] The proposed method

k l CPU (Sec.) k l CPU (Sec.)

200 297 651 0.068 117 279 0.016
300 329 708 0.094 129 310 0.029
400 333 721 0.13 169 367 0.08
500 368 801 0.22 171 381 0.12
700 364 751 0.41 142 334 0.12
1000 339 743 1.74 139 328 0.66



Ou-yassine et al. Journal of Inequalities and Applications  (2015) 2015:216 Page 8 of 11

Table 2 Numerical results for problem (4.1) with q ∈ (–500, 0)

n The method in [18] The proposed method

k l CPU (Sec.) k l CPU (Sec.)

200 578 1246 0.09 217 495 0.04
300 584 1257 0.14 212 497 0.06
400 769 1586 0.26 284 633 0.11
500 821 1762 0.38 282 645 0.15
700 699 1524 0.61 245 571 0.27
1000 813 1709 3.37 294 679 1.45

Figure 1 An illustrative example of given directed network and the O/D pairs.

let p, q, etc. denote the paths. We let ω denote an origin/destination (O/D) pair of nodes
of the network and Pω denotes the set of all paths connecting O/D pair ω. Note that the
path-arc incidence matrix and the path-O/D pair incidence matrix, denoted by A and B,
respectively, are determined by the given network and O/D pairs. To see how to convert
a traffic equilibrium problem into a variational inequality, we take into account a simple
example as depicted in Figure .

For the given example in Figure , the path-arc incidence matrix A and the path-O/D
pair incidence matrix B have the following forms:

No. link     

A =

⎛
⎜⎜⎜⎝

    
    
    
    

⎞
⎟⎟⎟⎠ ,

No. O/Dpair ω ω

B =

⎛
⎜⎜⎜⎝

 
 
 
 

⎞
⎟⎟⎟⎠ .

Let xp represent the traffic flow on path p and fa denote the link load on link a, then the
arc-flow vector f is given by

f = AT x.

Let dω denote the traffic amount between O/D pair ω, which must satisfy

dω =
∑
p∈Pω

xp.

Thus, the O/D pair-traffic amount vector d is given by

d = BT x.
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Figure 2 A directed network with 25 nodes and 37 links.

Let t(f ) = {ta, a ∈ L} be the vector of link travel costs, which is a function of the link flow.
A user traveling on path p incurs a (path) travel cost θp. For given link travel cost vector t,
the path travel cost vector θ is given by

θ = At(f ) and thus θ (x) = At
(
AT x

)
.

Associated with every O/D pair ω, there is a travel disutility λω(d). Since both the path
costs and the travel disutilities are functions of the flow pattern x, the traffic network equi-
librium problem is to seek the path flow pattern x∗ such that

x∗ ≥ ,
(
x – x∗)T F

(
x∗) ≥ , ∀x ≥ , (.)

where

Fp(x) = θp(x) – λω

(
d(x)

)
, ∀ω, p ∈ Pω,

and thus

F(x) = At
(
AT x

)
– Bλ

(
BT x

)
.

We apply the proposed method to the example taken from [] (Example . in []),
which consisted of  nodes,  links and six O/D pairs. The network is depicted in Fig-
ure .

For this example, there are together  paths for the six given O/D pairs and hence the
dimension of the variable x is . Therefore, the path-arc incidence matrix A is a  × 
matrix and the path-O/D pair incidence matrix B is a  ×  matrix. The user cost of
traversing link a is given in Table . The disutility function is given by

λω(d) = –mωdω + qω (.)

and the coefficients mω and qω in the disutility function of different O/D pairs for this
example are given in Table .

