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Abstract
Given is the Borel probability space on the set of real numbers. The
algebraic-analytical structure of the set of all finite atomic random variables on it with
a given even number of moments is determined. It is used to derive an explicit
version of the Chebyshev-Markov-Stieltjes inequalities suitable for computation.
These inequalities are based on the theory of orthogonal polynomials, linear algebra,
and the polynomial majorant/minorant method. The result is used to derive
generalized Laguerre-Samuelson bounds for finite real sequences and generalized
Chebyshev-Markov value-at-risk bounds. A financial market case study illustrates how
the upper value-at-risk bounds work in the real world.
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1 Introduction
Let I be a real interval and consider probability measures μ on I with moments μk =
∫

I xk dμ(x), k = , , , . . . , such that μ = . Given a sequence of real numbers {μk}k≥, the
moment problem on I consists to ask the following questions. Is there a μ on I with the
given moments? If it exists, is the measure μ on I uniquely determined? If not, describe
all μ on I with the given moments (see e.g. Kaz’min and Rehmann []).

There are essentially three different types of intervals. Either two end-points are finite,
typically I = [, ], one end-point is finite, typically I = [,∞), or no end-points are finite,
i.e. I = (–∞,∞). The corresponding moment problems are called Stieltjes moment prob-
lem if I = [,∞), the Hausdorff moment problem if I = [, ], and the Hamburger moment
problem if I = (–∞,∞). Besides this, the algebraic moment problem by Mammana [] asks
for the existence and construction of a finite atomic random variable with a given finite
moment structure. It is well known that the latter plays a crucial role in the construction of
explicit bounds to probability measures and integrals given a fixed number of moments.

In the present study, the focus is on the interval I = (–∞,∞). Motivated by a previous
result from the author in a special case, we ask for a possibly explicit description of the
set of all finite atomic random variables by given moment structure for an even arbitrary
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number of moments. Based on some basic results from the theory of orthogonal polyno-
mials, as summarized in Section , we characterize in the main Theorem . these sets
of finite atomic random variables. This constitutes a first specific answer to a research
topic suggested by the author in the Preface of Hürlimann [], namely the search for a
general structure that belongs to the sets of finite atomic random variables by given mo-
ment structure. As an immediate application, we derive in Section  an explicit version of
the Chebyshev-Markov-Stieltjes inequalities that is suitable for computation. It is used to
derive generalized Laguerre-Samuelson bounds for finite real sequences in Section , and
generalized Chebyshev-Markov value-at-risk bounds in Section .

The historical origin of the Chebyshev-Markov-Stieltjes inequalities dates back to
Chebyshev [], who has first formulated this famous problem and has proposed also a solu-
tion without proof, however. Proofs were later given by Markov [], Possé [] and Stieltjes
[, ]. Twentieth century developments include among others Uspensky [], Shohat and
Tamarkin [], Royden [], Krein [], Akhiezer [], Karlin and Studden [], Freud []
and Krein and Nudelman []. A short account is also found in Whittle [], pp.-. It
seems that the Chebyshev-Markov inequalities have been stated in full generality for the
first time by Zelen []. Explicit analytical results for moments up to order four have been
given in particular by Zelen [], Simpson and Welch [], Kaas and Goovaerts [], and
Hürlimann [] (see also Hürlimann []).

2 Basic classical results on orthogonal polynomials
Let (�, A, P) be the Borel probability space on the set of real numbers such that � is the
sample space, A is the σ -field of events and P is the probability measure. For a measurable
real-valued random variable X on this probability space, that is, a map X : � → R, the
probability distribution of X is defined and denoted by FX(x) = P(X ≤ x).

Consider a real random variable X with finite moments μk = E[Xk], k = , , , . . . . If X
takes an infinite number of values, then the Hankel determinants
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, n = , , , . . . , (.)

are non-zero. Otherwise, only a finite number of them are non-zero (e.g. Cramér [],
Section .). We will assume that all are non-zero. By convention one sets p(x) = μ = .

Definition . An orthogonal polynomial of degree n ≥  with respect to the moment
structure {μk}k=,...,n–, also called orthogonal polynomial with respect to X, is a polyno-
mial pn(x) of degree n, with positive leading coefficient, that satisfies the n linear expected
value equations

E
[
pn(X) · Xi] = , i = , , . . . , n – . (.)

The terminology ‘orthogonal’ refers to the scalar product induced by the expectation
operator 〈X, Y 〉 = E[XY ], where X, Y are random variables for which this quantity exists.
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An orthogonal polynomial is uniquely defined if either its leading coefficient is one (so-
called monic polynomial) or 〈pn(X), pn(X)〉 =  (so-called orthonormal property). A monic
orthogonal polynomial is throughout denoted by qn(x) while an orthogonal polynomial
with the orthonormal property is denoted by Pn(x). Some few classical results are required.

