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Abstract
About two decades ago Lutwak introduced the concept of p-affine surface area. More
recently, the results of Lutwak have been generalized by Ma to the entire class of
so-called ith p-affine surface areas. In this paper, we further research this new notion
and give its integral representation. Affine isoperimetric and Blaschke-Santaló
inequalities, which generalize the inequalities obtained by Lutwak, are established.
Furthermore, we prove the ith p-affine area ratio of convex body K for the ith p-affine
surface area, which does not exceed the generalized Santaló product of convex
body K .
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1 Introduction
During the past three decades, the investigations of the classical affine surface area have
received great attention from many articles (see articles [–] or books [, ]). Based
on the classical affine surface area, Lutwak [] introduced the notion of p-affine surface
area and obtained some isoperimetric inequalities for p-affine surface area. Regarding the
studies of p-affine surface area also see [–]. In particular, Ma [] studied the ith p-
geominimal surface area.

The setting for this paper is n-dimensional Euclidean space R
n. Let Kn denote the set

of convex bodies (compact, convex subsets with nonempty interiors) and Kn
o denote the

subset of Kn that contains the origin in their interiors in R
n. Let Kn

c denote the set of
convex bodies whose centroids lie at the origin. As usual, Vi(K) denotes the i-dimensional
volume (i.e., Lebesgue measure) of a compact convex set K in R

n. Instead of Vn(K) we
usually write V (K). Let Sn– denote the unit sphere with unit ball Bn, ωn is the volume
of Bn, and ωi := Vi(Bn) denotes the i-dimensional intrinsic volume of Bn. For K ∈ Kn

o , let
K∗ denote the polar body of K . Let Sn

o denote the set star bodies in R
n containing the

origin in their interiors.
In [], Leichtweiß defined the affine surface area �(K) by

n– 
n �(K)

n+
n = inf

{
nV

(
K , Q∗)V (Q)


n : Q ∈ Sn

o
}

. (.)

In [], Lutwak generalized the affine surface area �(K) to the p-affine surface area
�p(K) by using the Brunn-Minkowski-Fiery theory as follows:
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n– p
n �p(K)

n+p
n = inf

{
nVp

(
K , Q∗)V (Q)

p
n : Q ∈ Sn

o
}

. (.)

Obviously, if p = , �(K) is just the classical affine surface area �(K).
Moreover, Lutwak proved the following inequalities for the p-affine surface area.

Theorem . Let K ∈Kn
c and p ≥ . Then

�p(K)n+p ≤ nn+pωp
n V (K)n–p (.)

with equality if and only if K is an ellipsoid.

Theorem . Let K ∈Kn
c and p ≥ . Then

�p(K)�p
(
K∗) ≤ (nωn) (.)

with equality if and only if K is an ellipsoid.

For K ∈Kn
o , Lutwak also defined the p-affine area ratio of K by (see [])

(
�p(K)n+p

nn+pV (K)n–p

) 
p

(.)

and proved (.) is monotone nondecreasing in p.

Theorem . If K ∈Fn
o and  ≤ p ≤ q, then

(
�p(K)n+p

nn+pV (K)n–p

) 
p

≤
(

�q(K)n+q

nn+qV (K)n–q

) 
q

(.)

with equality if and only if K ∈ En, where En = {K ∈ Fn
o : K∗ and �K are dilates} and �K

denotes the curvature image of K .

It is easily seen that the p-affine surface area belongs to the Brunn-Minkowski-Fiery
theory. Recently, Ma [] further extended the p-affine surface area �p(K) to the ith p-
affine surface area �

(i)
p (K) of K ∈ Kn

o (also called the (i, ) type p-affine surface area, i ∈
{, , . . . , n – }) by using the Brunn-Minkowski-Fiery theory as follows:

n– p
n–i �(i)

p (K)
n+p–i

n–i = inf
{

nWp,i
(
K , Q∗)W̃i(Q)

p
n–i : Q ∈ Sn

o
}

. (.)

It is the aim of this paper to establish several generalized forms of inequalities (.), (.),
and (.). Our main results can be stated as follows.

