General L_{p}-mixed-brightness integrals

Li Yan and Weidong Wang

Correspondence:
wangwd722@163.com Department of Mathematics, China Three Gorges University, Yichang, 443002, China

Abstract

The notion of mixed-brightness integrals was introduced by Li and Zhu. In this paper, motivated by the notion of general L_{p}-projection bodies, introduced by Haberl and Schuster, we define general L_{p}-mixed-brightness integrals and determine their extremal values, as well as several other inequalities for them.

MSC: 52A20; 52A40 Keywords: mixed-brightness integrals; general L_{p}-mixed-brightness integrals; general L_{p}-projection body

1 Introduction

Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean space \mathbb{R}^{n}. For the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies in \mathbb{R}^{n}, we write \mathcal{K}_{o}^{n} and $\mathcal{K}_{o s}^{n}$, respectively. Let \mathcal{S}_{o}^{n} denote the set of star bodies (about the origin) in \mathbb{R}^{n} and let S^{n-1} denote the unit sphere in \mathbb{R}^{n}. By $V(K)$ we denote the n-dimensional volume of a body K and for the standard unit ball B in \mathbb{R}^{n}, we write ω_{n} for its volume.

If $K \in \mathcal{K}^{n}$, then its support function, $h_{K}=h(K, \cdot): \mathbb{R}^{n} \rightarrow(-\infty, \infty)$, is defined by [1, 2]

$$
h(K, x)=\max \{x \cdot y: y \in K\}, \quad x \in \mathbb{R}^{n},
$$

where $x \cdot y$ denotes the standard inner product of x and y.
Projection bodies of convex bodies were introduced at the turn of the previous century by Minkowski [1]. For $K \in \mathcal{K}^{n}$, the projection body, $П К$, of K is the origin-symmetric convex body, defined by

$$
h(\Pi K, u)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, v)
$$

for all $u \in S^{n-1}$. Here $S(K, \cdot)$ denotes the surface area measure of K.
Using the classical notion of projection bodies, Li and Zhu [3] recently introduced the mixed-brightness integral: For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, the mixed-brightness integral, $D\left(K_{1}, \ldots\right.$, K_{n}), is defined by

$$
\begin{equation*}
D\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right) d S(u), \tag{1.1}
\end{equation*}
$$

where $\delta(K, u)=\frac{1}{2} h(\Pi К, u)$ is the half brightness of $K \in \mathcal{K}^{n}$ in the direction u. Convex bodies K_{1}, \ldots, K_{n} are said to have similar brightness if there exist constants $\lambda_{1}, \ldots, \lambda_{n}>0$ such that $\lambda_{1} \delta\left(K_{1}, u\right)=\lambda_{2} \delta\left(K_{2}, u\right)=\cdots=\lambda_{n} \delta\left(K_{n}, u\right)$ for all $u \in S^{n-1}$.
Further, Li and Zhu [3] established the following Fenchel-Aleksandrov type inequality for mixed-brightness integrals.

Theorem 1.A If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $1<m \leq n$, then

$$
\begin{equation*}
D\left(K_{1}, \ldots, K_{n}\right)^{m} \leq \prod_{i=0}^{m-1} D\left(K_{1}, \ldots, K_{n-m}, K_{n-i}, \ldots, K_{n-i}\right) \tag{1.2}
\end{equation*}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness.
More recently, Zhou et al. [4] obtained Brunn-Minkowski type inequalities for mixedbrightness integrals.
The notion of L_{p}-projection bodies was introduced by Lutwak et al. [5]. For each $K \in$ \mathcal{K}_{o}^{n} and $p \geq 1$, the L_{p}-projection body, $\Pi_{p} K$, is the origin-symmetric convex body whose support function is defined by

$$
\begin{equation*}
h_{\Pi_{p} K}^{p}(u)=\alpha_{n, p} \int_{S^{n-1}}|u, v|^{p} d S_{p}(K, v) \tag{1.3}
\end{equation*}
$$

for all $u \in S^{n-1}$, where $\alpha_{n, p}=1 / n \omega_{n} c_{n-2, p}$ with $c_{n, p}=\omega_{n+p} / \omega_{2} \omega_{n} \omega_{p-1}$, and $S_{p}(K, \cdot)$ is the $L_{p^{-}}$ surface measure of K. The normalization in definition (1.3) is chosen such that $\Pi_{p} B=B$.

