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Abstract

The authors study the complete convergence and the complete moment
convergence for weighted sums of m-negatively associated (m-NA) random variables
and obtain some new results. These results extend and improve the corresponding
theorems of Sung (Stat. Pap. 52:447-454, 2011). In addition, we point out that an open
problem presented in Sung (Stat. Pap. 54:773-781, 2013) can be solved by means of
the method used in this paper.
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1 Introduction
Let {X, X,,, n > 1} be a sequence of random variables and {a,;,1 < i < n,n > 1} be an array
of constants. Because the weighted sums ) ', a,;X; play important roles in some useful
linear statistics, many authors studied the strong convergence for the weighted sums. We
refer the reader to Cuzick [1], Wu [2], Bai and Cheng [3], Sung [4], Chen and Gan [5], Cai
[6], Wu [7], Zarei and Jabbari [8], Sung [9], Sung [10], Shen [11], Chen and Sung [12].
The concept of the complete convergence was introduced by Hsu and Robbins [13].
A sequence of random variables {U,, n > 1} is said to converge completely to a constant 0
if

o0
ZP(lL[n -0|>¢)<oo foralle>0.

n=1

Chow [14] presented the following more general concept of the complete moment con-
vergence. Let {Z,, n > 1} be a sequence of random variables and a,, > 0, b, >0, g > 0. If

o
ZanE{b;1|Zn| - S}Z <oo forsomeoralle>0,

n=1

then the above result was called the complete moment convergence.
The following concept was introduced by Joag-Dev and Proschan [15].
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Definition 1.1 A finite family of random variables {X,1 < k < n} is said to be negatively
associated (abbreviated to NA) if for any disjoint subsets A and B of {1,2,...,n} and any
real coordinate-wise nondecreasing functions f on R4 and g on R2,

Cov(f(X;i€ A),g(Y;,j€B)) <0

whenever the covariance exists. An infinite family of random variables is NA if every finite
subfamily is NA.

Definition 1.2 Let m > 1 be a fixed integer. A sequence of random variables {X,,,n > 1} is
said to be m-negatively associated (abbreviated to m-NA) if for any #n > 2 and any iy, ..., iy,
such that iy —ij| > m forall 1 <k #j <n, X;,...,X;, are NA.

The concept of m-NA random variables was introduced by Hu et al. [16]. It is easily seen
that this concept is a natural extension from NA random variables (wherein m = 1).

It is well known that the properties of NA random variables have been applied to the re-
liability theory, multivariate statistical analysis and percolation theory. Sequences of NA
random variables have been an attractive research topic in the recent literature. For exam-
ple, Matula [17], Su et al. [18], Shao [19], Gan and Chen [20], Fu and Zhang [21], Baek et
al. [22], Chen et al. [23], Cai [6], Xing [24], Sung [10], Qin and Li [25], Wu [26]. Since NA
implies m-NA, it is very significant to study the convergence properties of this wider m-
NA class. However, to the best of our knowledge, besides Hu et al. [16] and Hu et al. [27],
few authors discuss the convergence properties for sequences of m-NA random variables.

Cai [6] studied the complete convergence for weighted sums of identically distributed
NA random variables. He obtained the following theorem.

Theorem A Let {X,X,,n > 1} be a sequence of identically distributed NA random vari-
ables, and let {a,;,1 < i < n,n > 1} be an array of constants satisfying

n
Ay = lim supA,, < 00, Ay, = Z |ani®/n (1.1)
i=1

n—00

forsome 0 <o <2.Letb, = n"*(logn)""" forsomey > 0. Furthermore, suppose that EX = 0
when 1<a <2.IfEexp(h|X|") < oo for some h > 0, then

00

E n'P| max
1<m=<n

n=1

m
E aniX;
i-1

> b,,s) <oo foralle>0. (1.2)

Sung [10] improved Theorem A by replacing some much weaker moment conditions.