Lemma . (Chebyshev determinant representation) The monic orthogonal polynomial
of degree n identifies with the determinant
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Proof See e.g. Akhiezer [], Chapter , Section , or Hürlimann [], Lemma I... �

The monic orthogonal polynomials form an orthogonal system of functions.

Lemma . (Orthogonality relations)

〈
qm(X), qn(X)

〉
=  for m �= n, (.)

〈
qn(X), qn(X)

〉
=

Dn

Dn–
�= , n = , , . . . . (.)

Proof See e.g. Akhiezer [], Chapter , Section , or Hürlimann [], Lemma I... �

Using Lemma . one sees that the monic orthogonal polynomials and the orthonormal
polynomials are linked by the relationship

Pn(x) =

√
Dn–

Dn
qn(x), n = , , . . . . (.)

The following relationship plays an essential role in the derivation of the new explicit so-
lution to the algebraic moment problem in the next section.

Lemma . (Christoffel [] and Darboux []) Let Kn(x, y) =
∑n

i= Pi(x)Pi(y) be the
Christoffel-Darboux kernel polynomial of degree n. Then one has the determinantal iden-
tity

Dn · Kn(x, y) = –
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. (.)

Proof This is shown in Akhiezer [], Chapter , Section , p.. �
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Note that Brezinski [] has shown that the Christoffel-Darboux formula is equivalent
to the well-known three term recurrence relation for orthogonal polynomials. For further
information on orthogonal polynomials consult the recent introduction by Koornwinder
[] as well as several books by Szegö [], Freud [], Chihara [], Nevai [], etc.

3 An explicit solution to the algebraic moment problem
Given the first n +  moments of some real random variable X, the algebraic moment
problem of order r = n + , abbreviated AMP(r), asks for the existence and construction of
a finite atomic random variable with ordered support {x, . . . , xr}, that is, x < x < · · · < xr ,
and probabilities {p, . . . , pr}, such that the system of non-linear equations

r∑

i=

pixk
i = μk , k = , . . . , n + , (.)

is solvable. For computational purposes it suffices to know that if a solution exists, then
the atoms of the random variable solving AMP(r) must be identical with the distinct real
zeros of the orthogonal polynomial qr(x) of degree r = n + , as shown by the following
precise recipe.

Lemma . (Mammana []) Given are positive numbers p, . . . , pr and real distinct num-
bers x < x < · · · < xr such that the system AMP(r) is solvable. Then the xi’s are the distinct
real zeros of the orthogonal polynomial of degree r, that is, qr(xi) = , i = , . . . , r, and

pi =
∏

j �=i

(xi – xj)– · E
[∏

j �=i

(Z – xj)
]

, i = , . . . , r, (.)

with Z the discrete random variable with support {x, . . . , xr} and probabilities {p, . . . , pr}.

Next, we assume only the knowledge of the moment sequence {μk}k=,,...,n and suppose
that the Hankel determinants Dk , k = , , . . . , n, are positive. These are the moment in-
equalities required for the existence of random variables on the whole real line with given
first n moments (e.g. De Vylder [], part II, Chapter .). Clearly, only the orthogonal
polynomials qk(x), k = , , . . . , n, are defined. However, an observation similar to the re-
mark by Akhiezer [], Chapter , Section , p., is helpful. If, in addition to {μk}k=,,...,n,
an arbitrary real number μn+ is also given, it is possible by Lemma . to construct the
polynomial

qr(y) =
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which satisfies the orthogonality relations E[qr(Y ) · Y i] = , i = , , . . . , r – , for a random
variable Y with the ‘moments’ {μk}k=,,...,n+, and thus plays the role of the ‘non-existent’
orthogonal polynomial of degree r = n + . How, in this modified setting, does the solution
of the system AMP(r), as generated by qr(y), looks like?
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Instead of the arbitrary variable moment μn+ one can equivalently specify a variable
real number x and include it in the support {x, . . . , xn, x} that solves AMP(r) based on the
variable ‘orthogonal polynomial’ qr(x, y). Let ei, i = , . . . , n, denote the elementary sym-
metric functions in {x, . . . , xn} and set e = , er = . Then the variable functions

ei(x) = x · ei– + ei, i = , . . . , r, (.)

coincide with the elementary symmetric functions in {x, . . . , xn, x}, and one has necessarily

qr(x, y) =
r∑

i=

(–)iei(x)yr–i, e(x) = . (.)

Writing out the linear expected value equations E[qr(x, Y ) · Y i] = , i = , , . . . , n – , one
sees that they are equivalent with the system of linear equations defined in matrix form
by A · z = b with

Aij = μi+j–x – μi+j–, i, j = , . . . , n,

bi = μn+i–x – μn+i, i = , . . . , n,

zj = (–)n–jen–j+, j = , . . . , n.