The test results for problems (.) for different ε are reported in Table , k is the number
of iterations and l denotes the number of evaluations of mapping F . The stopping criterion
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Table 3 The link traversing cost functions ta(f ) in the example

t1(f ) = 5 · 10–5f 41 + 5f1 + 2f2 + 500 t20(f ) = 3 · 10–5f 420 + 6f20 + f21 + 300
t2(f ) = 3 · 10–5f 42 + 4f2 + 4f1 + 200 t21(f ) = 4 · 10–5f 421 + 4f21 + f22 + 400
t3(f ) = 5 · 10–5f 43 + 3f3 + f4 + 350 t22(f ) = 2 · 10–5f 422 + 6f22 + f23 + 500
t4(f ) = 3 · 10–5f 44 + 6f4 + 3f5 + 400 t23(f ) = 3 · 10–5f 423 + 9f23 + 2f24 + 350
t5(f ) = 6 · 10–5f 45 + 6f5 + 4f6 + 600 t24(f ) = 2 · 10–5f 424 + 8f24 + f25 + 400
t6(f ) = 7f6 + 3f7 + 500 t25(f ) = 3 · 10–5f 425 + 9f25 + 3f26 + 450
t7(f ) = 8 · 10–5f 47 + 8f7 + 2f8 + 400 t26(f ) = 6 · 10–5f 426 + 7f26 + 8f27 + 300
t8(f ) = 4 · 10–5f 48 + 5f8 + 2f9 + 650 t27(f ) = 3 · 10–5f 427 + 8f27 + 3f28 + 500
t9(f ) = 10–5f 49 + 6f9 + 2f10 + 700 t28(f ) = 3 · 10–5f 428 + 7f28 + 650
t10(f ) = 4f10 + f12 + 800 t29(f ) = 3 · 10–5f 429 + 3f29 + f30 + 450
t11(f ) = 7 · 10–5f 411 + 7f11 + 4f12 + 650 t30(f ) = 4 · 10–5f 430 + 7f30 + 2f31 + 600
t12(f ) = 8f12 + 2f13 + 700 t31(f ) = 3 · 10–5f 431 + 8f31 + f32 + 750
t13(f ) = 10–5f 413 + 7f13 + 3f18 + 600 t32(f ) = 6 · 10–5f 432 + 8f32 + 3f33 + 650
t14(f ) = 8f14 + 3f15 + 500 t33(f ) = 4 · 10–5f 433 + 9f33 + 2f31 + 750
t15(f ) = 3 · 10–5f 415 + 9f15 + 2f14 + 200 t34(f ) = 6 · 10–5f 434 + 7f34 + 3f30 + 550
t16(f ) = 8f16 + 5f12 + 300 t35(f ) = 3 · 10–5f 435 + 8f35 + 3f32 + 600
t17(f ) = 3 · 10–5f 417 + 7f17 + 2f15 + 450 t36(f ) = 2 · 10–5f 436 + 8f36 + 4f31 + 750
t18(f ) = 5f18 + f16 + 300 t37(f ) = 6 · 10–5f 437 + 5f37 + f36 + 350
t19(f ) = 8f19 + 3f17 + 600

Table 4 The O/D pairs and the parameters in (4.3) of the example

(O,D) Pair ω (1, 20) (1, 25) (2, 20) (3, 25) (1, 24) (11, 25)

mω 1 6 10 5 7 9
qω 1,000 800 2,000 6,000 8,000 7,000

|Pω| 10 15 9 6 10 5

Table 5 Numerical results for different ε

Different ε The method in [18] The proposed method

k l CPU (Sec.) k l CPU (Sec.)

10–5 201 445 0.04 90 216 0.11
10–6 263 580 0.034 115 276 0.01
10–7 321 708 0.054 150 352 0.019
10–8 380 837 0.058 183 426 0.018
10–9 438 963 0.061 211 491 0.02

is

‖min{x, F(x)}‖∞
‖min{x, F(x)}‖∞

≤ ε.

Table  shows that the new method is more flexible and efficient to solve a traffic equilib-
rium problem. Moreover, it demonstrates computationally that the new method is more
effective than the method presented in [] in the sense that the new method needs fewer
iteration and less evaluation numbers of F , which clearly illustrates its efficiency.
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