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Abstract
Using wavelets methods, Abbaszadeh, Chesneau, Doosti studied the density
estimation problem under bias and multiplicative censoring (Stat. Probab. Lett.
82:932-941, 2012), and obtains the convergence rate of wavelet estimators in L2 norm
for a density function in Besov space. This paper deals with Lp risk estimation with
1 ≤ p <∞ based on wavelet bases. Motivated by the work of Youming and Junlian
(2014), we construct new estimators: a linear one and a nonlinear adaptive one; an
upper bound of wavelet estimators on Lp risk for a density function in Besov space is
provided, which generalizes Abbaszadeh et al.’s theorems. It turns out that the
nonlinear adaptive estimator obtains faster rate of convergence than the linear one
for r < p.
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1 Introduction and preliminary
1.1 Introductions
The density estimation plays important roles in both statistics and econometrics. This
paper considers the density model under bias and multiplicative censoring, which were
introduced by Abbaszadeh et al. []. Let Z, Z, . . . , Zn be independent and identically dis-
tributed (i.i.d.) random variables of

Zi = UiYi, i = , . . . , n,

where U, U, . . . , Un are unobserved i.i.d. random variables with the common uniform dis-
tribution on [, ], Y, Y, . . . , Yn are also unobserved i.i.d. random variables and the density
function fY is given by

fY (x) =
ω(x)fX(x)

θ
, x ∈ [, ]. (.)

Here, ω(x) >  denotes a known weight function, fX(x) stands for an unknown density func-
tion of a random variable X and θ = E(ω(X)) =

∫ 
 ω(x)fX(x) dx represents the unknown

© 2015 Hu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-015-0732-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0732-2&domain=pdf
mailto:Sll308@163.com


Hu et al. Journal of Inequalities and Applications  (2015) 2015:208 Page 2 of 15

normalization constant (EX is the expectation of X). We suppose that Ui and Yi are in-
dependent for each i ∈ , , . . . , n. Our aim is to estimate fX when only Z, Z, . . . , Zn are
observed.

In particular, when ω(x) = , this model reduces to the classical density estimation prob-
lem under multiplicative censoring described by Vardi [], which unifies several well-
studied statistical problems, including non-parametric inference for renewal processes,
certain non-parametric deconvolution problems and estimation of decreasing densities
[–]. Many methods were proposed to deal with that problem including a series expan-
sion method [], the kernel method [] and wavelet method [, ], etc. For the standard
biased density model (.) (estimating fX from Y, Y, . . . , Yn), we refer to [–]. However,
the estimation of fX from Z, Z, . . . , Zn is a new statistical problem which has potential
applications in statistics and econometrics. As far as we know, only Abbaszadeh et al. []
dealt with that problem. By using wavelet method, they considered a convergence rate of
estimators in L norm over Besov space Bs

r,q.
It is well known that in many statistical models, the error of estimators is measured

in Lp norm [–]. In this paper, we consider Lp ( < p < ∞) risk estimation in Besov
space Bs

r,q based on wavelet bases. We define a linear estimator and a nonlinear adaptive
one motivated by Abbaszadeh et al. and Youming and Junlian’s work. We prove that the
nonlinear adaptive estimator achieves a faster rate of convergence than the linear one for
r < p. Our results can be considered as an extension of Abbaszadeh et al.’s theorems from
p =  to p ∈ [, +∞).

Section . introduces some notations and classical results on wavelets and Besov
spaces, which will be used in our discussions; the assumptions on the model and the main
results are presented in Section . In order to prove our theorems, we show several lemmas
in Section  and give the proofs in Section .

1.2 Some preparations
In recent years, the wavelet method has turned out to be effective for density estimation
[, , , ] because of the time and frequency localization, being a fast algorithm in nu-
merical computations. In this subsection, we introduce the wavelet basis of the real line
R (not necessarily on the fixed interval [, ] as in []), which will be used in our discus-
sions. Let ϕ ∈ Cm

 (R) be an orthonormal scaling function with m > s. The corresponding
wavelet function is denoted by ψ . It is well known that {φJ ,k ,ψj,k , j ≥ J , k ∈ Z} constitutes
an orthonormal basis of L(R), where fj,k(x) := j/f (jx – k) as in wavelet analysis. Then,
for each f ∈ L(R),

f (x) =
∑

k∈Z
αj,kφJ ,k(x) +

∑

j≥J

∑

k∈Z
βj,kψj,k(x),

where αJ ,k =
∫

f (x)φj,k(x) dx and βj,k =
∫

f (x)ψj,k(x) dx. Details on wavelet bases can be
found in [].