Theorem B Let {X,X,,n > 1} be a sequence of identically distributed NA random vari-
ables, and let {a,,1 < i < n,n > 1} be an array of constants satisfying (1.1) for some
0<a <2. Let b, = n"*(logn)"’” for some y > 0. Furthermore, suppose that EX = 0 when
1<« < 2. Then the following statements hold:
(i) Ifa >y, then E|X|* < oo implies (1.2).
(i) Ifa =1y, then E|X|*log|X| < oo implies (1.2).
(iii) Ifa <y, then E\X|¥ < oo implies (1.2).
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The main purpose of this article is to discuss the complete convergence and the complete
moment convergence for weighted sums of 71-NA random variables. We shall extend The-
orem B to m-NA random variables. In addition, we shall extend and improve Theorem B
by obtaining a much stronger conclusion under the same conditions (see Remark 3.2).

It is worthy to point out that the open problem presented in Sung [9], see Remark 2.2,
can be solved by means of the method used in this article (see Remark 3.4).

Throughout this paper, the symbol C represents positive constants whose values may
change from one place to another. For a finite set A the symbol (A) denotes the number
of elements in the set A.

2 Preliminaries

We first recall the following concept of stochastic domination, which is a slight general-
ization of identical distribution. An sequence of random variables {X,,, # > 1} is said to be
stochastically dominated by a random variable X (write {X},} < X) if there exists a constant
C > 0 such that

supP(|Xn| >x) < CP(|X| >x), Vx> 0.

n>1

The following exponential inequality for m-NA random variables can be proved by
means of Theorem 3 in Shao [19] and the proof of Lemma 2 in Hu et al. [27]. Here we
omit the details.

Lemma 2.1 Let {X,,, n > 1} be a sequence of m-NA random variables with zero means and
finite second moments. Let S; =, _, Xx and B, =Y _}_| EX}. Then for all n > m, x > 0 and
a>0,

P(max IS}l = x) < 2mP(max [X;| > a)

1<j<n 1<j<n

xz Wan x/(12ma)
+4mexpl-——— ¢ +4m{ ——— . (2.1)
8m?B,, 4(xa + mB,,)

Remark 2.1 Since e™ < (1+x)7! for x>0, we get, forx>0anda >0,

xz 3xa x/(12ma) 3xa —x/(12ma)
eXpy— o5 ( = CXPy— <|1l+ .
8m?2B, 2mB, 2mB,

Noting that

mBy, x/(12ma) dxa —x/(12ma) 3xa —x/(12ma)
e =(1+ <(1+ .
4(xa + mB,,) mB, 2mB,

Therefore, it follows by (2.1) that

3xa —x/(12ma)
) . (2.2)

P(max ;] 2x> < ZmZP(IXkI >a) +8m<1 + 7B
mby

1<j<nm
== k=1

Now we present a Rosenthal-type inequality for maximum partial sums of m-NA ran-
dom variables, which is the crucial tool in the proof of our main results.



Wu et al. Journal of Inequalities and Applications (2015) 2015:200 Page 4 of 14

Lemma 2.2 Let {X,, n > 1} be a sequence of m-NA random variables with mean zero and
E|X¢|9 < 0o for everyl <k <n.Let S; =Y 4, Xk, 1 <j < n. Then for q > 2, there exists a
positive constant C depending only on q such that

n n ql2
E max |§;|7 < C{ZE|Xk|’1 + <ZEX§> } (2.3)
1=5jzn k=1 k=1
Proof Let B, =Y ;_, EX}. Noting that
E|Y|?= q/ P(|Y| > x)x?" dx (E1Y|? < 00). (2.4)
0
By taking a = x/(12mgq) in (2.2), we have
E max |S;]7 = qf P(max M zx)xq_l dw
1<j<n 0 1<j<n

n 0
< quZf P(|Xk| > 96/(12mq))x”1_1 dx
k=10

0 x2 -q
+8myq / (1 +— ) x17 dw
0 8m*qB,

=:A+B.