Theorem . If p ≥ , i ∈ {, , . . . , n – }, and K ∈Fn
i,o, then the integral expressions of ith

p-affine surface area �
(i)
p (K) are as follows:

�(i)
p (K) =

∫

Sn–
fp,i(K , u)

n–i
n+p–i dS(u), (.)

where symbols fp,i(K , ·) and Fn
i,o are defined in Section .
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Taking i =  in (.), the ith p-affine surface area reduces to Lutwak’s p-affine surface
area (see [], Theorem .):

�p(K) =
∫

Sn–
fp(K , u)

n
n+p dS(u),

where K ∈ Fn
o ⊂ Kn

o is a convex body with a positive continuous curvature function,
fp(K , ·) denotes a p-curvature function of K ∈Kn

o .

Theorem . Suppose K ∈Kn
c , i ∈ {, , . . . , n – } and p ≥ . Then

�(i)
p (K)n+p–i ≤ nn+p–iωp

n Wi(K)n–iW̃i(K)–p (.)

with equality for i =  if and only if K is an ellipsoid, and for  < i ≤ n –  if and only if K is
an n-ball centered at the origin.

Theorem . Suppose K ∈Kn
c , i ∈ {, , . . . , n – } and p ≥ . Then

�(i)
p (K)n+p–i ≤ nn+p–i(ωiωn–i)p

(
n
i

)–p

Wi(K)n–p–i (.)

with equality for i =  if and only if K is an ellipsoid, and for  < i ≤ n –  if and only if all
(n – i)-dimensional sub-convex bodies contained in K are (n – i)-ball centered at the origin.

Taking i = , inequality (.) reduces to Lutwak’s result (see [], this is also Theorem .
in our article).

Theorem . Suppose K ∈Kn
o , i ∈ {, , . . . , n – } and p ≥ . Then

�(i)
p (K)�(i)

p
(
K∗) ≤ nWi(K)Wi

(
K∗) (.)

with equality in inequality for i =  if and only if K is an ellipsoid centered at the origin,
and for  < i ≤ n –  if and only if Kis a ball centered at the origin.

Corolloary . Suppose K ∈Kn
c , i ∈ {, , . . . , n – } and p ≥ . Then

�(i)
p (K)�(i)

p
(
K∗) ≤ (nωiωn–i)

(
n
i

)–

(.)

with equality in inequality for i =  if and only if K is an ellipsoid centered at the origin,
and for  < i ≤ n –  if and only if all (n – i)-dimensional sub-convex bodies contained in K
are an (n – i)-ball centered at the origin.

Taking i = , inequality (.) reduces to Lutwak’s result (see [], this is also Theorem .
in our article).

Theorem . If K ∈Fn
i,o and i ∈ {, , . . . , n – }, then, for  ≤ p ≤ q,

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤
(

�
(i)
q (K)n+q–i

nn+q–iWi(K)n–q–i

) 
q

(.)

with equality if and only if K ∈ En
i , where symbol En

i is defined in (.).
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Taking i = , inequality (.) reduces to Lutwak’s result (see [], this is also Theorem .
in our article).

The paper is organized as follows. For the sake of convenience, in Section  we introduce
the basic knowledge about the convex geometric analysis. In Section  we discuss some of
the properties of the ith p-affine surface area �

(i)
p and ith p-curvature image �p,i. Mean-

while, we prove Theorems .-. stated at the beginning of this paper. In Section  we
establish the cyclic inequalities of ith p-affine surface area �

(i)
p (K) and the monotonicity

of ith p-affine area ratio and ith p-curvature ratio; these results are a generalization of Lut-
wak’s conclusions (see []). At the same time, we complete the proof of the monotonicity
theorem (Theorem . stated at the beginning of this paper). In Section , we further de-
fine the concept of �

(i)∞ and discuss its interesting properties. In addition, we give a daisy
chain of inequalities for ith p-affine area ratio with monotone nondecreasing in p, which
does not exceed the generalized Santaló product of convex body.