(.)

For i = , . . . , n, let Ai be the matrix formed by replacing the ith column of A by the column
vector b. Then, with Cramer’s rule, one obtains from (.) the solution

ei = (–)i–zn–i+ = (–)i– |An–i+|
|A| , i = , . . . , n, (.)

where |M| denotes the determinant of the matrix M. Clearly, the first n atoms of the sup-
port {x, . . . , xn, x} are by construction the distinct real zeros of the polynomial of degree n
given by

q∗
n(x, y) =

n∑

i=

(–)ieiyn–i. (.)

For application to the Chebyshev-Markov-Stieltjes inequalities in Section , one is inter-
ested in the probabilities (.) associated to the discrete random variable Z with support
{x, . . . , xn, x} that solves AMP(r). By (.) the probability associated to the atom x coincides
with the function of one variable

p(x) =
P(x)
Q(x)

, P(x) = E

[ n∑

i=

(–)ieiZn–i

]

=
n∑

i=

(–)ieiμn–i,

Q(x) =
n∑

i=

(–)ieixn–i.

(.)

We are ready for the following main result.

Theorem . (Discrete random variables on (–∞,∞) with an even number of given mo-
ments {μk}k=,,...,n) Suppose that the Hankel determinants Dk , k = , , . . . , n, are positive.
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Let xn+ ∈ (–∞,∞) be an arbitrary fixed real number, and let B be the matrix defined
by

B =

⎛
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. (.)

Further, for i = , . . . , n, let Bi be the matrix formed by replacing the ith row of B by
the row vector (μn μn+ · · μn). Then the support {x, . . . , xn, xn+} and the probabili-
ties {p, . . . , pn, pn+} of a discrete random variable on (–∞,∞) with moment sequence
{μk}k=,,...,n, are uniquely determined as follows. The atoms {x, . . . , xn} are the distinct
real solutions of the polynomial

q∗
n(xn+, y) =

n∑

i=

(–)ieiyn–i, ei = (–)i– |Bn–i+|
|B| , i = , . . . , n, (.)

and the probabilities {p, . . . , pn, pn+} are determined by

pi = p(xi) =

{ n∑

i=

Pi(xi)

}–

, i = , . . . , n + , (.)

where the Pi(x), i = , . . . , n, are the orthonormal polynomials defined in (.), and the func-
tion p(x) has been defined in (.).

Remark . Before proceeding with the proof, it is important to note that Theorem . is
a generalization of the special case n =  in Hürlimann [], Proposition II..

Proof First of all, one notes that the matrices A, Ai, i = , . . . , n, and B, Bi, i = , . . . , n, have
equal determinants, that is, |A| = |B|, |Ai| = |Bi|, i = , . . . , n. Indeed, multiply each column
in (.) by xn+ and subtract it from the next column to see that |A| = |B|. The other
determinantal equalities are shown similarly. Equations (.) follow by (.) and (.).
Equation (.) for x = xn+ follows from (.) using (.) and the following determinantal
identities:

|B| · P(x) =
n∑

i=

(–)iμn–i · |B| · ei = μn · |B| –
n∑

i=

μn–i ·
∣
∣Bn–i+∣∣ = Dn, (.)

|B| · Q(x) =
n∑

i=

(–)i · |B| · eixn–i = |B| · xn –
n∑

i=

∣
∣Bn–i+∣∣ · xn– = Dn ·

n∑

i=

Pi(xi). (.)

To show the last equality in (.) we use Laplace’s formula to expand the involved deter-
minants in powers of x = xn+ with coefficients in the cofactors Cij (= signed minors) of
the Hankel determinant Dn. One sees that

|B| =
n+∑

j=

Cj,n+xj–,
∣
∣Bi∣∣ = –

n+∑

j=

Cj,ixj–, i = , . . . , n.
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Inserted into (.) and rearranging it follows that

μn · |B| –
n∑
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∣
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Now, the first sum is identical with Laplace’s cofactor expansion of Dn. Similarly, the coeffi-
cients of the powers of x are cofactor expansions of determinants with two equal columns
that vanish. This shows (.). For the last equality in (.) we use again Laplace’s for-
mula. An expansion with respect to the first column of the displayed determinant shows
the following identity:
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From the special case y = x of the Christoffel-Darboux formula in Lemma . one obtains
(.). Inserting (.) and (.) into (.) implies (.) for x = xn+. Finally, cyclic per-
mutations of the atoms x, . . . , xn, xn+ implies (.) for all i = , . . . , n + . �

4 An explicit version of the Chebyshev-Markov-Stieltjes inequalities
As a main application of Theorem ., we get a completely explicit version of the
Chebyshev-Markov-Stieltjes inequalities, which go back to Chebyshev, Markov, Possé and
Stieltjes, and have been stated and studied at many places. Our formulation corresponds
essentially to the inequalities found in the appendix of Zelen [] for the infinite inter-
val (–∞,∞), and find herewith an implementation suitable for computation, as will be
demonstrated in the next two sections. The probabilistic bounds (.) below are nothing
else than the special case f (x) =  of (.), Section ., in Freud []. For the interested
reader the essential steps of the modern probabilistic proof are sketched.