By (2.4), we have A = 221*139m 11 g4 37" | E|X;|7. Letting ¢ = x*/(8m>¢B,,), then

00
B= 22+3q/2m1+qq1+q/2(Bn)q/2/ (1 + t)—qtq/Z—l dt
0

n a2
= 228302 l+a 1412 B/ q/2) (ZEX,E) )
k=1

where

1 o0
Bla, p) = f M 1-t) T de= / 1+ 7P de,
0 0
Letting C = max{221*'39m*! ¢4, 2>+34"2 '+14'+41* B(q/2, q/2)}, we can get (2.3). The proof

is complete. d

Lemma 2.3 (Wang et al. [28]) Let {X,,n > 1} be a sequence of random variables with
{X,} < X. Then there exists a constant C such that, for all g > 0 and x > 0,

() EIXelI(1Xk| < x) < CLEIX|U(IX]| < x) +x7P(1X] > x)},

(ii) EIXi|I(|Xk| >x) < CEIX|I(|X] > x).

The following lemma is very important in the proof of our result, which improves
Lemma 2.2 and Lemma 2.3 of Sung [10].

Lemma2.4 Let{a,;,1 <i<mn,n> 1} bean array of constants satisfying ZL |ani|* < nfor
some o > 0. Let b, = n"'*(logn)''” for some y > 0. Then
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0o " CE|X|* fora>vy,

I="n'b," > ElanX|*I(|anX| > by) < { CEIX|“log |X| fora =y,
n=2 i=1 CE|X|r fora<y.

Proof From Y, |au|* < n, we have

o p

I=" n?(logn)™” " ElauX|"I(|1X|* > n(log n)*"” |a,:| ™)
n=2 i=1
o0 n n -1

<> n(logny @ ZE|ﬂniX|a1(|X|a > n(log n)*"” (Z |am|“) )

n=2 i=1 i=1

[e¢] n
< Zn’z(log n)~r ZE|¢,,,»X|O‘1(|X| > (log n)””)

n=2 i=1

o0
< Z n (logn) ™" EIX|*I(|1X| > (log )"/

n=2

o0 o0
= Z nt(logn)™" ZElX|°‘I(logm <|X|” <log(m + 1))

n=2 m=n

= Y EIX|“I(logm < X" <log(m +1)) Y " n~ (logn)™".

m=2 n=2

Observing that

- C fora >y,
Z n(logn)™" < { Cloglogm fora =1y,
n=2 C(logm)'=7  fora <y,

we can get
CE|X|* fora >y,
1< {CEX|*log|X| fora=y,
CE|X|Y fora<y.
The proof of Lemma 2.4 is completed. O

Remark 2.2 Noting that
oo n o0 n
> oty PlawX| > by) <y n'0,* Y ElawX|“1(janX| > by),
n=2 i=1 n=2 i=1

we know that Lemma 2.4 improves Lemma 2.2 and Lemma 2.3 of Sung [10]. In addition,

the method used in this paper is novel and much simpler than that in Sung [10].

3 Main result

In this section, we state our main results and their proofs.
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Theorem 3.1 Let {X,,, n > 1} be a sequence of m-NA random variables with {X,,} < X, and
let {a,,1 <i < n,n>1} be an array of constants satisfying (1.1) for some 0 < o < 2. Let
b, = n¥'*(logn)'” for some y > 0. Furthermore, suppose that EX; = 0 when 1 < a < 2. Then
the following statements hold:
() Ifa >y, then E|X|* < oo implies (1.2).
(i) Ifa =y, then E|X|*log|X| < oo implies (1.2).
(ili) Ifo <y, then E|X|" < oo implies (1.2).

Remark 3.1 Since NA implies m-NA, Theorem 3.1 extends Theorem B. Compared with
Sung [10], the proof of Theorem 3.1 is different from that of Theorem 2.1 in Sung [10].