As part of the tremendous progress in the theory of Minkowski valuations (see [6-14]), Ludwig [15] discovered more general L_{p}-projection bodies $\Pi_{p}^{\tau} K \in \mathcal{K}_{o}^{n}$, which can be defined using the function $\varphi_{\tau}: \mathbb{R} \rightarrow[0, \infty)$ given by

$$
\varphi_{\tau}(t)=|t|+\tau t,
$$

where $\tau \in[-1,1]$. Now for $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, let $\Pi_{p}^{\tau} K \in \mathcal{K}_{o}^{n}$ with support function

$$
\begin{equation*}
h_{\Pi_{p}^{\tau} K}^{p}(u)=\alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p}(K, v) \tag{1.4}
\end{equation*}
$$

where

$$
\alpha_{n, p}(\tau)=\frac{\alpha_{n, p}}{(1+\tau)^{p}+(1-\tau)^{p}} .
$$

The normalization is again chosen such that $\Pi_{p}^{\tau} B=B$ for every $\tau \in[-1,1]$. Obviously, if $\tau=0$, then $\Pi_{p}^{\tau} K=\Pi_{p} K$.
For general L_{p}-projection bodies, Haberl and Schuster [16] proved the general L_{p}-Petty projection inequality and determined the extremal values of volume for polars of general L_{p}-projection bodies. Wang and Wan [17] investigated Shephard type problems for general L_{p}-projection bodies. Wang and Feng [18] established general L_{p}-Petty affine projection inequality. These investigations were the starting point of a new and rapidly evolving asymmetric L_{p}-Brunn-Minkowski theory (see [13-32]).

In this article, using the notion of general L_{p}-projection bodies, we define general $L_{p^{-}}$-mixed-brightness integrals as follows: For $K_{1}, \ldots, K_{n} \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, the general
L_{p}-mixed-brightness integral, $D_{p}^{(\tau)}\left(K_{1}, \ldots, K_{n}\right)$, of K_{1}, \ldots, K_{n} is defined by

$$
\begin{equation*}
D_{p}^{(\tau)}\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \delta_{p}^{(\tau)}\left(K_{1}, u\right) \cdots \delta_{p}^{(\tau)}\left(K_{n}, u\right) d S(u), \tag{1.5}
\end{equation*}
$$

where $\delta_{p}^{(\tau)}(K, u)=\frac{1}{2} h\left(\Pi_{p}^{\tau} K, u\right)$ denotes the half general L_{p}-brightness of $K \in \mathcal{K}_{o}^{n}$ in the direction u. Convex bodies K_{1}, \ldots, K_{n} are said to have similar general L_{p}-brightness if there exist constants $\lambda_{1}, \ldots, \lambda_{n}>0$ such that, for all $u \in S^{n-1}$,

$$
\lambda_{1} \delta_{p}^{(\tau)}\left(K_{1}, u\right)=\lambda_{2} \delta_{p}^{(\tau)}\left(K_{2}, u\right)=\cdots=\lambda_{n} \delta_{p}^{(\tau)}\left(K_{n}, u\right)
$$

Remark 1.1 For $\tau=0$ in (1.5), we write $D_{p}^{(\tau)}\left(K_{1}, \ldots, K_{n}\right)=D_{p}\left(K_{1}, \ldots, K_{n}\right)$ and $\delta_{p}^{(\tau)}(K, u)=$ $\delta_{p}(K, u)$ for all $u \in S^{n-1}$. Then

$$
\begin{equation*}
D_{p}\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \delta_{p}\left(K_{1}, u\right) \cdots \delta_{p}\left(K_{n}, u\right) d S(u), \tag{1.6}
\end{equation*}
$$

where $\delta_{p}(K, u)=\frac{1}{2} h\left(\Pi_{p} K, u\right)$. Here $D_{p}\left(K_{1}, \ldots, K_{n}\right)$ is called the L_{p}-mixed-brightness integral of $K_{1}, \ldots, K_{n} \in \mathcal{K}_{o}^{n}$. Obviously, for $p=1$, (1.6) is just the mixed-brightness integral from (1.1).

Let $\underbrace{K_{1}=\cdots=K_{n-i}}_{n-i}=K$ and $\underbrace{K_{n-i+1}=\cdots=K_{n}}_{i}=L(i=0,1, \ldots, n)$ in (1.5), we denote $D_{p, i}^{\tau}(K, L)=D_{p}^{(\tau)}(\underbrace{K, \ldots, K}_{n-i}, \underbrace{L, \ldots, L}_{i})$. More general, if i is any real, we define for $K, L \in \mathcal{K}_{o}^{n}$, $p \geq 1$, and $\tau \in[-1,1]$, the general L_{p}-mixed-brightness integral, $D_{p, i}^{\tau}(K, L)$, of K and L by

$$
\begin{equation*}
D_{p, i}^{(\tau)}(K, L)=\frac{1}{n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n-i} \delta_{p}^{(\tau)}(L, u)^{i} d S(u) \tag{1.7}
\end{equation*}
$$

For $L=B$ in (1.7), we write $D_{p, i}^{(\tau)}(K, B)=\frac{1}{2^{i}} D_{p, i}^{(\tau)}(K)$ and notice that $\delta_{p}^{(\tau)}(B, u)=\frac{1}{2} h\left(\Pi_{p}^{\tau} B, u\right)=$ $\frac{1}{2}$ for all $u \in S^{n-1}$, which together with (1.7) yields

$$
\begin{equation*}
D_{p, i}^{(\tau)}(K)=\frac{1}{2^{i} \cdot n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n-i} d S(u), \tag{1.8}
\end{equation*}
$$

where $D_{p, i}^{(\tau)}(K)$ is called the i th general L_{p}-mixed-brightness integral of K. If $\tau=0$, then $D_{p, i}^{(\tau)}(K)=D_{p, i}(K)$. For $\tau= \pm 1$, we write $D_{p, i}^{(\tau)}(K)=D_{p, i}^{ \pm}(K)$.

