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Abstract

Consider an insurance company which is allowed to invest into a riskless and a risky
asset under a constant mix strategy. The total claim amount is modeled by a
non-standard renewal risk model with dependence between the claim size and the
inter-arrival time introduced by a Farlie-Gumbel-Morgenstern copula. The price of the
risky asset is described by an exponential Lévy process. Based on some known results,
the uniform asymptotic estimate for ruin probability with investment strategy is
obtained with regularly varying tailed claims. Applying the asymptotic formula, we
provide an approximation of the optimal investment strategy to maximize the
expected terminal wealth subject to a risk constraint on the Value-at-Risk, which is
defined with respect to finite-time discounted net loss. A numerical example is
illustrated for the results, which demonstrates that big dependence parameter is
advantageous for the insurer. We explain the reason by some inequalities.

Keywords: dependence; optimal portfolio; Lévy process; asymptotics; Value-at-Risk
(VaR)

1 Introduction

The renewal risk model has been playing a fundamental role in classical and modern risk
theory since it was introduced by Sparre Andersen in 1957. In this framework, the suc-
cessive claims {X, k > 1} form a sequence of independent identically distributed (i.i.d.)
random variables (r.v.s), and their inter-arrival times {&,k > 1} form another sequence
of i.i.d. r.v.s, and the two sequences are mutually independent too. However, the inde-
pendence assumption between the claim size X and the inter-arrival time & is too re-
strictive and sometimes unrealistic in many kinds of insurance. Here X and & denote
the generic r.v.s of the claim sizes and inter-arrival times, respectively. In fact, for a line
of business covering damages due to earthquakes, more quantities of damages are ex-
pected with a longer period between claims, since the claim amount (or the intensity
of the catastrophe) and the time elapsed from the previous one are assumed to be pos-
itively related by the seismic gap hypothesis (see, e.g., Nikoloulopoulos and Karlis [1] and
Boudreault et al. [2]). Furthermore, the period between claims must be longer if the de-
ductible of the insured increases, since some of the small claims will not be considered.
During the last decade, initiated by Albrecher and Teugels [3], many scholars have started
to propose some non-standard renewal risk models with various dependence structures.
Among them, Albrecher and Teugels [3] considered that (X, &) follows an arbitrary de-
pendence structure based on a copula, and they derived explicit exponential estimates for
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finite- and infinite-time ruin probabilities. Cossette et al. [4] assumed a generalized Farlie-
Gumbel-Morgenstern (FGM) copula for (X, ), and they derived the Laplace transform of
the Gerber-Shiu discounted penalty function. Barges et al. [5] derived the moments of the
aggregate discounted claims with dependence introduced by a FGM copula and the count-
ing process following a Poisson process. Asimit and Badescu [6] described the dependence
structure via the conditional tail probability of X given &, and they studied the tail behav-
ior of discounted aggregate claims in the Cramér-Lundberg risk model in the presence
of a constant force of interest and heavy-tailed claim sizes. Yong and Xiang [7] obtained
an integro-differential equation for the expected discounted penalty function with a FGM
copula between X and £ and the distribution of £ being a sum of two independent expo-
nential r.v.s.

In insurance practice, the economic result of an insurance company depends not only
on insurance business, but also on how well the reserve is invested in market. The study
of insurance risk models with stochastic return on investments has attracted considerable
attention recently; see for example Yin and Wen [8] and references therein. Since many
empirical investigations have illustrated that stock price processes have sudden downward
(or upward) jumps which cannot be accounted for by a continuous exponential Brownian
motion, to replace in the classical exponential Brownian motion the Wiener process by
some general jump-diffusion or Lévy process is an important generalization. Considering
that insurers are not allowed to invest all their wealth into risky assets, a riskless investment
is usually also considered. These assumptions of investment portfolio are widely used in
modern mathematical finance and actuarial science; see Kliippelberg and Kostadinova [9],
Heyde and Wang [10], Kostadinova [11], among others.