Corollary 3.1 Let {X,,n > 1} be a sequence of m-NA random variables with {X,} < X, and
let {a;,1 < i < n} be a sequence of constants satisfying

n

Ag = lim supA,,, < 00, Ay, = Z |a;|*/n

n—00 -
i=1

forsome 0 <o <2.Letb, =n"*(logn)"” for some y > 0. Furthermore, suppose that EX; = 0
whenl<o <2. Then

n
b;l ZﬂiXi -0 as.
i=1

By a similar argument as the proof of Corollary 2.1 in Cai [6], we can prove this corollary.
Here we omit the details.

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold, then the following state-
ments hold:
(i) Ifa >y, then E|X|* < oo implies

[e¢]

E nE{b;' max
1<m<n

n=2

m
E aniX;
i-1

—8} <oo foralle>O0. (3.1)

+

(i) Ifa =y, then E|X|*log|X| < oo implies (3.1).
(iii) Ifo <y, then E\X|" < oo implies (3.1).

o
—8}

+

m

Z aniX;

i=1

Remark 3.2 Noting that
o0 m
Z nE { b;l 1r<na§ Z a,iX;
n=2 =m=n i=1
o 00
- Zn‘lf P(b;1 max
0 1<m=<n
n=2
oo 0
= / Z nP| b, max
0 Py 1<m<n

Se+ t”“) dt

m

Z aniX;

i=1

>e+ tl/“) dz.

Therefore, Theorem 3.2 extends and improves Theorem B.
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Proof of Theorem 3.1 Without loss of generality, we may assume that a,; > 0. For fixed
n>1,let

Y, = b d(aXi < -b,) + aniXi[(anilXi| = bn) + byl(anX; > by),

Zm' = (ﬂm’Xi + bn)l(ﬂm'xi < _bn) + (ﬂm'Xi - bn)l(anixi > bn)

Then Y,; + Z,;; = a,X;, and it follows by the definition of m-NA and Property 6 of Joag-Dev
and Proschan [15] that {Y,;,i > 1,n > 1} is sequence of m-NA random variables. Then

o0
Z n‘1P< max > b,ﬁ?)
1<m<n
n=1
o0 n o0
<1+ Zn’l ZP(a,,,'|X,»| >by) + anP( max
n=2 i=1 =

1<m<n
n=2

4

m
E anX;
1

m

Z Ym’
1

i=

> bns)

221+H1+H2.

By {X,} < X and Lemma 2.4, we have

o0 n o0 n
H < CZ:n’l ZP(a,,i 1X| > by) < CZn’lb;"‘ Za‘;‘iElXF"I(am- 1X| > by) < 00.
n=2 i=1 n=2 i=1

Then we prove H, < 0o. Noting that either E|X|* log |X| < oo for « = y, or E|X|" < 00
for o < y implies E|X|* < co. From (1.1), without loss of generality, we may assume that
> a% < n. We first prove

i=1"ni

m

Y EY

i=1

L=:b,' max

— 0 asn— oo. (3.2)
1<m<n

For 0 <a <1,by Lemma2.3and ) . a% <n, we have

L<Cb," Y " anE|X|I(an|X| <by)+CY_ P(anlX| > by)

i=1 i=1

< Cb,* > aEIX|*I(am|X| < by) + Cb,* Y alEIX|"I(aulX| > by)

i=1 i=1

< C(logn)™E|X|* - 0 asn— oo.