Theorem . (Chebyshev-Markov-Stieltjes inequalities) Let FX(x) be the distribution
function of an arbitrary random variable X defined on (–∞,∞) with the moments
{μk}k=,,...,n. Let {x, . . . , xn, x} be the distinct zeros of the polynomial qr(y) = (y – x)q∗

n(x, y)
of degree r = n +  as defined in (.). Then the following inequalities hold:

∑

xi<x
p(xi) ≤ FX(x) ≤

∑

xi<x
p(xi) + p(x), (.)

where p(x) = {∑n
i= Pi(x)}– is the inverse of the Christoffel-Darboux kernel.

Proof The main ingredient of the proof is the well-known polynomial majorant/minorant
method as applied to the Heaviside indicator function I[x,∞)(z) (e.g. Hürlimann [], Ap-
pendix I, or Hürlimann [], Chapter III.). For ease of notation, one sets xr = x. A poly-
nomial majorant qx(z) ≥ I[x,∞)(z) can only be obtained at supports {x, . . . , xr} of atomic
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random variables Zx (depending on the choice of x) with moments {μk}k=,,...,n such that
Pr(qx(Zx) = I[x,∞)(Zx)) = , and one has the lower bound

FX(x) ≥  – E
[
I[x,∞)(Zx)

]
.

The polynomial qx(z) of degree n is uniquely determined by the following conditions.
For i = , . . . , r, one has qx(xi) =  if xi < x and qx(xi) =  if xi ≥ x, and for i = , . . . , n one has
q′

x(xi) = . Through application of Theorem ., one sees that the obtained lower bound
is necessarily equal to  –

∑
xi≥x p(xi) =

∑
xi<x p(xi) with p(xi) determined by (.). Simi-

larly, the polynomial minorant yields the formula for the upper bound in (.). The result
follows. �

5 Generalized Laguerre-Samuelson bounds
Let x, x, . . . , xn be n real numbers with first and second order moments sk = 

n
∑n

i= xk
i ,

k = , . The Laguerre-Samuelson inequality (see Jensen and Styan [] and Samuelson
[]) asserts that for a sample of size n no observation lies more than

√
n –  standard

deviation away from the arithmetic mean, that is,

|xi – μ| ≤ √
n –  · σ , i = , . . . , n,μ = s,σ =

√
s – s

 . (.)

An improved version, which takes into account the sample moments of order three and
four, has been derived in Hürlimann []. It has also been suggested that further im-
provement based on the Chebyshev-Markov extremal distributions with known higher
moments, though more complex, should be possible. It is shown how a sequence of in-
creasingly accurate generalized Laguerre-Samuelson bounds can be constructed. Based
on the first  orders of approximations, we demonstrate through simulation the reason-
able convergence of the obtained probabilistic approximation algorithm to the maximum
possible sample standardized deviation associated to a given probability distribution on
the real line.

5.1 The theoretical bounds
The number m ≥  denotes the order of approximation of the generalized Laguerre-
Samuelson (LS) bounds. Let x, x, . . . , xn be n real numbers with first moments sk =

n
∑n

i= xk
i , k = , , . . . , m. The mean and standard deviation are μ = s, σ =

√
s – s

 . Con-
sider the discrete uniform random variable X defined by P(X = xi–μ

σ
) = 

n , i = , . . . , n.
Clearly, X is a standard random variable with moments μk = 

n
∑n

i=[(xi – μ)/√s]k , k =
, , . . . , m. In particular, one has μ = , μ = . We proceed now similarly to Section  in
Hürlimann []. According to Theorem ., one has necessarily the inequalities

P(X ≤ x) ≤ p(x), x ≤ cL < , P(X ≤ x) ≥  – p(x), x ≥ cU > , (.)

where cL, cU are the smallest and largest zeros of the polynomial q∗
m(x, y) defined in (.).

Substituting xL = (xmin – μ)/σ ≤ cL <  into the first inequality and xU = (xmax – μ)/σ ≥
cU >  into the second inequality, one gets the bounds

xL · σ ≤ xi – μ ≤ xU · σ , i = , . . . , n, (.)
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where xL ≤ cL < , xU ≥ cU >  are both solutions of the equation p(x) = 
n . With the

Christoffel-Darboux kernel determinantal representation (.) for the inverse of p(x) this
is equivalent to the polynomial equation of degree m given by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

  x · · xm

 μ μ · · μm

x μ μ · · μm+

· · · ·
· · · ·

xm μm μm+ · · μm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ n · |Dm| = . (.)