In order to measure the integrate risk, Kostadinova [11] provided a definition of Value-
at-Risk (VaR) based on infinite-time discounted net loss. Note that this definition does not
depend on the initial capital and the time, the solution to the optimization problem there
is also independent of the time period. In reality, insurers may pay more attention to their
future finite-time risks, especially in the investment period, for example, one year, and can
rearrange the investment strategy. So, a definition of VaR based on finite-time discounted
net loss is a more realistic risk measurement.

Motivated by the considerations above, this paper uses a continuous time-dependent
renewal risk model for insurance business. The joint distribution of (X, ) is based on the
classical FGM copula, which is defined by

C(u,v) =uv+ puv(l —u)(1 -v), (1)
for every (u,v) in [0,1]2, in which p € (=1,1) is called the dependence parameter.

For the investment, we assume a market consisting of a bond with a constant interest

rate and some stock. Their respective prices follow the equations
Yo(t) =€ and Yi()=€", t>o0. 2)
The constant § > 0 is the riskless interest rate. The process {L(¢),¢ > 0} is a Lévy process.

For the risk measurement, we use a concept of VaR based on finite-time discounted

net loss, which is described as follows. Let £ > 0 be a fixed-time horizon, V;(£) be the
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maximum discounted net loss process during the investment period, and then the risk
measure VaR is defined as

VaR, (V; (8)) = inf{x € R: P(V;(2) >x) <p}, (3)

where p € (0,1) is some (typically small) probability.

The use of VaR, (V5 (t)) as a risk measure is explained by the fact that the insurer can
prevent the maximum loss from exceeding this quantity in finite-time horizon with a suf-
ficiently high probability 1 — p. It could also be understood as the minimal initial capital
required.

This paper mainly focuses on maximizing the expected terminal wealth of the insurer
under the risk constraint of VaR as defined in (3). For this goal, the distribution function
of Vi (¢) is needed. As it is hard or even impossible to obtain a closed-form expression for
this distribution (equivalently, the function of ruin probability), we are interested in an
approximation of it. So, the asymptotic estimate for the ruin probability is also discussed.

The paper is organized as follows. In Section 2 we model the integrated risk process con-
sisting of underwriting risks and investment risks. To obtain analytical investment strat-
egy, uniform asymptotic estimate for the ruin probability is given in Section 3. Section 4
characterizes the optimal investment model and the optimal strategy is provided. A nu-
merical example and the impact of dependence parameter are illustrated in Section 5. The
final Section 6 concludes the paper.

2 The integrated risk model
We first characterize the underwriting process without investment by a continuous time-
dependent renewal risk model.

The claim amounts {Xy, k > 1} during the time interval [0, ¢] form a sequence of i.i.d.
r.v.s with common distribution function F = 1 — F, the inter-claim times {&k, k > 1} form
another i.i.d. r.v.s with common distribution function G = 1 - G. The dependence structure
of (X, &) is described as in (1). The arrival times of the successive claims {t, = > ;_, &, n >
1} constitute a renewal counting process

o0
N(t) = Zl{rngt] =sup{fn>1:1,<t}, t=>0,

n=1

where I, is the indicator function.
The renewal function of the renewal counting process {N(t),t > 0} is defined as

[ee]

M=E[N®)]=> P(r,<t), t=0.

n=1

In particular, if {N(¢),t > 0} follows a Poisson distribution with intensity A > 0, then A, =
At; and if 7, is distributed with I'(2, 1), then A; = A£/2 — (1 — e 2*)/4. More explicit forms
of X, for different renewal counting processes can be found in Asmussen and Albrecher
[12]. In this paper, the renewal function A, is assumed to be differentiable and satisfy A, > 0
and A; < oo for any finite ¢£. The cumulative distribution functions and probability density
functions of the claim arrival times 7, is denoted by G,, and g,,, respectively, forn =1,2,....