Forl<a <2,by EX; =0, |Z,| < a,|X;|I(a,:|X;| > b,), and Lemma 2.3, we have

L = b;' max
1<m<n

n
<b,' D awEIXil (@l Xil > by)

i=1

m
> EZu
i=1

< Cb," > awE|X (il X| > by) < Cb,* Y alEIX|*1 (@il X| > by)

i=1 i=1

< C(logn)™7E|X|* = 0 asn— oo.
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Hence (3.2) holds for 0 < & < 2. Then, while # is sufficiently large,

max
1<m<n

< bue/2. (3.3)

m
ZEYm'
i=1

Let g > max{2,2y/a}. Then by (3.3), the Markov inequality, and Lemma 2.2, we have

> b,,8/2)

m

> (Vi = EYy)

i=

o0
H, < E n'P| max
1<m=<n

n=2

00 m q
< CY_mBIE max |3 (Yo~ EY,)
n=2 =m=n i=1
o0 n q/2 00 n
- CZn‘lb;q<ZE|Ym~|2> L CY Y E e
n=2 i=1 n=2 i=1
=: H3 + H4,.

Firstly, we prove Hs < 0c0. By Lemma 2.3, ¢ <2, Y | |a,;|* < n,and g > 2y /o, we have

o) n n q/2
Hy<C» n (b;z > @LEIXP(@lX| < by) + Y P(anlX| > bn)>
n=2

= i=1 i=1

oo n n ql2
<C) n! (bn“ > aLEIXI*I(an|X| < by) + b, Y alEIX|"I(a.lX| > bn))

n=2 i=1 i=1

<C> nlogn) ™ (E|X|%) " < co.

n=2
Next we consider H,. By Lemma 2.3, we have

o0 n o0 n
Hy <CY b2 alEIX|U(aw|X| <by) + CY_n Y P(awlX| > by)

n=2 i=1 n=2 i=1
=: H5 + H6.

Similar to the proof of H; < oo, we get directly Hg < co. Then final work is to prove Hs < oc.
Forj>1land n > 2,let

Lj= {1 <i<nm:n{+1)V <la, < n““j‘”"’}.

Then {1,5,j > 1} are disjoint, | ., I,; = N for all n > 1 from )"/, |a,;|* < n, where N is the
set of positive integers. Noting that for all k > 1, we have

j=1

n= Y lawl® =YY lawl® =Y tUn(i+ 1) =D a)ni+ 1)
i=1 j=1

j=1 i€l j=k

= D BTN+ )G+ DT = Y alnG+ 1) k4 )

Jj=k Jj=k
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Hence for all kK > 1, we have

oo
D 8y < Clhe+ 1)1 (3.4)
j=k
Then
o0 n
Hs = Zn’l’q/“(log n)~Y Z || “EIX | (@ X| < n''*(logn)"7)
n=2 i=1

o0
= > w1 (log ) Y "N " |aulTE|X | (|awX| < n''* (logn)')

j=1 iely

n=2
oo o0

<Y n 1 (ogn) "y " 4Lt EIX14I(1X] < G+ 1M (logm)'”)
n=2 j=1

<Y n(logm) ™" Y " (L) " EIX|I(1X| < (logn)'"")

n=2 j=1
o0 o0

+ > n ' (logn) ™Y (1)1
n=2 j=1

J
X ZE|X|qI(I<1/°‘(log Y < |1X| < (k +1)"*(log n)l/”)
k=1

. * K%
= H5 + H;™.

By (3.4) and g > 2y /a > y, we have

o0
H; < CY n ' (logn) " E|X|I(|X|” < logn)
n=2

[o¢] n
= CZn’l(log n)~ 1 ZE|X|qI(log(m -1) < |X|” <log m)

n=2 m=2
=C ZE|X|ql(log(m -1) < |X|” <log m) Z n Y (logn) 7"
m=2 n=m

<C Z(log m)l_q/”E|X|qI(log(m -1) < |X|” <log m)

m=2

< CEIX|” < o0.