Since the probability function p(x) is monotone decreasing, the condition xU ≥ cU >  is
equivalent with the inequalities p(xU ) = 

n ≤ p(cU ) ⇔ n ≥ p(cU )–. Similarly, the condition
xL ≤ cL <  is equivalent with the inequalities p(xL) = 

n ≤ p(cL) ⇔ n ≥ p(cL)–. Therefore,
a necessary condition for the validity of (.) is n ≥ max{p(cL)–, p(cU )–}. The following
main result has been shown.

Theorem . (Generalized Laguerre-Samuelson (LS) bounds) Let x, x, . . . , xn be n real
numbers with mean μ, standard deviation σ , and set μk = 

n
∑n

i=[(xi – μ)/√s]k , k =
, , . . . , m, for some order of approximation m ≥ . Suppose that n ≥ max{p(cL)–, p(cU )–}
and that the polynomial equation (.) of degree m has two real solutions xL ≤ cL <  and
xU ≥ cU > . Then, one has the bounds

xL ≤ xi – μ

σ
≤ xU , i = , . . . , n. (.)

Remark . Setting m =  one recovers the original Laguerre-Samuelson bound (.). The
case m =  is Theorem  in Hürlimann [].

5.2 The applied bounds
To illustrate the generalized LS bounds consider first ‘completely symmetric’ sequences of
length n = p ≥  of the type

–xp ≤ · · · ≤ –x ≤ –x <  < x ≤ x ≤ · · · ≤ xp, (.)

for which sk– = , k = , . . . , m, where m is the maximal order of approximation. Results
for the order of approximation m =  have been discussed in Hürlimann []. We extend
the numerical approximation up to the order m = .

It is interesting to observe that by increasing order of approximation the generalized
LS bounds seem to converge to the true empirical bound. Attained bounds (up to four
significant figures) are marked in bold face. For completely symmetric Cauchy sequences
the analysis of this property has been suggested to us by corresponding simulations for
the order m = . One can ask for a rigorous proof (or disproof ) of it.

In Applied Statistics one does not usually encounter completely symmetric sequences.
In empirical studies or simulations, the property sk– �= , k = , . . . , m, is rather the rule
than the exception. It is therefore worthwhile to present some simulations for arbitrary
sequences stemming from distributions defined on the whole real line, whether symmetric
or not.
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Our illustration includes only simulated sequences from symmetric distributions. Be-
sides the Laplace, the interesting and important Pearson type VII (generalized Student t,
normal inverted gamma mixture) is considered. Its density function is given by

fX(x) =


B(α, 
 ) · ( + x)α+ 


, x ∈ (–∞,∞). (.)

For simulation, one needs its percentile function, which reads (Eq. (.) in Hürlimann [])

F–
X (u) =

⎧
⎨

⎩

–
√

β–(u; 
 ,α)– – , u ≤ 

 ,
√

β–(( – u); 
 ,α)– – , u ≥ 

 ,
(.)

where β(x; a, b) is a beta density. While the mean and skewness of (.) are zero, the vari-
ance (if α > ) and excess kurtosis (if α > ) are given by

σ 
X =


(α – )

, KX =


α – 
. (.)

In case α = 
 one has a Cauchy, and if α =  one has a Bowers distribution (see Hürlimann

[] and the references in Hürlimann []). In case α → ∞ it converges to a normal distri-
bution. Besides its original use in Statistics, this distribution has found many applications
in Actuarial Science and Finance (see e.g. Hürlimann [, ], Nadarajah et al. [], among
many others).

In contrast to Table , the simulated odd order moments in Table  never vanish and
sometimes deviate considerably from zero. Nevertheless, the same observations as for Ta-
ble  can be made. Convergence of the bounds for the Pearson type VII distributions occur
at quite low order of approximations. For the Cauchy some special simulation runs have
been chosen. They show that the original Samuelson bound are sometimes almost attained
for a specific distribution. Mathematical explanations of this phenomenon are left open
for further investigations.

6 Generalized Chebyshev-Markov VaR bounds
Let r, r, . . . , rn be n observed returns from a financial market with first and second order
sample moments sk = 

n
∑n

i= rk
i , k = , . The classical Chebyshev-Markov Value-at-Risk

(VaR) bound (e.g. Hürlimann [], Theorem ., Case ) asserts that by given sufficiently
small loss tolerance level ε >  the VaR functional by given mean and variance satisfies the
inequality

VaRε[L] ≤ –μ +
√

ε– –  · σ , μ = s,σ =
√

s – s
 , (.)

where L = –R is the loss random variable associated to the random return R with observed
values r, r, . . . , rn.