For $L=K$ in (1.7), write $D_{p, i}^{(\tau)}(K, K)=D_{p}^{(\tau)}(K)$, which is called the general L_{p}-brightness integral of K. Clearly,

$$
\begin{equation*}
D_{p}^{(\tau)}(K)=\frac{1}{n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n} d S(u) . \tag{1.9}
\end{equation*}
$$

Obviously, by (1.5), (1.7), (1.8), and (1.9), we have

$$
\begin{align*}
& D_{p}^{(\tau)}(K, \ldots, K)=D_{p}^{(\tau)}(K) ; \tag{1.10}\\
& D_{p, 0}^{(\tau)}(K)=D_{p}^{(\tau)}(K) ; \\
& D_{p, 0}^{(\tau)}(K, L)=D_{p}^{(\tau)}(K), \quad D_{p, n}^{(\tau)}(K, L)=D_{p}^{(\tau)}(L) . \tag{1.11}
\end{align*}
$$

In this paper, we establish several inequalities for general L_{p}-mixed-brightness integrals. First, we determine the extremal values of general L_{p}-mixed-brightness integrals.

Theorem 1.1 If $K \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\tau \in[-1,1]$, then

$$
\begin{equation*}
D_{p, 2 n}(K) \leq D_{p, 2 n}^{(\tau)}(K) \leq D_{p, 2 n}^{ \pm}(K) \tag{1.12}
\end{equation*}
$$

IfK is not origin-symmetric and p is not an odd integer, there is equality in the left inequality if and only if $\tau=0$ and equality in the right inequality if and only if $\tau= \pm 1$.

Next, we obtain a Brunn-Minkowski type inequality for general L_{p}-mixed-brightness integrals.

Theorem 1.2 If $K, L \in \mathcal{K}_{o s}^{n}, p \geq 1, \tau \in[-1,1]$, and $i \in \mathbb{R}$, and such that $i \neq n$, then for $i<$ $n-p$,

$$
\begin{equation*}
D_{p, i}^{(\tau)}\left(\lambda \circ K \oplus_{p} \mu \circ L\right)^{\frac{p}{n-i}} \leq \lambda D_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}+\mu D_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}} . \tag{1.13}
\end{equation*}
$$

For $n-p<i<n$ or $i>n$, we have

$$
\begin{equation*}
D_{p, i}^{(\tau)}\left(\lambda \circ K \oplus_{p} \mu \circ L\right)^{\frac{p}{n-i}} \geq \lambda D_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}+\mu D_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}} \tag{1.14}
\end{equation*}
$$

In each case, equality holds if and only if K and L have similar general L_{p}-brightness. For $i=n-p$, equality always holds in (1.13) or (1.14).

Here, $\lambda \circ K \oplus_{p} \mu \circ L$ denotes the L_{p}-Blaschke combination of K and L.
Next, we extend inequality (1.2) to general L_{p}-mixed-brightness integrals.

Theorem 1.3 If $K_{1}, \ldots, K_{n} \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, and $1<m \leq n$, then

$$
\begin{equation*}
D_{p}^{(\tau)}\left(K_{1}, \ldots, K_{n}\right)^{m} \leq \prod_{i=1}^{m} D_{p}^{(\tau)}(K_{1}, \ldots, K_{n-m}, \underbrace{K_{n-i+1}, \ldots, K_{n-i+1}}_{m}), \tag{1.15}
\end{equation*}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar general L_{p}-brightness.

Taking $m=n$ in Theorem 1.3 and using (1.10), we obtain the following corollary.

Corollary 1.1 If $K_{1}, \ldots, K_{n} \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\tau \in[-1,1]$, then

$$
D_{p}^{(\tau)}\left(K_{1}, \ldots, K_{n}\right)^{n} \leq D_{p}^{(\tau)}\left(K_{1}\right) \cdots D_{p}^{(\tau)}\left(K_{n}\right)
$$

with equality if and only if $K_{1}, K_{2}, \ldots, K_{n}$ are all of similar general L_{p}-brightness.

Moreover, we also establish the following cyclic inequality for general L_{p}-mixedbrightness integrals.

Theorem 1.4 If $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, and $i, j, k \in \mathbb{R}$ such that $i<j<k$, then

$$
\begin{equation*}
D_{p, j}^{(\tau)}(K, L)^{k-i} \leq D_{p, i}^{(\tau)}(K, L)^{k-j} D_{p, k}^{(\tau)}(K, L)^{j-i}, \tag{1.16}
\end{equation*}
$$

with equality if and only if K and L have similar general L_{p}-brightness.

Taking $i=0, k=n$ in Theorem 1.4 and using (1.11), we obtain the following result.

Corollary 1.2 If $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\tau \in[-1,1]$, then for $0<j<n$,

$$
\begin{equation*}
D_{p, j}^{(\tau)}(K, L)^{n} \leq D_{p}^{(\tau)}(K)^{n-j} D_{p}^{(\tau)}(L)^{j} \tag{1.17}
\end{equation*}
$$

with equality if and only if K and L have similar general L_{p}-brightness. For $j=0$ or $j=n$, equality always holds in (1.17).