By (3.4), we have
HE* = n(logn) "
n=2

x Y EIXIT(K" (logm)"” < X| < (k+ 1) (logm)""") > (7)™
k=1 j=k
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<C Z nY(log )™

n=2

x Y (k+ 1) E|X|9T (KM (log )" < |X| < (k + 1) (logm)"")
k=

un

oo oo
< CZn’l(log )t ZE|X|“[(k1/“(log m" < |X| < (k + 1) (logn)"'7)
n=2 k=1

C Z n(log n)_‘"/VE|X|“I(|X| > (log n)l/”).
n=2

Noting that we obtain the following result in the proof of Lemma 2.4,

00 CE|X|* fora >y,
Zn’l(logn)""/l’E|X|“[(|X| > (logn)l/y) <{CE|X|*log|X| fora=vy,
n=2 CE|X|Y fora<y.

Hence we get H}* < oo combining the assumptions of Theorem 3.1. The proof is com-
pleted. d

Remark 3.3 It is easily seen that the proof of Hs < co complements Lemma 2.3 of Sung
[9]. In fact, in that lemma Sung only proved Hs < oo for the case o = y. It is worthy to
point out that a,; = 0 or |a,;| > 1 is required in Sung [9]. Here, we do not require the extra

conditions.

Remark 3.4 Sung [9] proved Theorem 3.1 for the case « = y when {X,,,n > 1} is a se-
quence of p*-mixing random variables. However, he posed an open problem, that is,
whether Theorem 3.1 (i.e. Theorem 1.1 in Sung [9]) remains true for p*-mixing random

variables.

The crucial tool of the proof of Theorem 3.1 is the Rosenthal-type inequality for max-
imum partial sums of m-NA random variables. For p*-mixing random variables, the
Rosenthal-type inequality for maximum partial sums also holds (see Utev and Peligrad
[29]). Therefore, it is easy to solve the above open problem by following the method used
in the proof of Theorem 3.1.

Proof of Theorem 3.2 For any given ¢ > 0, we have

o
_8}

+

m

Z aniX;

i=1

oo o0
> b,e +E n_1/ P| max
1<m<n
n=2 1

00 m
E l’l_lE b;l max E aniXi
1<m=<n
n=2 i=1
o 00
= E nt P( b;' max
0 1<m<n
n=2
00 m
< E n'P| max E auiX;
1<m=<n
n=2 i=1

=: 11 + 12.

>e+ t““) dt

m

Z aniX;

> b,,t”“) dt
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Therefore, to prove (3.1), one needs only to prove that I; < oo and I; < co. By Theorem 3.1,
we get directly I; < co. For all £ > 1, we denote

Vi = =but"*1(a,iX; < —but""®) + @ Xid (ani| Xi| < but"™) + but"*1(a,:X; > but"®),

Zyi = AniX; = Yy

Then

0 o)
I, < Z n_lf P(max an| X:| > bntl/"‘> dt
P 1 1<i<n

0 o)
+E nt P| max
1 1<m=<n
n=2

=: 13 + ]4.

m

Z Ym‘
1

> b,,tl/“) de

Noting that
oo
/ P(an|X| > b,t"™) dt < b,*a®E|X|“I(|awX| > b,),
1

by {X;} < X, Lemma 2.4, and the assumptions of Theorem 3.2, we have

o0 n 00 00 n o
13 = Zn712/ P(dni'Xi| >bnt1/(1) dtfznilz/ P(ﬂnl|X| >bnt1/a)dt
2 n=2 =1 V1

o0 n
< Zn_lb;“ Za‘n"iE|X|°‘I(am|X| > h,,) < 0.

n=2 i=1
Next we prove that I, < co. We first show
m

ZEYm’

i=1

J =sup t’”"‘b;l max —0 asn— 0. (3.5)

>1 1<m<n

For 0 <a <1,by Lemma 2.3 and ) . a% < n, we have

n

n
J < Csup t‘”o‘h;l ZaniE|X|1(a,,i|X| < by,tl/"‘) + Csup ZP(am|X| > b,,t”“)

tz1 i=1 =1

n n
< Csupt™'b,* Y " alEIX|"I(anlX| < but"™) + Cb,* Y " alE|X|"

£zl i=1 i=1
< C(logn)™"E|X|* — 0 asn— oo.
Forl<a <2,byEX; =0, | Zy| < au|Xi|I(an|X;] > b,t"*), and Lemma 2.3, we have
m

Y EZu

i=1

J = sup t’”“b;l max

>1 1<m=n

n
< Csup t‘l/“b;1 Z a,,iE|X|1(a,,i|X| > b,,tl/“)

£z1 i1
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n
< Csupt™'b,* Y " alEIX|"I(an|X]| > byt

tz1 i-1

< C(logn)™7E|X|* -0 asn— 00.