One of the advantages of wavelet bases is that they can characterize Besov spaces.
Throughout the paper, we work within Besov space on a compact subset of the real line R
(not necessarily on the fixed interval [, ] as []). To introduce those spaces, we need the
well-known Sobolev spaces with integer exponents W n

p (R) := {f |f ∈ Lp(R), f (n) ∈ Lp(R)}
and ‖f ‖W n

p := ‖f ‖p + ‖f (n)‖p. Then Lp(R) can be considered as W 
p (R). For  ≤ p, q ≤ ∞
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and s = n + α with α ∈ (, ], the Besov spaces on R are defined by

Bs
p,q(R) :=

{
f ∈ W n

p (R),
∥
∥t–αω

p
(
f (n), t

)∥
∥∗

q < ∞}
,

where ω
p(f , t) := sup|h|≤t ‖f (· + h) – f (· + h) + f (·)‖p denotes the smoothness modulus of

f and

‖h‖∗
q :=

{
(
∫ ∞

 |h(t)|q dt
t )


q , if  ≤ q < ∞,

ess supt |h(t)|, if q = ∞.

The associated norm ‖f ‖Bs
p,q := ‖f ‖p +‖t–αω

p(f (n), t)‖∗
q . It should be pointed out that Besov

spaces contain Hölder spaces and Sobolev spaces with non-integer exponents for a par-
ticular choice of s, p, and r [].

The following theorems are fundamental in our discussions.

Theorem . ([]) Let f ∈ Lr(R) ( ≤ r ≤ ∞), αJ ,k =
∫

f (x)φJ ,k(x) dx, βj,k =
∫

f (x)ψj,k(x) dx.
Then the following assertions are equivalent.

(i) f ∈ Bs
r,q(R), s > ,  ≤ q ≤ ∞;

(ii) {js‖Pjf – f ‖r}j≥ ∈ lq, where Pj(x) :=
∑

k∈Z αj,kφJ ,k(x) is the projection operator to Vj;
(iii) ‖αJ ,·‖r + ‖{j(s+/–/r)‖βj,·‖r}j≥‖q < ∞.

Theorem . ([]) Let φ be a scaling function or a wavelet with θ (φ) := supx∈R |φ(x – k)| <
∞. Then

∥
∥
∥
∥
∑

k∈Z
λkφj,k

∥
∥
∥
∥

p
∼ j( 

 – 
p )‖λ‖p

for λ = {λk} ∈ lp(Z) and  ≤ p ≤ ∞, where

‖λ‖p :=

{
(
∑

k∈Z |λk|p)

p , if p < ∞,

supk∈Z |λk|, if q = ∞.

Here and after, A � B denotes A ≤ CB for some constant C > ; A ∼ B stands for both
A � B and B � A. Clearly, Daubechies and Meyer’s scaling and wavelet functions satisfy
the conditions θ (φ) < ∞.

2 Main results
This section is devoted to the statement of our main results. To do that, we make the
following assumptions as described in []:

(A) The two density functions fX and fY have the support [, ] and fX belongs to the
Besov ball Bs

r,q(H) (H > ) defined as

Bs
r,q(H) :=

{
f ∈ Bs

r,q(R), f is a probability density and ‖f ‖Bs
r,q ≤ H

}
.

(A) The density of Zi is

fZ(x) =
∫ 

x

fY (y)
y

dy.
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(A) There exists a constant C >  such that

sup
x∈[,]

fX(x) ≤ C, sup
x∈[,]

fZ(x) ≤ C.

(A) There exist a constant C >  and c >  such that

sup
x∈[,]

ω(x) ≤ C, sup
x∈[,]

ω′(x) ≤ C, inf
x∈[,]

ω(x) ≥ c.

To introduce the wavelet estimator, we define the operator T by

T(h)(x) :=
h(x)ω(x) + xh′(x)ω(x) – xh(x)ω′(x)

ω(x)

for h ∈ C(R), the function set of all differential functions on R. Then the linear estimator
is given as follows:

f̂ lin(x) :=
∑

k∈∧
α̂j,kφj,k(x), (.)

where j is chosen such that j ∼ n


s+ and ∧ := {k ∈ Z, supp fX ∩ suppφj,k �= ∅}.
To obtain a nonlinear estimator, we take j and j such that j ∼ n

ln n and j ∼ n 
m+

with m > s. By definition

α̂j,k =
θ̂

n

n∑

i=

T(φj,k)(Zi), β̂j,k =
θ̂

n

n∑

i=

T(ψj,k)(Zi) (.)

are the estimators of αj,k =
∫

f (x)φj,k(x) dx and βj,k =
∫

f (x)ψj,k(x) dx, respectively, with

θ̂ :=

[

n

n∑

i=

ω(Zi) – Ziω
′(Zi)

ω(Zi)

]–

.

Then the nonlinear estimator is given by

f̂ non(x) :=
∑

k∈∧
α̂j,kφj,k(x) +

j∑

j=j

∑

k∈∧j

β̂j,k{|β̂j,k |>λ}ψj,k(x), (.)

where ∧ := {k ∈ Z, supp fX ∩ suppφj,k �= ∅}, ∧j := {k ∈ Z, supp fX ∩ suppψj,k �= ∅} and D

denotes the indicator function on the set D with λ := Tj
√

ln n
n .