Let $L=B$ in Theorem 1.4, we also have the following result.

Corollary 1.3 If $K \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, and $i, j, k \in \mathbb{R}$ such that $i<j<k$, then

$$
D_{p, j}^{(\tau)}(K)^{k-i} \leq D_{p, i}^{(\tau)}(K)^{k-j} D_{p, k}^{(\tau)}(K)^{j-i},
$$

with equality if and only if K and L have similar general L_{p}-brightness, i.e., K has constant general L_{p}-brightness.

2 Notation and background material

2.1 Radial function and polars of convex bodies

If K is a compact star-shaped set (about the origin) in \mathbb{R}^{n}, then its radial function, $\rho_{K}=$ $\rho(K, \cdot): \mathbb{R}^{n} \rightarrow[0, \infty)$, is defined by (see [1])

$$
\begin{equation*}
\rho(K, x)=\max \{\lambda \geq 0: \lambda x \in K\}, \quad x \in \mathbb{R}^{n} . \tag{2.1}
\end{equation*}
$$

If ρ_{K} is positive and continuous, K will be called a star body (with respect to the origin). Two star bodies K and L are said to be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$.
If E is a nonempty set in \mathbb{R}^{n}, then the polar set of E, E^{*}, is defined by (see [1])

$$
E^{*}=\{x: x \cdot y \leq 1, y \in E\}, \quad x \in \mathbb{R}^{n} .
$$

From this, we see that (see [1]) if $K \in \mathcal{K}_{o}^{n}$, then $\left(K^{*}\right)^{*}=K$ and

$$
\begin{equation*}
h_{K^{*}}=\frac{1}{\rho_{K}}, \quad \rho_{K^{*}}=\frac{1}{h_{K}} . \tag{2.2}
\end{equation*}
$$

Lutwak in [33] defined dual quermassintegrals as follows. For $K \in S_{o}^{n}$ and any real i, the dual quermassintegral, $\widetilde{W}_{i}(K)$, of K is defined by

$$
\begin{equation*}
\widetilde{W}_{i}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i} d u \tag{2.3}
\end{equation*}
$$

Obviously, (2.3) implies that

$$
\begin{equation*}
V(K)=\widetilde{W}_{0}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n} d u \tag{2.4}
\end{equation*}
$$

2.2 L_{p}-combinations of convex and star bodies

For $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\lambda, \mu \geq 0$ (not both zero), the Firey L_{p}-combination, $\lambda \cdot K+_{p} \mu \cdot L \in$ \mathcal{K}_{o}^{n}, of K and L is defined by (see $[34,35]$)

$$
\begin{equation*}
h\left(\lambda \cdot K+{ }_{p} \mu \cdot L, \cdot\right)^{p}=\lambda h(K, \cdot)^{p}+\mu h(L, \cdot)^{p}, \tag{2.5}
\end{equation*}
$$

where the symbol \cdot in $\lambda \cdot K$ denotes the Firey scalar multiplication. Note that $\lambda \cdot K=\lambda^{1 / p} K$.
For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$, and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-harmonic radial combination, $\lambda \star K{ }_{-p} \mu \star L \in \mathcal{S}_{o}^{n}$, of K and L is defined by (see [36])

$$
\begin{equation*}
\rho\left(\lambda \star K+_{-p} \mu \star L, \cdot\right)^{-p}=\lambda \rho(K, \cdot)^{-p}+\mu \rho(L, \cdot)^{-p}, \tag{2.6}
\end{equation*}
$$

where $\lambda \star K=\lambda^{-1 / p} K$.
From (2.2), (2.5), and (2.6), we easily find that if $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\lambda, \mu \geq 0$ (not both zero), then

$$
\begin{equation*}
\left(\lambda \cdot K+_{p} \mu \cdot L\right)^{*}=\lambda \star K^{*}+_{-p} \mu \star L^{*} . \tag{2.7}
\end{equation*}
$$

In [37] Wang and Leng established the following Brunn-Minkowski type inequality for dual quermassintegrals with respect to an L_{p}-harmonic radial combination of star bodies.

Theorem 2.A If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1, i \in \mathbb{R}$ and such that $i \neq n$, and $\lambda, \mu \geq 0$ (not both zero), then for $i<n$ or $n<i<n+p$,

$$
\begin{equation*}
\widetilde{W}_{i}\left(\lambda \star K{ }_{{ }_{-} p} \mu \star L\right)^{-\frac{p}{n-i}} \geq \lambda \widetilde{W}_{i}(K)^{-\frac{p}{n-i}}+\mu \widetilde{W}_{i}(L)^{-\frac{p}{n-i}} ; \tag{2.8}
\end{equation*}
$$

for $i>n+p$,

$$
\begin{equation*}
\widetilde{W}_{i}\left(\lambda \star K+_{-p} \mu \star L\right)^{-\frac{p}{n-i}} \leq \lambda \widetilde{W}_{i}(K)^{-\frac{p}{n-i}}+\mu \widetilde{W}_{i}(L)^{-\frac{p}{n-i}} . \tag{2.9}
\end{equation*}
$$

In each inequality, equality holds if and only if K and L are dilates. For $i=n+p$, equality always holds in (2.8) and (2.9).