An improved version, which takes into account the sample moments of order three and
four, has been derived in Hürlimann [], Theorem ., Case  (see also the monograph
Hürlimann [] for a more general exposition). This approach has been further investigated
in Hürlimann [–]. Based on Theorem ., it is shown how a sequence of increasingly
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Table 1 Simulation of generalized LS bounds for completely symmetric sequences

Normal distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 3.531 2.744 2.523 2.451 2.427 2.418 2.416 2.415 2.414 2.414
103 31.61 6.774 4.478 3.829 3.574 3.467 3.425 3.408 3.400 3.397 3.395
104 100 11.94 6.308 4.806 4.204 3.911 3.752 3.660 3.604 3.569 3.507
105 316.2 21.15 9.247 6.491 5.579 5.261 5.158 5.125 5.112 5.106 5.103

Gamma distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 4.125 3.204 2.947 2.869 2.848 2.842 2.841 2.840 2.840 2.840
103 31.61 7.869 5.302 4.549 4.268 4.164 4.128 4.116 4.111 4.110 4.109
104 100 14.61 8.468 6.863 6.310 6.101 6.007 5.948 5.901 5.863 5.792
105 316.2 26.85 13.97 11.26 10.43 10.16 10.06 10.03 10.01 10.01 10.01

Log-normal distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 4.376 3.483 3.184 3.073 3.017 2.983 2.968 2.960 2.953 2.925
103 31.61 15.04 13.36 13.27 13.26 13.26 13.26 13.26 13.26 13.26 13.26
104 100 25.98 20.90 20.16 20.10 20.09 20.09 20.09 20.09 20.09 20.09
105 316.2 44.26 30.35 27.01 26.12 25.90 25.84 25.82 25.82 25.82 25.82

Cauchy distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 6.643 6.438 6.423 6.423 6.423 6.423 6.423 6.423 6.423 6.423
103 31.61 17.33 14.69 14.07 13.93 13.92 13.92 13.92 13.92 13.92 13.92
104 100 57.78 52.70 52.10 52.08 52.08 52.08 52.08 52.08 52.08 52.08
105 316.2 197.1 186.7 186.2 186.2 186.2 186.2 186.2 186.2 186.2 186.2

accurate generalized Chebyshev-Markov (CM) VaR bounds can be constructed. Based
on the first  order of approximations, we demonstrate then the use of the obtained
algorithm through a real-life case study. A comparison with the estimated VaR of some
important return distributions is instructive and justifies the application and further de-
velopment of the CM VaR bounds. Similar generalizations to bounds for the conditional
value-at-risk measure (CVaR) can also be obtained (see Hürlimann [], Theorem ., for
the special case m = ).

6.1 The theoretical bounds
The number m ≥  denotes the order of approximation of the generalized CM VaR
bounds. Let r, r, . . . , rn be n observed returns from a financial market with sample mo-
ments sk = 

n
∑n

i= rk
i , k = , , . . . , m. The mean and standard deviation are denoted μ = s,

σ =
√

s – s
 . Let X = –R be the negative of the standardized random return R with ob-

served values (ri –μ)/σ , i = , . . . , n. Clearly X is a standard random variable with moments
μk = 

n (–)k ∑n
i=[(ri – μ)/√s]k , k = , , . . . , m. In particular, one has μ = , μ = . Ac-

cording to Theorem ., one has necessarily the inequality

P(X ≤ x) ≥  – p(x), x ≥ cL > , (.)
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Table 2 Simulation of generalized LS bounds for arbitrary sequences

Normal distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 3.607 2.780 2.590 2.520 2.479 2.454 2.438 2.432 2.431 2.431
103 31.61 6.712 4.346 3.687 3.472 3.411 3.394 3.391 3.390 3.390 3.390
104 100 11.91 6.327 4.838 4.263 4.023 3.926 3.889 3.874 3.868 3.865
105 316.2 21.18 9.256 6.462 5.510 5.202 5.119 5.100 5.095 5.094 5.094

Laplace distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 4.302 3.739 3.677 3.670 3.670 3.670 3.670 3.670 3.670 3.670
103 31.61 8.897 6.661 6.063 5.809 5.693 5.633 5.597 5.574 5.557 5.542
104 100 14.74 8.720 7.196 6.687 6.528 6.483 6.469 6.465 6.464 6.463
105 316.2 26.74 13.54 10.49 9.355 8.849 8.602 8.479 8.411 8.373 8.333

Pearson type VII distribution (α = 3)