Remark . From the definition of f̂ non
n , we find that the nonlinear estimator has the ad-

vantage of being adaptive, since it does not depend on the indices s, r, q, and H in its
construction.

Remark . The definitions of f̂ lin and f̂ non are essentially same as in []. However, the
selection of j and j is different from that in [] and the wavelet functions are defined on
the real line R not necessarily on [, ].
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Then we have the following approximation result, which extends Abbaszadeh et al.’s
theorems [] from p =  to p ∈ [, +∞).

Theorem . Let fX(x) ∈ Bs
r,q(H) (s > 

r , r, q ≥ ) and f̂ lin be the estimator defined by (.).
If (A)-(A) hold, then for each  ≤ p < ∞, s′ = s – (/r – /p)+, and x+ := max(x, ),

sup
fX∈Bs

r,q(H)
E
∥
∥f̂ lin(x) – fX(x)

∥
∥p

p � n– s′p
s′+ .

Remark . The condition s > 
p seems natural, since Bs

r,q(R) ⊆ C(R) for sp > , where
C(R) denotes the function set of all continuous functions on R.

Remark . If r ≥  and p = , then Abbaszadeh et al.’s Theorem . [] follows directly
from our theorem, in this case s′ = s. That is, Theorem . extends the corresponding
theorem of [] from p =  to p ∈ [, +∞).

Remark . When ω(x) =  and θ = E(ω(X)) = , the model reduces to the standard multi-
plicative censoring one considered by Abbaszadeh et al. []. In [], they estimate the con-
vergence rate of wavelet estimators in Lp norm for a density and its derivatives in Besov
space. Our result is consistent with Theorem . [] taken with m = .

Theorem . Let fX(x) ∈ Bs
r,q(H) ( 

r < s < m, r, q ≥ ) and f̂ non
n be the estimator given

by (.). If (A)-(A) hold, then there exists C >  such that for each  ≤ p < ∞ and

α := min{ s
s+ ,

s– 
r + 

p
(s– 

r )+
},

sup
fX∈Bs

r,q(H)
E
∥
∥f̂ non

n (x) – fX(x)
∥
∥p

p � (ln n)p
(

ln n
n

)αp

.

Remark . When p =  and r ≥  or { ≤ r < , s > /r}, our result is the exactly same as
Theorem . [], ignoring the log factor. In this case, α = s

s+ . In other words, our theorem
can be considered as an extension of Theorem . in [].

Remark . When ω(x) =  and θ = E(ω(X)) = , our result coincides with Theorem .
[] taken with m = , ignoring the log factor. In this case, the model reduces to the standard
density estimation problem under multiplicative censoring.

Remark . When r < p, the nonlinear estimator attains a better rate of convergence than

that of the linear one, due to s′p
s′+ < αp because of s′p

s′+ < sp
s+ and s′p

s′+ <
(s– 

r + 
p )p

(s– 
r )+

. When
r ≥ p, the nonlinear estimator does the same rate of convergence to that of the linear
one, i.e., n– sp

s+ , ignoring the log factor. However, taking into account that the nonlinear
estimator is adaptive, it is preferable to the linear one in the estimation of fX .

3 Lemmas
We present several important lemmas in this section, which will be needed for the proofs
of our main theorems. To show Lemma ., we need Rosenthal’s inequality [].
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Rosenthal’s inequality Let X, X, . . . , Xn be independent random variables such that
E(Xi) =  and E|xi|p < ∞ (i = , , . . . , n). Then

E

∣
∣
∣
∣
∣

n∑

i=

Xi

∣
∣
∣
∣
∣

p

≤
{

Cp[
∑n

i= E|Xi|p + (
∑n

i= E|Xi|) 
 p], p ≥ ,

Cp(
∑n

i= E|Xi|) 
 p,  < p ≤ .

Lemma . Let α̂j,k , β̂j,k be defined by (.). If (A)-(A) hold, then there exists a constant
C >  such that

E|α̂j,k – αj,k|p ≤ pjn– 
 p and E|β̂j,k – βj,k|p ≤ pjn– 

 p

for  ≤ p < ∞ and j ≤ n.

Remark . When p = , Lemma . reduces to Proposition . in [].

Proof of Lemma . One only proves the first inequality, the second one is similar. Clearly,

α̂j,k – αj,k =
θ̂

θ


n

n∑

i=

[
θT(φj,k)(Zi) – αj,k

]
+ αj,k θ̂

(

θ

–

θ̂

)

.