The L_{p}-Blaschke combination of origin-symmetric convex bodies was introduced by Lutwak [35]. For $K, L \in \mathcal{K}_{o s}^{n}, p \geq 1$, and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-Blaschke combination, $\lambda \circ K \oplus_{p} \mu \circ L \in \mathcal{K}_{o s}^{n}$, of K and L is defined by

$$
\begin{equation*}
d S_{p}\left(\lambda \circ K \oplus_{p} \mu \circ L, \cdot\right)=\lambda d S_{p}(K, \cdot)+\mu d S_{p}(L, \cdot), \tag{2.10}
\end{equation*}
$$

where $\lambda \circ K=\lambda^{1 /(n-p)} K$. For more information on these and other binary operations between convex and star bodies, see [38-42].

2.3 General L_{p}-projection bodies

For $p \geq 1$, Ludwig [15] discovered the asymmetric L_{p}-projection body, $\Pi_{p}^{+} K$, of $K \in \mathcal{K}_{o}^{n}$, whose support function is defined by

$$
h_{\Pi_{p}^{+} K}^{p}(u)=\alpha_{n, p} \int_{S^{n-1}}(u \cdot v)_{+}^{p} d S_{p}(K, v)
$$

where $(u \cdot v)_{+}=\max \{u \cdot v, 0\}$. In [16], Haberl and Schuster also defined

$$
\Pi_{p}^{-} K=\Pi_{p}^{+}(-K) .
$$

Using definition (1.4) of general L_{p}-projection bodies, Haberl and Schuster [16] showed that, for $K \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\tau \in[-1,1]$,

$$
\Pi_{p}^{\tau} K=f_{1}(\tau) \cdot \Pi_{p}^{+} K+{ }_{p} f_{2}(\tau) \cdot \Pi_{p}^{-} K,
$$

where

$$
f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \quad f_{2}(\tau)=\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}} .
$$

Moreover, they [16] determined the following extremal values of the volume for polars of general L_{p}-projection bodies.

Theorem 2.B If $K \in \mathcal{K}_{o}^{n}, p \geq 1$, and $\tau \in[-1,1]$, then

$$
\begin{equation*}
V\left(\Pi_{p}^{*} K\right) \leq V\left(\Pi_{p}^{\tau, *} K\right) \leq V\left(\Pi_{p}^{ \pm, *} K\right) \tag{2.11}
\end{equation*}
$$

If K is not origin-symmetric and p is not an odd integer, there is equality in the left inequality if and only if $\tau=0$ and equality in the right inequality if and only if $\tau= \pm 1$.

Here, $\Pi_{p}^{\tau, *} K$ denotes the polar of the general L_{p}-projection body $\Pi_{p}^{\tau} K$.

3 Proofs of the main theorems

In this section, we will prove Theorems 1.1-1.3.
To complete the proofs of Theorems 1.1-1.2, we require the following a lemma.

Lemma 3.1 If $K \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$, and i is any real, then

$$
\begin{equation*}
D_{p, i}^{(\tau)}(K)=\frac{1}{2^{n}} \widetilde{W}_{2 n-i}\left(\Pi_{p}^{\tau, *} K\right) \tag{3.1}
\end{equation*}
$$

Proof By (1.8), (2.2), and (2.3), we have

$$
\begin{aligned}
D_{p, i}^{(\tau)}(K) & =\frac{1}{2^{i} \cdot n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n-i} d S(u) \\
& =\frac{1}{2^{n} \cdot n} \int_{S^{n-1}} h\left(\Pi_{p}^{\tau} K, u\right)^{n-i} d S(u)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{n} \cdot n} \int_{S^{n-1}} \rho\left(\Pi_{p}^{\tau, *} K, u\right)^{i-n} d S(u) \\
& =\frac{1}{2^{n}} \widetilde{W}_{2 n-i}\left(\Pi_{p}^{\tau, *} K\right) .
\end{aligned}
$$

Proof of Theorem 1.1 Taking $i=2 n$ in (3.1) and using (2.4), we obtain

$$
\begin{equation*}
D_{p, 2 n}^{(\tau)}(K)=\frac{1}{2^{n}} V\left(\Pi_{p}^{\tau, *} K\right) \tag{3.2}
\end{equation*}
$$

Therefore, by inequality (2.11) together with (3.2), we immediately obtain

$$
D_{p, 2 n}(K) \leq D_{p, 2 n}^{(\tau)}(K) \leq D_{p, 2 n}^{ \pm}(K)
$$

This is inequality (1.12).
According to the equality conditions of inequality (2.11), we know that if K is not originsymmetric and p is not an odd integer, there is equality in the left inequality of (1.12) if and only if $\tau=0$ and equality in the right inequality of (1.12) if and only if $\tau= \pm 1$.