Let x > 0 be the insurer’s initial capital and a deterministic bounded function ¢(¢) > 0
be the density of income payments from premium at time . Then the insurer’s surplus
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process is described as
t
Ut)=x+ / c(s)ds — S(¢),
0

where S(£) = fo:(i) X, denotes the aggregate claims by time ¢.

Now we assume that the insurer makes risk-free investment with a constant riskless in-
terest and risky investment, modeled by an exponential Lévy process, as described in (2).
Suppose (y,02,v) be the characteristic triplet of the Lévy process L(t) with characteris-
tic exponent W, i.e. E[¢X0] = ¢'¥®), s ¢ R, and ¢ > 0. Then W has the Lévy-Khintchine

representation

2
W(s) = isy — %sz + / (em -1- isxl{‘x‘fl})v(dx), seR,
R

where y € R, 0 > 0, and the Lévy measure v satisfies v(0) = 0 and f]R(ac2 A1)v(dx) < oo.

The so-called constant mix strategy is assumed, namely, at each instance of time an
initially fixed fraction 6 € [0,1] of the wealth, is invested in the risky asset and a fraction
1 -0 is invested in the riskless asset; see, e.g.,, Emmer and Kliippelberg [13], Kostadinova
[11], Kluppelberg and Kostadinova [9], and Heyde and Wang [10]. Such strategy is dynamic
in the sense that it requires a rebalancing of the portfolio at any moment of time depending
on the corresponding price changes. The fraction 6 is called the investment strategy.

For convenient to describe, denote by €(L) the solution of the differential equation

dz@t) = 2(t-)dL@),  Z(0)=1,

where L(¢) is a Lévy process. Proposition 8.21 of Cont and Tankov [14] guarantees the
existence and uniqueness of €(L).

Next we follow the method used by Kliippelberg and Kostadinova [9] to introduce the
integrated risk process (IRP). For an investment strategy 6 € [0,1], the IRP as the result of
the insurance business and the net gains of the investment is defined as the solution to the
stochastic differential equation

dUy () = c(t) dt — dS() + Uy (t=)dLp(e), >0, Uy (0) = x,
where dLy(¢) = (1 - 0)8de + 6dL(¢), L(¢) satisfies e(L(2)) = e-®.

Provided that the insurance and the investment process are independent, then, similar
to Lemma 2.2 of Kliippelberg and Kostadinova [9], we can verify that

Up(t) = exp(Lo (1)) (x + ./o c(s)exp(~Lo(s)) ds — /0 exp(—Lo(s)) dS(s)>,

where Ly satisfies exp(Ly) = e(Ly). In fact, according to Lemma 2.5 of Emmer and Kliip-
pelberg [13], the Ly(¢) is also a Lévy process with characteristic triplet (ys,07,5) given
by

o2
y9:y6+(1—9)(8+79)

+ /R(log(l +6 (e" — 1))I{|10g(1+9(ex_1))‘51} — 9x1“x|51})v(dx),
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092 =0%2,

ve(A) =v({xeR:log(1+6(e* ~1)) € A}) for any Borel set A C R.
Define the Laplace exponent of L and Ly as
o(s) = logE[e_sm)] and  ¢y(s) = log E[e‘“em],

provided that they exist. From the proof of Lemma 4.1 of Kliippelberg and Kostadinova
[9] we know ¢ (s) < oo for all 8 € (0,1) and s > 0.

Lastly, following a long tradition in insurance, the discounted net loss process is defined
as

Vo(t) =x — exp(—Lg (t)) Uy(t) = / exp(—Lg (s)) (dS(s) —c(s) ds), t>0,
0

and the ruin probability of the time-dependent renewal risk model up to a finite time ¢ is
as usual defined as

Vol ) = P( inf Us(s) <O[Us0) =), £>0.