By (A) and (A), |αj,k| ≤ ∫ 
 fX(x)|φj,k(x)|dx �

∫ 
 |φj,k(x)|dx � . On the other hand, c ≤

|θ | = |E(ω(X))| = | ∫ 
 ω(x)fX(x) dx| ≤ C and |θ̂ |�  thanks to (A). Therefore,

E|α̂j,k – αj,k|p ≤ E

∣
∣
∣
∣
∣


n

n∑

i=

[
θT(φj,k)(Zi) – αj,k

]
∣
∣
∣
∣
∣

p

+ E
∣
∣
∣
∣


θ̂

–

θ

∣
∣
∣
∣

p

:= T + T.

To estimate T, one defines ξi := θT(φj,k)(Zi) – αj,k . Then T = E| 
n
∑n

i= ξi|p and E(ξi) = 
by Lemma . in []. By the definition of the operator T ,

E
∣
∣θT(φj,k)(Zi)

∣
∣p = |θ |p

∫ 



|φj,k(x)ω(x) + x(φj,k)′(x)ω(x) – xφj,k(x)ω′(x)|p
ω(x)

fZ(x) dx.

Moveover, E|θT(φj,k)(Zi)|p �
∫ 

 (|φj,k(x)|p + |φ′
j,k(x)|p) dx � j( 

 p–) due to (A) and (A).
Note that |αj,k|p � . Then for p ≥ ,

E|ξi|p � E
∣
∣θT(φj,k)(Zi)

∣
∣p + |αj,k|p � j( 

 p–). (.)

This with Rosental’s inequality leads to

E

∣
∣
∣
∣
∣


n

n∑

i=

ξi

∣
∣
∣
∣
∣

p

� n–p max
{

nE|ξi|p,
(
nE|ξi|

) 
 p} � n–p max

{
nj( 

 p–), n

 ppj}.

Using the assumption j ≤ n, one obtains T = E| 
n
∑n

i= ξi|p � pjn–p/. To end the proof,
one needs only to show

T = E
∣
∣
∣
∣


θ̂

–

θ

∣
∣
∣
∣

p

� pjn– 
 p. (.)
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Denote

ηi :=
ω(Zi) – Ziω

′(Zi)
ω(Zi)

–

θ

(i = , , . . . , n).

Then E|ηi|p ≤ C due to (A). By Theorem . [], η,η, . . . ,ηn are i.i.d. and E(ηi) = . Then
it follows from Rosental’s inequality that

T = n–pE

∣
∣
∣
∣
∣

n∑

i=

ηi

∣
∣
∣
∣
∣

p

� n–p

( n∑

i=

E|ηi|
) 

 p

� n– 
 p ≤ pjn– 

 p

for  ≤ p ≤  and

T = n–pE

∣
∣
∣
∣
∣

n∑

i=

ηi

∣
∣
∣
∣
∣

p

� n–p

[ n∑

i=

E|ηi|p +

( n∑

i=

E|ηi|
) 

 p]

� n–(p–) + n– 
 p � n– 

 p

for p ≥ , which proves the desired conclusion (.). This finishes the proof of Lem-
ma .. �

The well-known Bernstein inequality [] is needed in order to prove Lemma ..

Bernstein’s inequality Let X, X, . . . , Xn be i.i.d. random variables with E(Xi) = ,
‖Xi‖∞ ≤ M. Then, for each γ > ,

P

{∣
∣
∣
∣
∣


n

n∑

i=

Xi

∣
∣
∣
∣
∣

> γ

}

≤  exp

(

–
nγ 

[E(X
i ) + ‖X‖∞γ /]

)

.

Lemma . Let β̂j,k be defined by (.). If j ≤ n/ ln n and (A)-(A) hold, then for each
ε > , there exists T >  such that

P
{

|β̂j,k – βj,k| >
T


j

√
ln n
n

}

� –εj. (.)

Proof By the definition of β̂j,k ,

β̂j,k – βj,k =
θ̂

n

n∑

i=

T(ψj,k)(Zi) – βj,k =
θ̂

θ


n

n∑

i=

[
θT(ψj,k)(Zi) – βj,k

]
+ θ̂βj,k

(

θ

–

θ̂

)

.

Then

|β̂j,k – βj,k| ≤
∣
∣
∣
∣
θ̂

θ

∣
∣
∣
∣

∣
∣
∣
∣
∣


n

n∑

i=

[
θT(ψj,k)(Zi) – βj,k

]
∣
∣
∣
∣
∣

+ |θ ||βj,k|
∣
∣
∣
∣


θ̂

–

θ

∣
∣
∣
∣. (.)