Proof of Theorem 1.2 By (1.4) and (2.10), we have, for all $u \in S^{n-1}$,

$$
h\left(\Pi_{p}^{\tau}\left(\lambda \circ K \oplus_{p} \mu \circ L\right), u\right)^{p}=\lambda h\left(\Pi_{p}^{\tau} K, u\right)^{p}+\mu h\left(\Pi_{p}^{\tau} L, u\right)^{p},
$$

i.e.,

$$
\Pi_{p}^{\tau}\left(\lambda \circ K \oplus_{p} \mu \circ L\right)=\lambda \cdot \Pi_{p}^{\tau} K+_{p} \mu \cdot \Pi_{p}^{\tau} L .
$$

This together with (2.7), yields

$$
\begin{equation*}
\Pi_{p}^{\tau, *}\left(\lambda \circ K \oplus_{p} \mu \circ L\right)=\left(\lambda \cdot \Pi_{p}^{\tau} K+_{p} \mu \cdot \Pi_{p}^{\tau} L\right)^{*}=\lambda \star \Pi_{p}^{\tau, *} K+_{-p} \mu \star \Pi_{p}^{\tau, *} L . \tag{3.3}
\end{equation*}
$$

Hence, if $i<n-p$, then $2 n-i>n+p$. From this, (3.1), (3.3), and inequality (2.9), we obtain

$$
\begin{aligned}
& \left(2^{n} D_{p, i}^{(\tau)}\left(\lambda \circ K \oplus_{p} \mu \circ L\right)\right)^{\frac{p}{n-i}} \\
& \quad=\widetilde{W}_{2 n-i}\left(\Pi_{p}^{\tau, *}\left(\lambda \circ K \oplus_{p} \mu \circ L\right)\right)^{-\frac{p}{n-(2 n-i)}} \\
& \quad=\widetilde{W}_{2 n-i}\left(\lambda \star \Pi_{p}^{\tau, *} K+_{-p} \mu \star \Pi_{p}^{\tau, *} L\right)^{-\frac{p}{n-(2 n-i)}} \\
& \quad \leq \lambda \widetilde{W}_{2 n-i}\left(\Pi_{p}^{\tau, *} K\right)^{-\frac{p}{n-(2 n-i)}}+\mu \widetilde{W}_{2 n-i}\left(\Pi_{p}^{\tau, *} L\right)^{-\frac{p}{n-(2 n-i)}} \\
& \quad=\lambda\left(2^{n} D_{p, i}^{(\tau)}(K)\right)^{\frac{p}{n-i}}+\mu\left(2^{n} D_{p, i}^{(\tau)}(L)\right)^{\frac{p}{n-i}} .
\end{aligned}
$$

This yields inequality (1.13).
From the equality conditions of inequality (2.9), we see that equality holds in (1.13) if and only if $\Pi_{p}^{\tau, *} K$ and $\Pi_{p}^{\tau, *} L$ are dilates, i.e., $\Pi_{p}^{\tau} K$ and $\Pi_{p}^{\tau} L$ are dilates. This means equality holds in (1.13) if and only if K and L have similar general L_{p}-brightness.

Similarly, if $n-p<i<n$ or $i>n$, then $2 n-i<n$ or $n<2 n-i<n+p$. Thus, using (3.1), (3.3), and inequality (2.8), we obtain inequality (1.14).

If $i=n-p$, then $2 n-i=n+p$. This combined with Theorem 2.A, shows that equality always holds in (1.13) or (1.14).

The proof of Theorem 1.3 requires the following inequality [3].
Lemma 3.2 If $f_{0}, f_{1}, \ldots, f_{m}$ are (strictly) positive continuous functions defined on S^{n-1} and $\lambda_{1}, \ldots, \lambda_{m}$ are positive constants the sum of whose reciprocals is unity, then

$$
\begin{equation*}
\int_{S^{n-1}} f_{0}(u) \cdots f_{m}(u) d S(u) \leq \prod_{i=1}^{m}\left(\int_{S^{n-1}} f_{0}(u) f_{i}^{\lambda_{i}}(u) d S(u)\right)^{\frac{1}{\lambda_{i}}} \tag{3.4}
\end{equation*}
$$

with equality if and only if there exist positive constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ such that $\alpha_{1} f_{1}^{\lambda_{1}}(u)=$ $\cdots=\alpha_{m} f_{m}^{\lambda_{m}}(u)$ for all $u \in S^{n-1}$.