3 Uniform asymptotic estimate for ruin probability

The non-standard renewal risk model with dependence structure and stochastic return
is also considered by Li [15] and Fu and Ng [16]. They described the price process of the
investment portfolio as an exponential Lévy process {¢“®), ¢ > 0}, and the uniform asymp-
totics for ruin probability were obtained by restricting the claim-size distribution to dif-
ferent classes. Considering that the investment strategy is embedded in this paper, we first
give the uniform asymptotic estimate for the ruin probability ¥y (x, ) when the claim-size
distribution F is regularly varying tailed, based on the fact that the corresponding stochas-
tic process Ly(t) is also a Lévy process and Corollary 2.2 of Li [15]. This estimate will be
used for providing an approximation of the optimal investment strategy in Section 4.

Definition 1 A distribution function defined on [0,00) is said to be regularly varying
tailed with tail index & > 0, denoted by F € R_,, if F(x) > 0 holds for all x > 0 and

holds for all y > 0.
If F € JR_,, then there is some slowly varying function H(x) such that
F(x) ~xH(x), x— oo.
Note that for two positive functions a(x) and b(x), the symbol a(x) ~ b(x) means that
limy_, o a(x)/b(x) = 1. In fact, R, is a very important class of heavy-tailed distributions,

which contains the Pareto, the inverse Gamma distributions etc.
The following lemmas will be used in the proofs of Theorems 1 and 2.
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Lemma 1 Assume that 0 < E[L(1)] < 00, and o > 0 or vy((—00,0)) > 0. Then for any 0 €
(0,1],
(a) There exists a unique positive k = kg > 0 such that ¢(x) = 0.
(b) Let ¢(-1) > 8. For fixed o > O the function ¢y () is strictly convex in 6 and
d¢o(e)/96 < 0.
(c) Let ¢(=1) > 8. Then the function kg is strictly decreasing in 6.

Proof See Lemma 4.1 in Kliippelberg and Kostadinova [9]. d

Lemma 2 Let ¢(-1) > 8. Then there exists at most one positive solution to the equation
kg = o with respect to 0. When there is indeed a positive solution, denote it by 6 and define

0, a=>limg gk,
0=19, K1§0[<lim9¢ol(9,
1,

a <Ky
Then the condition 0 < o < kg is equivalent to 0 < 0 < 6.

Proof Tt is immediate from Lemma 1. O

Theorem 1 Let F € R_, for some 0 < « < 00. Assume that ¢p(-1) > §, 0 < E[L(1)] < 00, and
o >0 or vy((=00,0)) > 0. Then, for any 6 € (0,6),
t

Vo(x, ) ~E(x) | 9@ drr (4)
0-—

holds uniformly for t € A :={s:0 < A; < 00}, where

s
A= @+ ) (14 p(1-2G(w))G(du).
0-
Remark1 The condition ¢(-1) > § guarantees that the expected value of the risky invest-
ment is larger than the riskless investment. The condition 6 € (0, 0),i.e. 0 <« < kp, means
that the extreme of insurance risk determines the tail behavior of the ultimate integrated
risk for the discounted net loss process, other than the investment risks. For more expla-
nations about these conditions, we refer the reader to Kostadinova [11], Kliippelberg and
Kostadinova [9] and Tang et al. [17].

Proof of Theorem 1 According to the relation 2.9.1 in Nelsen [18] and the form of FGM
copula C(u, v), we know that

0C(u,v)
u

= F(x) (1 + pF(x)(l - 2@(15)))

P(X>xlg=t) =1-

u=G(t),v=F(x)

~F@x)(1+p(1-2G(@1)))
holds uniformly for ¢ € A. Denote h(t) = 1 + p(1 — 2G(t)), then it is easy to see that

P(X > x|& =) ~P(X > x)h(2),
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and the function /() satisfies
O<l-|pl<h(t)<1+]|p|<2.

Thus, both assumptions (A) and (B) of Li [15] hold.

By Lemma 1, we know that ¢ (0) = ¢y (k) = 0, and then the fact ¢y (s) < 0 for all s € (0, k)
follows from strict convexity of ¢ (s) in s (for fixed #). Noting that 6 € (0,6), we also have
0 < o < Ky according to Lemma 2. Hence, there exists «* > o such that ¢y (a*) < 0.