The proof of Lemma . shows |θ̂ | ≤ C and c ≤ |θ | ≤ C. By (A) and (A), |βj,k| =
| ∫ 

 fX(x)ψj,k(x) dx|� ∫ 
 |ψj,k(x)|dx � . Then (.) reduces to

|β̂j,k – βj,k| ≤ C

∣
∣
∣
∣
∣


n

n∑

i=

[
θT(ψj,k)(Zi) – βj,k

]
∣
∣
∣
∣
∣

+ C
∣
∣
∣
∣


θ̂

–

θ

∣
∣
∣
∣.
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Furthermore,

P
{

|β̂j,k – βj,k| >
T


j

√
ln n
n

}

≤ I + I, (.)

where

I := P

{∣
∣
∣
∣
∣


n

n∑

i=

[
θT(ψj,k)(Zi) – βj,k

]
∣
∣
∣
∣
∣

>
T

C
j

√
ln n
n

}

and

I := P
{∣
∣
∣
∣


θ̂

–

θ

∣
∣
∣
∣ >

T
C

j

√
ln n
n

}

.

By (.), one needs only to prove

|Ii|� –εj (i = , ) (.)

for the desired conclusion (.).
To estimate I, one defines Ui = θT(ψj,k)(Zi) – βj,k . Then

∣
∣T(ψj,k)(x)

∣
∣ = ω–(x)

∣
∣ψj,k(x)ω(x) + x(ψj,k)′(x)ω(x) – xψj,k(x)ω′(x)

∣
∣

by the definition of the operator T . Using (A), |T(ψj,k)(x)| � |ψj,k(x)| + |(ψj,k)′(x)| �  
 j

for x ∈ [, ] and

|Ui| =
∣
∣θT(ψj,k)(Zi) – βj,k

∣
∣� |θ |∣∣T(ψj,k)(Zi)

∣
∣ + |βj,k|� 


 j

due to |θ | �  and |βj,k| � . Moreover, using (.) with ψ instead of φ and p = , one
obtains E|Ui| � j. Because U, U, . . . , Un are i.i.d. and E(Ui) =  (i = , , . . . , n) thanks
to Lemma . [], Bernstein’s inequality tells us that

I := P

{∣
∣
∣
∣
∣


n

n∑

i=

Ui

∣
∣
∣
∣
∣

>
T

C
j

√
ln n
n

}

≤  exp

(

–
nγ 

[E(U
i ) + γ

 ‖U‖∞]

)

with γ = T
C j

√
ln n
n . It is easy to see that nγ 

[E(U
i )+ γ

 ‖U‖∞] ≥ n T
C j ln n

n

(j+ T
C 


 j

√
ln n
n )

≥ T ln n
C(+ T

C )
be-

cause of 
j


√
ln n
n ≤  by the assumption j ≤ n

ln n . Note that ln n > j ln  due to n ≥ j ln n >

j. Hence, nγ 

[E(U
i )+ γ

 ‖U‖∞] ≥ T ln 
C(+ T

C )
j. One chooses T >  such that T ln 

C(+ T
C )

> ε. Then
T ln 

C(+ T
C )

> ε due to C ≥  and I � exp(– T ln 
C(+ T

C )
j) � –εj, which shows (.) for i = .

Next, one estimates I: Define Wi := ω(Zi)–Ziω′(Zi)
ω(Zi)

– 
θ

. Then W, W, . . . , Wn are i.i.d. and
E(Wi) = . On the other hand, (A) implies |Wi| ≤ C and E|Wi| ≤ C. Applying Bernstein’s
inequality, one obtains

I = P

{∣
∣
∣
∣
∣


n

n∑

i=

Wi

∣
∣
∣
∣
∣

>
T

C
j

√
ln n
n

}

≤  exp

(

–
nγ 

[E(W 
i ) + γ

 ‖W‖∞]

)
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with γ = T
C j

√
ln n
n . Note that nγ 

[E(W 
i )+ γ

 ‖W‖∞] ≥ n T
C j ln n

n

(C+ TC
C j

√
ln n
n )

≥
T

C j ln n

C(+ T
C )

≥ T ln 
C(+ T

C )
j

because of
√

ln n
n ≤  and ln n > j ln . The desired conclusion (.) (i = ) follows by taking

T >  such that T ln 
C(+ T

C )
> ε. This completes the proof of Lemma .. �

4 Proofs
This section is devoted to the proof of Theorems . and ., based on the knowledge of
Section . We begin with the proof of Theorem ..

Proof of Theorem . Clearly, f̂ lin
n – f X = (f̂ lin

n – Pj fX) + (Pj fX – fX) and

E
∥
∥f̂ lin

n – fX
∥
∥p

p ≤ ‖Pj fX – fX‖p
p + E

∥
∥f̂ lin

n – Pj fX
∥
∥p

p. (.)

It follows from the proof of Theorem . [] that

‖Pj fX – fX‖p
p � –jps′ � n– ps′

s′+ (.)

due to j ∼ n


s′+ . By (.) and (.), it is sufficient to show

E
∥
∥f̂ lin

n – Pj fX
∥
∥p

p � n– ps′
s′+ (.)

for the conclusion of Theorem .. By the definition of f̂ lin
n , f̂ lin

n – Pj fX =
∑

k∈∧(α̂j,k –
αj,k)φj,k . Then ‖f̂ lin

n – Pj fX‖p
p � j( 

 p–) ∑
k∈∧ |α̂j,k – αj,k|p thanks to Theorem .. This

with Lemma . and the choice of j leads to

E
∥
∥f̂ lin

n – Pj f X∥
∥p

p � 
p
 j E|α̂j,k – αj,k|p � 


 pj n– 

 p � n– ps′
s′+ ,

which is the desired conclusion (.). This finishes the proof of Theorem .. �

Next, we prove Theorem ..