2 Notation and preliminaries
2.1 Support function, radial function, and polar of convex body
As usual, GL(n) denotes a nonsingular linear transformation group in R

n. For φ ∈ GL(n),
let φt , φ–, and φ–t denote the transpose, inverse, and inverse of the transpose of φ, respec-
tively. For K ∈Kn, let h(K , ·) : Rn →R denote the support function of K ∈Kn. Namely,

h(K , x) = hK (x) := max{x · y : y ∈ K} for x ∈R
n,

where x · y denotes the standard inner product of x and y in R
n. For φ ∈ GL(n), then obvi-

ously h(φK , x) = h(K ,φtx). For the sake of convenience, we write hK rather than h(K , ·) for
the support function of K . Apparently, for K , L ∈Kn, K ⊆ L if and only if hK ≤ hL. The set
Kn will be viewed as equipped with the Hausdorff metric δ defined by δ(K , L) = ‖hK –hL‖∞
is the sup (or max) norm on the space of continuous functions on the unit sphere C(Sn–).

For a compact subset L of Rn, which is star-shaped with respect to the origin, we shall
use ρ(L, ·) to denote its radial function; i.e., for x ∈R

n\{},

ρ(L, x) = ρL(x) := max{λ >  : λx ∈ L}.

If ρ(L, ·) is continuous and positive, L will be called a star body, and Sn
o will be used to

denote the class of star bodies in R
n containing the origin in their interiors. Apparently, for

K , L ∈ Sn
o , K ⊆ L if and only if ρK ≤ ρL. Two star bodies K and L are said to be dilates (of

one another) if ρ(K , u)/ρ(L, u) is independent of u ∈ S
n–. Let δ̃ denote the radial Hausdorff

metric as follows: if K , L ∈ Sn
o , then δ̃(K , L) = ‖ρK – ρL‖∞.

For K ∈Kn
o , the polar body K∗ of K is defined by

K∗ =
{

x ∈R
n : x · y ≤ , y ∈ K

}
.

Obviously, we have (K∗)∗ = K . If λ > , then (λK)∗ = λ–K∗. More generally, if φ ∈ GL(n),
then (φK)∗ = φ–tK∗. For K ∈ Kn

o , the support and radial function of the polar body K∗ of
K are defined respectively by (see [, ])

hK∗ (u) =


ρK (u)
and ρK∗ (u) =


hK (u)

for all u ∈ S
n–. (.)
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Define the Santaló product of K ∈ Kn
o by V (K)V (K∗). The Blaschke-Santaló inequality

(see [, ]) is one of the fundamental affine isoperimetric inequalities. It states that if
K ∈Kn

c then

V (K)V
(
K∗) ≤ ω

n (.)

with equality if and only if K is an ellipsoid.

2.2 Mixed volumes, p-mixed quermassintegrals, and dual p-mixed
quermassintegrals

We first introduce the following sum theorems for the mixed volumes and the mixed area
measure of convex bodies (see [], p.).

There is a nonnegative symmetric function V : (Kn)n →R, the mixed volume such that,
for m ∈N,

Vn(λK + λmKm) =
m∑

i,...,in=

λi · · ·λin V (Ki , . . . , Kin )

for arbitrary convex bodies K, . . . , Km ∈Kn and numbers λ, . . . ,λm ≥ .
Further, there is a symmetric map S from (Kn)n– into the space of finite Borel measures

on S
n–, the mixed area measure such that, for m ∈N,

Sn–(λK + λmKm, ·) =
m∑

i,...,in–=

λi · · ·λin– S(Ki , . . . , Kin– , ·)

for K, . . . , Km ∈Kn and λ, . . . ,λm ≥  (where we write S(K, . . . , Kn–, ·) = S(K, . . . , Kn–)(·)).
Taking K = · · · = Kn–i– = K and Kn–i = · · · = Kn– = Bn in S(K, . . . , Kn–, ·), we write Si(K , ·)
for S(K , . . . , K , Bn, . . . , Bn, ·).