With the above preliminarily results, and since Ly(£) is again a Lévy process, we know
that all the conditions in Corollary 2.1 and Corollary 2.2 of Li [15] are satisfied. If Corol-
lary 2.2 of Li [15] is applied, we can get

t
Yo(x, 1) ~ F(x) / e 0@ dp ¥,

However, when checking the result of Corollary 2.2 therein, we found a typo. In (2.6) of Li
[15], the integrand term 5@ should actually be 2@ which can be seen from the first
line of the proof of Lemma 3.9 there. That is to say, under the conditions of Corollary 2.2
of Li [15], uniformly for £ € A

t
Y t) ~Fx) [ 2@ dar.
0—
In fact, without consideration of the dependence, this result is just Theorem 3.1 of Tang
et al. [17], and the right-hand side of the relation (2.2) in Heyde and Wang [10] can also be
denoted by a similar formula, F(x) foT eV d(s). Consequently, the uniform asymptotic
estimate (4) is obtained. a

Remark 2 As mentioned in the proof of Theorem 1, if p = 0, i.e. the dependence between
the claim size X and the inter-arrival time & is not considered, Theorem 1 keeps con-
sistent with Theorem 3.1 in Tang et al. [17]; if A; = At, Theorem 1 keeps consistent with
Theorem 2.1 in Heyde and Wang [10] for the case F € R_,. Thus Theorem 1 partly extends
these two results. When compared with Corollary 2.1 of Fu and Ng [16] and Theorem 2.1
of Li [15], it is not difficult to find that the investment strategy is embedded here. More-
over, the conditions here are easier to check and the expression of the asymptotic estimate
is more explicit, though the class of heavy-tailed distribution and dependence structure
are more specific.

To analyze the impact of dependence parameter p on the underwriting risks and invest-
ment strategies in the following conveniently, here we first show the impact of p on the
renewal function A}, which is the mean function of a delayed renewal counting process
(see Li [15] for more details). The conclusion will be used in Section 5 for explaining the
numerical results.

Proposition 1 The renewal function A} decreases in the dependence parameter p.

Proof Note that

S |(1+ A5) (1 - 2G(w)) | G(du) < (L4 ) Gldu) < 14 2, < 0.
0- 0—
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Thus, according to the Lebesgue dominated convergence theorem, we have

an:

- / 0+ ha) (-1 26(0) 4G ),

Let u* be the solution to the equation G(u) =0.5.If s < u*, it is easy to see that % <0
since -1 + 2G(x) > 0. If s > u*, we have

n: (v — - s _ _
- / _ 1+ A-u)(2G () - 1)dG(u) + / *(1+AS,M)(2G(u)—1) dG(u)

< (1 + Ag_y) / ' (2G(w) - 1) dG(u)
= _(1 + )\s—u* )@(S) G(S)

<0.
anx
Hence,a—p'§0forany0<s<oo. O

4 Optimal investment

In this section, we discuss how the insurer adjusts his investment portfolio to maximize
the expected terminal wealth under a risk constraint on VaR. An approximation of the
optimal investment strategy is provided.

4.1 Optimal investment model
Considering a fixed-time horizon ¢ > 0, the maximum loss process during the investment
period is defined as Vi (¢) = supy,, Vs(s) and the risk measurement of VaR is defined as
in (3).

We consider the regime that the insurance business has more influence on the reserve
process than the investment, i.e. the condition @ € (0, 6) is assumed. In fact, there exists an
upper bound for the fraction of risky investment of insurance companies in many nations.