Proof of Theorem . It is sufficient to prove the case r ≤ p. In fact, when r > p, f̂ non
n has

compact support because of φ, ψ , and f having the same property. Then

E
∥
∥f̂ non

n (x) – fX(x)
∥
∥p

p �
(
E
∥
∥f̂ non

n (x) – fX(x)
∥
∥r

r

) p
r

using the Hölder inequality. For fX ∈ Bs
r,q(H), using Theorem . for the case r = p, one has

sup
fX∈Bs

r,q(H)
E
∥
∥f̂ non

n (x) – fX(x)
∥
∥r

r � (ln n)r
(

ln n
n

)αr

and

sup
fX∈Bs

r,q(H)
E
∥
∥f̂ non

n (x) – fX(x)
∥
∥p

p � (ln n)p
(

ln n
n

)αp

.
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Now, one estimates the case r ≤ p. By the definition of f̂ non
n ,

f̂ non
n – f =

(
f̂ lin
n – Pj f

)
+ (Pj+f – f ) +

j∑

j=j

∑

k∈∧j

(β̂j,k{|β̂j,k |>λ} – βj,k)ψj,k .

Then

E
∥
∥f̂ non

n – f
∥
∥p

p � E
∥
∥f̂ lin

n – Pj f
∥
∥p

p + ‖Pj+f – f ‖p
p

+ E

∥
∥
∥
∥
∥

j∑

j=j

∑

k∈∧j

(β̂j,k{|β̂j,k |>λ} – βj,k)ψj,k

∥
∥
∥
∥
∥

p

p

. (.)

From the proof of Theorem ., one knows

‖Pj+f – f ‖p
p � –js′p, E

∥
∥f̂ lin

n – Pj f
∥
∥p

p � 

 pj n– p

 .

Note that j ∼ n


m+ , j ∼ n
ln n , and α = min{ s

s+ ,
s– 

r + 
p

(s– 
r )+

} ≤ s – 
r + 

p = s′ thanks to s > 
r .

Then

‖Pj+f – f ‖p
p �

(
ln n
n

)αp

, E
∥
∥f̂ lin

n – Pj f
∥
∥p

p �
(

ln n
n

)αp

. (.)

To estimate E‖∑j
j=j

∑
k∈∧j

(β̂j,k{|β̂j,k |>λ} – βj,k)ψj,k‖p
p, one defines

j∑

j=j

∑

k∈∧j

(β̂j,k{|β̂j,k |>λ} – βj,k)ψj,k(x) := T + T + T + T,

where

T :=
j∑

j=j

∑

k∈∧j

(β̂j,k – βj,k)ψj,k(x){|β̂j,k |>λ,|βj,k |<λ/},

T :=
j∑

j=j

∑

k∈∧j

(β̂j,k – βj,k)ψj,k(x){|β̂j,k |>λ,|βj,k |≥λ/},

T :=
j∑

j=j

∑

k∈∧j

βj,kψj,k(x){|β̂j,k |≤λ,|βj,k |>λ},

T :=
j∑

j=j

∑

k∈∧j

βj,kψj,k(x){|β̂j,k |≤λ,|βj,k |≤λ}.

Then E‖∑j
j=j

∑
k∈∧j

(β̂j,k{|β̂j,k |>λ} – βj,k)ψj,k‖p
p �

∑
i= E‖Ti‖p

p. By (.) and (.), it is suffi-
cient to show

E‖Ti‖p
p � (ln n)p

(
ln n
n

)αp

(i = , , , ) (.)

for the conclusion of Theorem ..
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To prove (.) for i = , applying Theorem ., one has

E‖T‖p
p � (j – j + )p–

j∑

j=j

j( p
 –)

∑

k∈∧j

E
[|β̂j,k – βj,k|p{|β̂j,k –βj,k |≥λ/}

]

due to the fact that {|β̂j,k| > λ, |βj,k| < λ/} ⊆ {|β̂j,k – βj,k| ≥ λ/}. By the Hölder inequality,

E‖T‖p
p � (j – j + )p–

j∑

j=j

j( p
 –)

∑

k∈∧j

(
E|β̂j,k – βj,k|p) 


[
E({|β̂j,k –βj,k |≥λ/})

] 


� (j – j + )p–
j∑

j=j

j( p
 –)

∑

k∈∧j

(
E|β̂j,k – βj,k|p) 


[
P
(|β̂j,k – βj,k| ≥ λ/

)] 
 .