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 7.665 7.646 7.646 7.646 7.646 7.646 7.646 7.646 7.646 7.646
103 31.61 22.16 21.80 21.79 21.79 21.79 21.79 21.79 21.79 21.79 21.79
104 100 88.94 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80
105 316.2 227.6 225.2 225.2 225.2 225.2 225.2 225.2 225.2 225.2 225.2

Bowers distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 6.291 6.063 6.050 6.050 6.050 6.050 6.050 6.050 6.050 6.050
103 31.61 13.71 11.21 10.36 10.04 9.930 9.911 9.907 9.907 9.907 9.907
104 100 38.67 34.27 33.36 33.26 33.25 33.25 33.25 33.25 33.25 33.25
105 316.2 118.1 103.5 100.5 100.0 99.93 99.92 99.92 99.92 99.92 99.92

Cauchy distribution

n Order of approximation max | xi –μ

σ |
1 2 3 4 5 6 7 8 9 10

102 9.950 9.269 9.260 9.260 9.260 9.260 9.260 9.260 9.260 9.260 9.260
103 31.61 30.08 30.07 30.07 30.07 30.07 30.07 30.07 30.07 30.07 30.07
104 100 95.31 95.28 95.28 95.28 95.28 95.28 95.28 95.28 95.28 95.28
105 316.2 291.6 291.1 291.1 291.1 291.1 291.1 291.1 291.1 291.1 291.1

where cL is the largest zero of the polynomial q∗
m(x, y) defined in (.). Now, for a fixed

(sufficiently small) loss tolerance level ε >  one has P(X ≤ VaRε[X]) ≥  – ε provided

VaRε[X] ≤ –μ + xε · σ , (.)

where xε ≥ cL >  solves the equation p(xε) = ε. With the determinantal representation
(.) for /p(x) this is equivalent to the polynomial equation of degree m given by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

  x · · xm

 μ μ · · μm

x μ μ · · μm+

· · · ·
· · · ·

xm μm μm+ · · μm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ ε– · |Dm| = . (.)
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Since the probability function p(x) is monotone decreasing, the condition xε ≥ cL >  is
equivalent with the inequalities p(xε) = ε ≤ p(cL). Therefore, a necessary condition for the
validity of (.) is ε ≤ p(cL). The following main result has been shown.

Theorem . (Generalized CM VaR bound) Let r, r, . . . , rn be n observed returns from a
financial market with sample mean μ, standard deviation σ , and set μk = 

n (–)k ∑n
i=[(ri –

μ)/√s]k , k = , , . . . , m, for some order of approximation m ≥ . Suppose that ε ≤ p(cL)
and that the polynomial equation (.) of degree m has a real solution xε ≥ cL > . Then,
the following CM VaR bound holds:

VaRε[X] ≤ –μ + xε · σ . (.)

Remark . Setting m =  one recovers the classical Chebyshev-Markov bound (.). The
case m =  is Theorem ., Case , in Hürlimann [].

6.2 The applied bounds
In current risk management practice there are three basic types of VaR models, the normal
linear VaR model (also called parametric VaR or variance-covariance VaR), the historical
VaR simulation model, and the Monte Carlo VaR model (see Alexander [] for a readable
account). For a short discussion of the strengths/weaknesses of the common VaR mod-
els we refer to Hürlimann [], Section . In the development of improved VaR models,
it is important to consider methods that overcome the limitations shared by parametric
VaR, historical VaR and Monte Carlo VaR. The main advantages of the proposed CM VaR
method are three-fold:

(i) Given a set of moments up to a fixed even order, one expects a single solution. This
assertion may depend on the choice of a sufficiently small loss tolerance level, the
properties of the largest real solution to the polynomial equation (.), as well as
computational feasibility (representation of the higher order moments in machine
precision). In this respect, the results of Table  are well behaved.

(ii) The evaluation of the CM VaR bounds is easy to implement and its computation is
fast. In this respect the method overcomes the lack of fast computation
encountered with the historical VaR and the Monte Carlo VaR models.

(iii) The CM VaR bounds yield a sequence of increasingly accurate upper bounds to
VaR that are consistent with the actuarial principle of safe or conservative pricing.