Proof of Theorem 1.3 For $K_{1}, \ldots, K_{n} \in \mathcal{K}_{o}^{n}$, take $\lambda_{i}=m$ in (3.4) $(1 \leq i \leq n)$, and

$$
\begin{aligned}
& f_{0}=\delta_{p}^{(\tau)}\left(K_{1}, u\right) \cdots \delta_{p}^{(\tau)}\left(K_{n-m}, u\right) \quad\left(f_{0}=1 \text { if } m=n\right), \\
& f_{i}=\delta_{p}^{(\tau)}\left(K_{n-i+1}, u\right) \quad(1 \leq i \leq m) .
\end{aligned}
$$

Then we have

$$
\begin{align*}
\int_{S^{n-1}} & \delta_{p}^{(\tau)}\left(K_{1}, u\right) \cdots \delta_{p}^{(\tau)}\left(K_{n}, u\right) d S(u) \\
\leq & \prod_{i=1}^{m}\left(\int_{S^{n-1}} \delta_{p}^{(\tau)}\left(K_{1}, u\right) \cdots \delta_{p}^{(\tau)}\left(K_{n-m}, u\right) \delta_{p}^{(\tau)}\left(K_{n-i+1}, u\right)^{m} d S(u)\right)^{\frac{1}{m}} \tag{3.5}
\end{align*}
$$

i.e.

$$
D_{p}^{(\tau)}\left(K_{1}, \ldots, K_{n}\right)^{m} \leq \prod_{i=1}^{m} D_{p}^{(\tau)}(K_{1}, \ldots, K_{n-m}, \underbrace{K_{n-i+1}, \ldots, K_{n-i+1}}) .
$$

According to the equality conditions of Lemma 3.2, we see that equality holds in (3.5) if and only if there exist positive constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ such that

$$
\lambda_{1} \delta_{p}^{(\tau)}\left(K_{n-m+1}, u\right)^{m}=\lambda_{2} \delta_{p}^{(\tau)}\left(K_{n-m+2}, u\right)^{m}=\cdots=\lambda_{m} \delta_{p}^{(\tau)}\left(K_{n}, u\right)^{m}
$$

for all $u \in S^{n-1}$. Thus equality holds in (1.15) if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar general L_{p}-brightness.

Proof of Theorem 1.4 From (1.7) and the Hölder inequality, we obtain

$$
\begin{aligned}
D_{p, i}^{(\tau)} & (K, L)^{\frac{k-j}{k-i}} D_{p, k}^{(\tau)}(K, L)^{\frac{j-i}{k-i}} \\
= & {\left[\frac{1}{n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n-i} \delta_{p}^{(\tau)}(L, u)^{i} d S(u)\right]^{\frac{k-j}{k-i}} } \\
& \times\left[\frac{1}{n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n-k} \delta_{p}^{(\tau)}(L, u)^{k} d S(u)\right]^{\frac{j-i}{k-i}}
\end{aligned}
$$

$$
\begin{aligned}
&= {\left[\frac{1}{n} \int_{S^{n-1}}\left[\delta_{p}^{(\tau)}(K, u)^{\frac{(n-i)(k-i)}{(k-i)}} \delta_{p}^{(\tau)}(L, u)^{\frac{i(k-i)}{k-i}}\right]^{\frac{k-i}{k-j}} d S(u)\right]^{\frac{k-j}{k-i}} } \\
& \times\left[\frac { 1 } { n } \int _ { S ^ { n - 1 } } \left[\delta_{p}^{(\tau)}(K, u)^{\frac{(n-k)(j-i)}{k-i}} \delta_{p}^{(\tau)}(L, u)^{\left.\left.\frac{k(j-i)}{k-i}\right]^{\frac{k-i}{-i}} d S(u)\right]^{\frac{j-i}{k-i}}}\right.\right. \\
& \geq \frac{1}{n} \int_{S^{n-1}} \delta_{p}^{(\tau)}(K, u)^{n-i} \delta_{p}^{(\tau)}(L, u)^{j} d S(u) \\
&=D_{p, j}^{(\tau)}(K, L) .
\end{aligned}
$$

This gives the desired inequality (1.16). According to the equality conditions of the Hölder inequality, we know that equality holds in (1.16) if and only if there exists a constant $\lambda>0$ such that

$$
\left[\delta_{p}^{(\tau)}(K, u)^{\frac{(n-i)(k-j)}{(k-i)}} \delta_{p}^{(\tau)}(L, u)^{\frac{i(k-j)}{k-i}}\right]^{\frac{k-i}{k-j}}=\lambda\left[\delta_{p}^{(\tau)}(K, u)^{\frac{(n-k)(j-i)}{k-i}} \delta_{p}^{(\tau)}(L, u)^{\frac{k(j-i)}{k-i}}\right]^{\frac{k-i}{j-i}},
$$

i.e. $\delta_{p}^{(\tau)}(K, u)=\lambda \delta_{p}^{(\tau)}(L, u)$ for all $u \in S^{n-1}$. Thus equality holds in (1.16) if and only if K and L have similar general L_{p}-brightness.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to sincerely thank the referees for all valuable and helpful comments and suggestions which made the paper more accurate and readable. Research is supported in part by the Natural Science Foundation of China (Grant No. 11371224) and Foundation of Degree Dissertation of Master of China Three Gorges University (Grant No. 2015PV070),