This with Lemma . and Lemma . leads to

E‖T‖p
p � (j – j + )p–n– p



j∑

j=j



 pj– 

 εj � (ln n)p–n– 
 p

j∑

j=j

( 
 p– 

 ε)j

thanks to j – j ∼ ln n by the choice of j and j. Take ε such that ε > p. Then E‖T‖p
p �

(ln n)p–n– p
  

 pj � (ln n)p–n– ps
s+ � (ln n)pn–αp due to the choice of j and α ≤ s

s+ . That
is, (.) holds for i = .

To show (.) for i = , one uses the fact that {|β̂j,k| ≤ λ, |βj,k| > λ} ⊆ {|β̂j,k – βj,k| ≥ λ/}.
Hence,

E‖T‖p
p � (j – j + )p–

j∑

j=j

j( p
 –)

∑

k∈∧j

E
[|βj,k|p{|β̂j,k –βj,k |>λ/}

]

thanks to Theorem .. When |β̂j,k| ≤ λ < |βj,k|/, |β̂j,k – βj,k| ≥ |βj,k| – |β̂j,k| > |βj,k|/ > λ.
Then

E‖T‖p
p � (j – j + )p–

j∑

j=j

j( p
 –)

∑

k∈∧j

E
[|β̂j,k – βj,k|p{|β̂j,k –βj,k |>λ/}

]

due to Theorem .. The same arguments as above shows E‖T‖p
p � (ln n)pn–αp, which is

the desired conclusion (.) with i = .
In order to estimate E‖T‖p

p and E‖T‖p
p, one defines

j∗ ∼
(

n
ln n

) –α


, j∗ ∼
(

n
ln n

) α

s– 
r + 

p .

Recall that j ∼ n


m+ , j ∼ n
ln n , and α := min{ s

s+ ,
s– 

r + 
p

(s– 
r )+

}. Then –α
 ≥ 

s+ > 
m+ and

α

s– 
r + 

p
≤ 

(s– 
r )+

≤ . Hence, j ≤ j∗ and j∗ ≤ j . Moreover, a simple computation shows
–α

 ≤ α

s– 
r + 

p
, which implies j∗ ≤ j∗ .
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One estimates E‖T‖p
p by dividing T into

T =
j∑

j=j

∑

k∈∧j

(β̂j,k – βj,k)ψj,k(x){|β̂j,k |>λ,|βj,k |≥λ/} =
j∗∑

j=j

+
j∑

j=j∗+

=: t + t. (.)

Then E‖t‖p
p � (j – j + )p– ∑j∗

j=j j( 
 p–) ∑

k∈∧j
E|β̂j,k – βj,k|p due to Theorem .. This

with Lemma . and the definition of j∗ leads to

E‖t‖p
p � (j – j + )p–

j∗∑

j=j



 pjn– 

 p � (ln n)p–n– 
 p


 pj∗ � (ln n)


 p–

(
ln n
n

)αp

. (.)

To estimate E‖t‖p
p, one observes that {|β̂j,k |>λ,|βj,k |≥λ/} ≤ {|βj,k |≥λ/} ≤ ( |βj,k |

λ/ )r . Then it fol-
lows from Theorem . that

E‖t‖p
p � (j – j + )p–

j∑

j=j∗+

j( 
 p–)

∑

k∈∧j

E|β̂j,k – βj,k|p
( |βj,k|

λ/

)r

. (.)

By Lemma ., E|β̂j,k –βj,k|p ≤ n– p
 pj. On the other hand, ‖βj,·‖r ≤ –j(s+ 

 – 
r ) for f ∈ Bs

r,q(H)
due to Theorem .. Then (.) reduces to

E‖t‖p
p � (j – j + )p–n– p



j∑

j=j∗+

–j(sr+ 
 r– 

 p)λ–r .

Substituting λ = Tj
√

ln n
n into the above inequality, one gets

E‖t‖p
p � (ln n)p– 

 r–n

 (r–p)

j∑

j=j∗+

–j(sr+ 
 r– 

 p)

due to j – j ∼ ln n. Denote θ := sr + 
 r – 

 p. When θ > , r > p
s+ , and

E‖t‖p
p � (ln n)p– 

 r–n

 (r–p)–j∗(sr+ 

 r– 
 p) � (ln n)


 p–

(
ln n
n

)αp

(.)

thanks to the definition of j∗ .
Moreover, (.) also holds for θ ≤ . In fact, the same analysis as (.) produces

E‖t‖p
p � (j – j + )p–

j∑

j=j∗+

j( 
 p–)

∑

k∈∧j

E|β̂j,k – βj,k|p
( |βj,k|

λ/

)r

,

where r := ( – α)p. When θ ≤ , α =
s– 

r + 
p

(s– 
r )+

≤ s
s+ , and r ≤ p

s+ ≤ ( – α)p = r. Then

‖βj,·‖r ≤ ‖βj,·‖r ≤ –j(s– 
r + 

 ) for f ∈ Bs
r,q(H) thanks to Theorem .. Using Lemma . and
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the definition of λ, one has

E‖t‖p
p � (ln n)p–– 

 r n

 (r–p)

j∑

j=j∗+

j[ 
 p––(s– 

r + 
 )r].