Accordingly, the optimization model is constructed as

max E[Uy(t)] subjectto VaR,(V; (1) <C, (5)
0€(0,0)
for a given constraint C > 0.
Under the condition Uy(0) = x, we have

Yo(x,t) = P(Oi}slif Uy(s) < 0) = P( sup Vy(s) > x) = P(Vg‘(t) > x)

0<s<t

Hence, the optimization problem (5) is equivalent to

max E[Ug(t)] subject to inf{x eR:yYy(x, 1) fp} <C. (6)
0€(0,0)

4.2 The optimal strategies
Since there is usually no closed-form expression for v (x, t) available, we use its approxi-

mation given by Theorem 1 to solve the optimal strategies. For this purpose, the instanta-
neous average claim rate is assumed to be smaller than the instantaneous premium rate,
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c(t) > dE[S(®)]/dt. (7)

Remark 3 Equation (7) can be interpreted as the safety loading condition. If the under-
writing process is characterized as the classical compound Poisson model, this relation is
equivalent to ¢ > Au, where c is the constant premium rate, A is the claim intensity, and
w is the mean of individual claim. In the case of renewal risk model, (7) is equivalent to
¢ > u, (see (3.14) in Tang et al. [17]). If the dependence structure between the claim size
and the inter-arrival time as described in (1) is considered and N(¢) follows a homoge-
neous Poisson process, according to Barges et al. [5], we know that (7) is equivalent to
() > A+ pA(u’ — p)e ™, where u' = [;°(F(x))? dx < . For this case, note that the in-

stantaneous average claim rate is decreasing in p.

Theorem 2 Let the conditions of Theorem 1 and the safety loading condition (7) hold.
Then, for any given t > 0 and sufficiently large x, the approximation of the optimal invest-

ment strategy is
~ - ¢ _1 —
9*=sup{0€(0,9):p(/ e8¢9<a>dx:) zF(C)}. 8)

Further, denote Y (0) = fot_ st (@) dA} and suppose that {0 : p/ Y (0) > F(C)} # 9 (otherwise

no solution exists). Then we have

G _ 9, p/T(é) <F(C) <p/Y(0) orF(C) > max(p/T(O),p/T(é)), ©)
B 0, otherwise,

where 0 is the bigger root of the equation Y (6) — p/F(C) = 0.

Proof According to the total probability formula,

d d = d ([t
GEs0]= 4 <E[;Xn1{m}]) = (Zl /0 E[X,|7, = u] d@(u))

= ZE[antn = t]gu(2).

n=1

Thus, by the independence of S(¢) and Ly (¢) and the stationary increment property of Ly (¢),
we have

P oo
E[/o Lo ®-Lo) dS(s)} =Y E[eO00 X1,y
n=1

_ /tE[eLe(t)—Le(s)] ZE[Xn|Tn = slgu(s) ds
n=1

0

- /0 ' E[ee] (%E[S(s)]) ds.
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Hence,

E[Uy(8)] = xE[e D] + ftE[eL"(”)] <C(S) - %E[S(S)D ds.
0

By Lemma 2.5 in Kostadinova [11], we know

E[e"D] = exp(¢(5 + 6 (p(-1) - 8))).

Therefore, if ¢(—1) > §, we know the mean function E[e%?] is increasing in 0, and by (7),
we know that the mean function E[Uj(t)] is increasing in 8. Consequently, the optimiza-
tion (6) is equivalent to

sup{@ e(O,é):inf{xeRﬂ//g(x,t)fp} SC}. (10)
Let 6* be the exact solution of the optimization problem (10). Define
6* = sup{9 €(0,6): inf{x eR: Py(x, t) §p} < C},
where

t
Vo(x,t) = F(x) [ %@ dar.
0—

Then, by Theorem 1, we have yy(x,£) ~ 1/}9 (%,2) uniformly for any ¢ € A. Thus, 6* is an
approximation of the exact solution 6*.

Next we analyze the value of 6*. Noting that A* is strictly increasing in s, we know that
fot_ %@ d)* is positive. By the fact that F(x) is decreasing in x, we have

t -1
0* = sup{@ €(0,0): inf{x eR:F(x) §p(/ et (@ dkj) } < C}
0-—

t -1
=sup{9€(0,9_):p(/ es¢9(“)dkf) zF(C)}.

Hence, (8) holds.