From (3.5), we know that, while # is sufficiently large,

max
1<m=<n

<b,t"/2

i

m
> EYy
=1

holds uniformly for ¢ > 1.
Let ¢ > max{2,2y/a}. Then by (3.6) and Lemma 2.2, we have

00 00 m
-1 L . 1/a
I < Ezn /1 P(lrsnrg;(n 'El(Ym EY,)| > b,t /2) dt
n= i=

00 00 m q
13-4 —qla _ .
< CZZn b, ‘/1 t Elrsnwa’l;(n Zl(Ym EY,)| dt
n= i=

Page 12 of 14

(3.6)

N N ; ~ - " q/2
<CY n'bys /1 £ S ENY,|7de+ CY byt /1 e (ZE | Ym'z) d
n=2 i=1 n=2 =

=: 15 + 16-

By Lemma 2.3, « <2, and g > 2y /a, we have

o] 00 n
I <CY n'bt / g (Z a2 E\X 1M (an|X| < but''®)
1

n=2 i=1

n ql2
+ DA " Pa|X| > b,ﬁ”“)) dt

i=1

oo 00 n
<C) n / (b;“rl > aLEIX|*I(a|X| < byt"™)
n=2 1

i=1

n ql2
+ b, aE|IX| I (a|X| > bnt”“)> de

i=1

o0 00 n q/2
< CZ nt / £ (b;"‘ Z a‘;,‘iEle"‘) dt
n=2 1

i=1

o0
<C Z n~(log m)@7/27) (E|X|‘>‘)q/2 <00
n=2

For I5, we have

0 n 00
E<CY n'bty f 948 E|X |1 (a4 X] < b,t"”) dt
n=2 i=1 Y1

+ CX:n’1 Z/ P(am'|X| > b,,tl/"‘) det
n=2 i=1 Y1



Wu et al. Journal of Inequalities and Applications (2015) 2015:200 Page 13 of 14

o] n 00
=CYy n'bty /1 1 q E\X|"1(a,41X| < b,) dt
n=2 i=1

[ n 00
+CY n'hy /1 1 a E\X |1 (b, < ai|X| < b,t"') dt
i=1

n=2

+CY mt Y / P(an|X| > but"™) dt
n=2 =1 Y1

=II7 +13 +19.

Similar to the proof of I35 < 0o, we get I < co. Similar to the proof of Hs < 0o, we get I7 < oo.

By g > 2 > « and the following standard arguments, we get

oo
b1 / 1l E|X|I(by < an|X| < byt"")dt
1

t
m

o m+1
<b1 Z/ 1% g8 E\X|I(by < au|X| < byt"")dt
m=1

00
=< b;q meq/aaziEUﬂq[(bn <aulX| < bn(Wl + 1)1/01)

m=1

o0 m
<b2Y m Y Al EIX | (bys' < ai|X| < by(s +1)')

m=1 s=1

o0 o0
<b,1Y " alEIX|U(bus"™ < @il X| < buls + 1)) > "t

s=1 m=s

o0
< Cb1Y sl EIX | (bys" < @i X| < by(s +1)')
s=1

[ee]
<Cb* ZaziEer"I(b,,s”“ <anlX| < bu(s+ 1)1/“)
s=1

< Cb,* alEIX|*I(an|X| > by).

Hence by Lemma 2.4, we have

o0 n
=<CY n'b,* Y alEIX|" (@l X]| > by) < cc.

n=2 i=1

The proof is completed. d
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