Note that 
 p––(s– 

r + 
 )r =  because of r = (–α)p and α =

s– 
r + 

p
(s– 

r )+
. Hence, E‖t‖p

p �

(ln n)p– 
 r n 

 (r–p) � (ln n) 
 p( ln n

n )αp, which shows (.). Combing (.), (.), and (.),
one obtains the desired conclusion (.) with i = .

To end the proof, it is sufficient to estimate E‖T‖p
p. When θ > , one splits T into

T =
j∑

j=j

∑

k∈∧j

βj,kψj,k(x){|β̂j,k |≤λ,|βj,k |≤λ} =
j∗∑

j=j

+
j∑

j=j∗+

=: e + e. (.)

Since |βj,k|{|β̂j,k |≤λ,|βj,k |≤λ} ≤ |λ|, E‖e‖p
p � (j – j + )p– ∑j∗

j=j j( 
 p–)j|λ|p due to The-

orem .. Note that λ = Tj
√

ln n
n , j∗ ∼ ( n

ln n ) –α
 , and α = s

s+ when θ > . Then

E‖e‖p
p � (ln n)


 p–n– p



j∗∑

j=j



 pj � (ln n)


 p–n– p

 

 pj∗ � (ln n)p–

(
ln n
n

)αp

. (.)

To estimate E‖e‖p
p with e =

∑j
j=j∗+

∑
k∈∧j

βj,kψj,k(x){|β̂j,k |≤λ,|βj,k |≤λ}, one uses the fact
that {|β̂j,k |≤λ,|βj,k |≤λ} ≤ ( λ

|βj,k | )
p–r because of r ≤ p. Then

E‖e‖p
p � (j – j + )p–

j∑

j=j∗+

j( 
 p–)

∑

k∈∧j

|βj,k|p
(

λ

|βj,k|
)p–r

� (j – j + )p–
j∑

j=j∗+

j( 
 p–)|λ|p–r

∑

k∈∧j

|βj,k|r (.)

due to Theorem .. By f ∈ Bs
r,q(H) and Theorem ., ‖βj,·‖r ≤ –j(s– 

r + 
 ). Furthermore,

E‖e‖p
p � (j – j + )p–

(
ln n
n

) 
 (p–r)

n
r–p



j∑

j=j∗+

–j(sr+ 
 r– 

 p)

� (ln n)p–
(

ln n
n

) 
 (p–r)

–j∗(sr+ 
 r– 

 p) � (ln n)p–
(

ln n
n

)αp

. (.)

In the last inequality, one used the assumption j∗ ∼ ( n
ln n ) –α

 and α = s
s+ for θ > . This

with (.) and (.) leads to

E‖T‖p
p � (ln n)p–

(
ln n
n

)αp

. (.)
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Then one needs only to show that (.) holds for θ ≤ . Similarly, one divides T into

T =
j∑

j=j

∑

k∈Kj

βj,kψj,k(x){|β̂j,k |≤λ,|βj,k |≤λ} =
j∗∑

j=j

+
j∑

j=j∗ +

=: e∗
 + e∗

.

For the first sum, proceeding as (.) and (.), one has E‖e∗
‖p

p � (j – j + )p– ×
( ln n

n )
p–r


∑j∗

j=j –j(sr+ 
 r– 

 p) � (j – j + )p–( ln n
n )

p–r
 –j∗ (sr+ 

 r– 
 p). Note that j – j ∼ ln n and

j∗ ∼ ( n
ln n )

α

s– 
r + 

p . Then E‖e∗
‖p

p � (ln n)p–( ln n
n )αp due to α =

s– 
r + 

p
(s– 

r )+
for θ ≤ .

To estimate the second sum, using Theorem .,

E
∥
∥e∗


∥
∥p

p � (j – j + )p–
j∑

j=j∗ +

j( 
 p–)

∑

k∈∧j

|βj,k|p.

By f ∈ Bs
r,q(H) and Theorem ., ‖βj,·‖p ≤ ‖βj,·‖r � –j(s– 

r + 
 ). Hence, E‖e∗

‖p
p � (j –

j + )p– ∑j
j=j∗ + –j(s– 

r + 
p )p � (j – j + )p––j∗ (s– 

r + 
p )p. By the choice of j∗ , E‖e∗

‖p
p �

(ln n)p–( ln n
n )αp because of α =

s– 
r + 

p
(s– 

r )+
, when θ ≤ . Then the desired conclusion (.)

follows. This completes the proof of Theorem .. �
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