To illustrate the generalized CM VaR bounds consider return observations stemming
from the following five different Swiss Market (SMI) and Standard & Poors  (SP)
data sets:

SMI Y/D:  historic daily closing prices over  years from .. to
..
SMI Y/D:  historic daily closing prices over  years from .. to
..
SP Y/D:  historic daily closing prices over  years from .. to
..
SP Y/D:  historic daily closing prices over  years from .. to
..
SP Y/M:  historic monthly closing prices over  years from Jan.  to
Dec. 
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Table 3 Generalized CM VaR bounds versus FFT VaR from best fitted return distributions

CM VaR bound
of order m

SMI and SP500 data sets

SMI 3Y/1D SP 3Y/1D SMI 24Y/1D SP 24Y/1D SP 63Y/1M

1 14.10674 14.10674 14.10674 14.10674 14.10674
2 5.70929 5.80257 6.38478 6.57694 5.52054
3 4.63181 5.08737 5.85193 5.97425 5.05367
4 4.33603 5.08073 5.81340 5.97368 5.03519
5 4.24284 4.51830 5.15713 5.19075 4.07623
6 4.20294 4.04401 5.01443 4.88268 3.91300
7 4.18175 3.98179 4.91795 4.88033 3.89962
8 4.17181 3.97972 4.51596 4.56437 3.41525
9 4.16756 3.96797 4.44315 4.29779 3.31145

10 4.16568 3.45184 4.42918 4.28693 3.30855
maximum loss 4.20421 5.93094 9.39704 8.18808 5.95942
Normal approx. 2.57583 2.57583 2.57583 2.57583 2.57583
FFT VaR SMI 3Y/1D SP500 3Y/1D SMI 24Y/1D SP 24Y/1D SP 63Y/1D
VG 3.18228 3.09191 3.55423 3.69317 2.65234
NVG 3.15521 3.08703 3.42190 3.52504 2.49884
TLF-BG 3.46466 3.58737 3.83378 3.92492 3.57468
TLF 3.42602 3.57239 3.78536 3.71739 3.54963
NIG 3.43097 3.56194 3.72618 3.78626 3.58135
NTS 3.44828 3.60691 3.62529 3.72720 3.54761
best fit FFT NVG NVG NTS TLF NTS
max. FFT VaR TLF-BG NTS TLF_BG TLF_BG NIG

These data sets are typical as they contain short to medium high volatile periods (short
term period of  years, long term period of  years), and very long term periods (
years of monthly data). In order to be compared with the results in Hürlimann [–]
the most recent data has not been included. The observed sample logarithmic returns of
stock-market indices are negatively skewed and have a much higher excess kurtosis than
is allowed by a normal distribution, at least over shorter daily and even monthly periods.
In the mentioned papers, a number of important return distributions have been fitted to
these data sets using the first four sample moments by solving specific equations (main
theorems in Sections  of Hürlimann [–]). Their goodness-of-fit statistics have been
optimized through application of the fast Fourier transform (FFT) approximation, which
only requires the knowledge of the characteristic function. Though the moment method
is not the optimal tool in statistical inference, as compared to maximum likelihood es-
timation for example, its controlled use in conjunction with the Anderson-Darling and
Cramér-von Mises goodness-of-fit statistics remains a first choice in applications depend-
ing heavily on moments as the one considered in Hürlimann [–]. This last statement
also applies to the CM VaR bounds.

Table  contains estimations of the standardized VaR of the negative return or loss de-
fined by

St VaRε[L] =
VaRε[L] – μL

σL
. (.)

The CM StVaR bounds for the loss tolerance level ε = . (of current use in the Basel III
and Solvency II regulatory environments) are shown up to the order m = . They can be
immediately compared with the standardized maximum losses defined by

Lmax = max
≤i≤n

Li – μL

σL
, (.)



Hürlimann Journal of Inequalities and Applications  (2015) 2015:192 Page 15 of 16

as well as with the standardized VaR of a normal distribution, which is equal to ..
Quite instructive is a comparison with the standardized VaR associated to the best FFT fit
of important return distributions according to their minimum Anderson-Darling statis-
tics. The displayed standardized FFT VaR is defined by

FFT VaRε[L] =
FFTq–ε[R] – μL

σL
, (.)

where FFTq–ε[R] is the linear interpolated return quantile defined by

FFTq–ε[R] = FFTq–ε– [R] –
(
ε – ε–) · FFTq–ε– [R] – FFTq–ε+ [R]

ε+ – ε– , (.)

where FFTq–ε– [R], FFTq–ε+ [R] are the two estimated FFT quantiles of the return just
above and below the  – ε = . quantile, with  – ε– ≥ . ≥  – ε+. The fitted re-
turn distributions are the variance-gamma (VG) and the normal variance-gamma (NVG)
(see Hürlimann []), the truncated Lévy flight (TLF) and its bilateral gamma special case
(TLF-BG) (see Hürlimann []), and the normal tempered stable distribution (NTS) and
its normal inverse Gaussian (NIG) special case (see Hürlimann []). These return distri-
butions reveal the possible range of variation of VaR given the first four sample moments.
The maximum FFT VaR associated to these return distributions can be either below or
above the CM VaR bound of order m = , which takes into account the first  sample
moments. Since the CM VaR bounds lie on the safe side, there is no doubt that the use of
the CM VaR bounds is herewith justified. Further research on them should be encouraged.
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