Further, by Lemma 1(b), the function ¢y () is strictly convex in 6 and satisfies d¢g(c)/
96 < 0. On the other hand, we have ¢ () = =8« < 0. Thus, on the interval (0,6), the func-
tion ¢y () first decreases and then increases, and so is the function Y (0). Therefore, the
function p/Y(0) first increases and then decreases. Consequently, (9) holds. O

5 Example
We consider an insurance company with Pareto claims, i.e.

F(x) = (0.6/(0.6 + x))z, x>0.

Suppose that N(¢) is a homogeneous Poisson process with intensity A = 12, then we know

~24 5 from Remark 3. Then the in-

—24¢

the instantaneous average rate of claims is 7.2 — 4.8¢

stantaneous premium rate c(f) is set to equal to 7.2 + 4.8e7** p. Assume that the riskless
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Table 1 Optimal investment strategies and expected results with different dependence
parameters

P 6* VaR E[Up(8)]

-0.75 01805 640000 70.0677
-050 02995 640000 71.9864
-025 03534 640000 72.9035
0.00 03944 640000 73.6225
025 04286 640000 74.2372
050 04583 640000 74.7826
075 04849  64.0000  75.2806
085 04915 639526 754135
099 04915  63.7571 754460

interest rate § = 0.05 and the log returns of some stock are modeled by

M(2)
L(t) = 015t + 0.2B() + ¥ . &

i=1

where {B(t), t > 0} is a standard Brownian motion, M(t) is a homogeneous Poisson process
with intensity 10, and the generic r.v. ¢ follows N(-0.01,0.04).

Assume without loss of generality that the investment period is [0,1], and then we com-
pute ¢(—1) = 0.2705, which is larger than the riskless interest rate. The numerical solution
to the equation ¢4(2) = 0 is 6 = 0.4915, i.e. the upper bound of the fraction invested in
risky asset.

Let x = 64 be the initial capital and p = 0.1% be the given probability, then the optimal
strategies and expected results of investment with different dependence parameters are
illustrated in Table 1.

From Table 1, it is easy to see that the fraction of risky investment increases as the de-
pendence parameter goes up. The reason for this result is that the intensity and average
rate of claims both decrease as the dependence parameter increases (see Proposition 1 and
Remark 3). Thus the underwriting risks becomes smaller, more amount of wealth can be
invested in risky asset. Meanwhile, the wealth at the end of the planning period gets more
and the integrated risk equals the constraint C = 64 when the fraction of risky investment
are within the interval of investment strategies. In fact, the uniform asymptotic for the
ruin probability also equals the upper bound 0.1%. When the dependence parameter be-
come so large that the optimal strategy exceeds the interval (0,6), the fraction of risky
investment 6* is set to § according to the convention, and the expected terminal wealth is
still on the rise. Therefore, the connection between claim size and inter-arrival time has a
direct impact on the optimal investment strategy and the expected result. The larger the
dependence parameter is, the more favorable it is to the insurance company.

6 Conclusion

This paper mainly concerns the problem about how the insurer adjust his investment port-
folio to maximize the expected terminal wealth. The underwriting process is modeled by
a non-standard renewal risk model with dependence introduced by a FGM copula and
the price of the risky asset is characterized by an exponential Lévy process. Based on, but
different from Li [15] and Fu and Ng [16], the integrated risk process is investigated with
investment strategy and the uniform asymptotic estimate for ruin probability is provided
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with some conditions more convenient to verify. Considering that the insurers may be
more attentive to their future finite-time risks, the infinite-time discounted net loss in
the definition of VaR which is considered by Kostadinova [11] is replaced by a finite-time
horizontal as the risk measure. Applying the asymptotic formula, an approximation of the
optimal investment strategy depending on the dependence parameter and the time period
is obtained and a numerical example is illustrated for the results. When investigating the
impact of the dependence parameter, we find that the bigger the dependence parameter
is, the more advantageous it is to the insurer. The reason for this result is explained by
some inequalities.
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