Received: 31 December 2014 Accepted: 21 May 2015 Published online: 12 June 2015

References

1. Gardner, RJ: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)
2. Schneider, R: Convex Bodies: The Brunn-Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)
3. Li, N, Zhu, BC: Mixed brightness-integrals of convex bodies. J. Korean Math. Soc. 47(5), 935-945 (2010)
4. Zhou, YP, Wang, WD, Feng, YB: The Brunn-Minkowski type inequalities for mixed brightness-integrals. Wuhan Univ. J. Nat. Sci. 19(4), 277-282 (2014)
5. Lutwak, E, Yang, D, Zhang, GY: L_{p} affine isoperimetric inequalities. J. Differ. Geom. 56, 111-132 (2000)
6. Abardia, J, Bernig, A: Projection bodies in complex vector spaces. Adv. Math. 227, 830-846 (2011)
7. Abardia, J: Difference bodies in complex vector spaces. J. Funct. Anal. 263, 3588-3603 (2012)
8. Abardia, J: Minkowski valuations in a 2-dimensional complex vector space. Int. Math. Res. Not. 2015, 1247-1262 (2015)
9. Haberl, C: Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. 14, 1565-1597 (2012)
10. Parapatits, L, Schuster, FE: The Steiner formula for Minkowski valuations. Adv. Math. 230, 978-994 (2012)
11. Parapatits, L, Wannerer, T: On the inverse Klein map. Duke Math. J. 162, 1895-1922 (2013)
12. Schuster, FE: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010)
13. Schuster, FE, Wannerer, T: Even Minkowski valuations. Am. J. Math. (in press)
14. Schuster, FE, Weberndorfer, M: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263-283 (2012)
15. Ludwig, M: Minkowski valuations. Trans. Am. Math. Soc. 357, 4191-4213 (2005)
16. Haberl, C, Schuster, F: General L_{p}-affine isoperimetric inequalities. J. Differ. Geom. 83, 1-26 (2009)
17. Wang, WD, Wan, XY: Shephard type problems for general L_{p}-projection bodies. Taiwan. J. Math. 16(5), 1749-1762 (2012)
18. Wang, WD, Feng, YB: A general L_{p}-version of Petty's affine projection inequality. Taiwan. J. Math. 17(2), 517-528 (2013)
19. Feng, YB, Wang, WD: General L_{p}-harmonic Blaschke bodies. Proc. Indian Acad. Sci. Math. Sci. 124(1), 109-119 (2014)
20. Feng, YB, Wang, WD, Lu, FH: Some inequalities on general L_{p}-centroid bodies. Math. Inequal. Appl. 18(1), 39-49 (2015)
21. Haberl, C: L_{p}-Intersection bodies. Adv. Math. 4, 2599-2624 (2008)
22. Haberl, C, Ludwig, M: A characterization of L_{p} intersection bodies. Int. Math. Res. Not. 2006, Art ID 10548 (2006)
23. Haberl, C, Schuster, FE: Asymmetric affine L_{p} Sobolev inequalities. J. Funct. Anal. 257, 641-658 (2009)
24. Haberl, C, Schuster, FE, Xiao, J: An asymmetric affine Pólya-Szegö principle. Math. Ann. 352, 517-542 (2012)
25. Ludwig, M: Intersection bodies and valuations. Am. J. Math. 128, 1409-1428 (2006)
26. Parapatits, L: SL(n)-Covariant L_{p}-Minkowski valuations. J. Lond. Math. Soc. 89, 397-414 (2014)
27. Parapatits, L: SL(n)-Contravariant L_{p}-Minkowski valuations. Trans. Am. Math. Soc. 366, 1195-1211 (2014)
28. Schuster, FE, Wannerer, T: GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364, 815-826 (2012)
29. Wang, WD, Li, YN: Busemann-Petty problems for general L_{p}-intersection bodies. Acta Math. Sin. Engl. Ser. 31(5), 777-786 (2015)
30. Wang, WD, Ma, TY: Asymmetric L_{p}-difference bodies. Proc. Am. Math. Soc. 142(7), 2517-2527 (2014)
31. Wannerer, T: GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655-1672 (2011)
32. Weberndorfer, M: Shadow systems of asymmetric L_{p} zonotopes. Adv. Math. 240, 613-635 (2013)
33. Lutwak, E: Dual mixed volumes. Pac. J. Math. 58, 531-538 (1975)
34. Firey, WJ: p-Means of convex bodies. Math. Scand. 10, 17-24 (1962)
35. Lutwak, E: The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131-150 (1993)
36. Lutwak, E: The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244-294 (1996)
37. Wang, WD, Leng, GS: A correction to our paper ' L_{p}-dual mixed quermassintegrals'. Indian J. Pure Appl. Math. 38(6) 609 (2007)
38. Besau, F, Schuster, FE: Binary operations in spherical convex geometry. arXiv:1407.1153
39. Gardner, RJ, Hug, D, Weil, W: Operations between sets in geometry. J. Eur. Math. Soc. 15, 2297-2352 (2013)
40. Gardner, RJ, Hug, D, Weil, W: The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities J. Differ. Geom. 97, 427-476 (2014)
41. Gardner, RJ, Parapatits, L, Schuster, FE: A characterization of Blaschke addition. Adv. Math. 254, 396-418 (2014)
42. Li, J, Yuan, S, Leng, G: Lp-Blaschke valuations. Trans. Am. Math. Soc. 367, 3161-3187 (2015)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