The equality

V (K, . . . , Kn) =

n

∫

Sn–
h(K, u) dS(K, . . . , Kn, u)

holds for K, . . . , Kn ∈Kn.
For K ∈Kn and i ∈ {, , . . . , n – }, the quermassintegral Wi(K) of K is given by (see [])

Wi(K) = V (K , . . . , K︸ ︷︷ ︸
n–i

, Bn, . . . , Bn︸ ︷︷ ︸
i

) =

n

∫

Sn–
h(K , u) dSi(K , u). (.)

It turns out that the ith surface area measure Si(K , ·) of K , i ∈ {, , . . . , n – }, on S
n– is

absolutely continuous with respect to the ordinary surface area measure S(K , ·) of K and
has the Radon-Nikodym derivative (see [])

dSi(K , ·)
dS(K , ·) = h(K , ·)–i. (.)

From (.), we easily see that W(K) = V (K).
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The definition of Wi(K) is the classical Steiner formula, which we write in the two forms
(see [], pp., ):

Vn(K + λBn) =
n∑

i=

λi
(

n
i

)
Wi(K) =

n∑

i=

λn–iωn–iVi(K).

From the above definition of Wi(K) and the definition of V (Ki , . . . , Kin ), it follows that
(see [], pp., )

Wi(K) = V (K , . . . , K︸ ︷︷ ︸
n–i

, Bn, . . . , Bn︸ ︷︷ ︸
i

) =
ωi(n

i
)Vn–i(K), i ∈ {, , . . . , n}. (.)

For real p ≥ , K , L ∈ Kn
o , and α,β ≥  (not both zero), the Firey p-linear combination

α ◦ K +p β ◦ L, is defined by (see [])

h(α ◦ K +p β ◦ L, ·)p = αh(K , ·)p + βh(L, ·)p.

For K , L ∈ Kn
o , ε > , and real p ≥ , the p-mixed quermassintegrals Wp,i(K , L) of K and

L, i ∈ {, , . . . , n – } are defined by (see [])

n – i
p

Wp,i(K , L) = lim
ε→+

Wi(K +p ε ◦ L) – Wi(K)
ε

.

Obviously, for p = , W,i(K , L) is just the classical mixed quermassintegral Wi(K , L). For
i = , the p-mixed quermassintegral Wp,(K , L) is just the p-mixed volume Vp(K , L).

For p ≥ , i ∈ {, , . . . , n – }, and each K ∈ Kn
o , there exists a positive Borel measure

Sp,i(K , ·) on S
n– such that the p-mixed quermassintegral Wp,i(K , L) has the following in-

tegral representation (see []):

Wp,i(K , L) =

n

∫

Sn–
hp

L(v) dSp,i(K , v) (.)

for all L ∈Kn
o . It turns out that the measure Sp,i(K , ·), i ∈ {, , . . . , n–}, on S

n– is absolutely
continuous with respect to Si(K , ·) and has the Radon-Nikodym derivative

dSp,i(K , ·)
dSi(K , ·) = h(K , ·)–p. (.)

Together with (.) and (.), for K ∈Kn
o , p ≥ , we have Wp,i(K , K) = Wi(K).

For K ∈ Sn
o and any real i, the ith dual quermassintegral W̃i(K) of K is defined by (see

[, ])

W̃i(K) =

n

∫

Sn–
ρn–i

K (u) dS(u). (.)

Obviously, W̃(K) = V (K).
For K , L ∈ Sn

o , p ≥ , and λ,μ ≥  (not both zero), the p-harmonic radial combination
λ ∗ K +–p μ ∗ L ∈ Sn

o is defined by (see [])

ρ(λ ∗ K +–p μ ∗ L, ·)–p = λρ(K , ·)–p + μρ(L, ·)–p.

Note that here ‘ε ∗ L’ is different from ‘ε ◦ L’ in Firey p-linear combination.
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For K , L ∈ Sn
o , ε > , p ≥ , and real i �= n, the dual p-mixed quermassintegral W̃–p,i(K , L)

of K and L is defined by (see [])

n – i
–p

W̃–p,i(K , L) = lim
ε→+

W̃i(K +–p ε ∗ L) – W̃i(K)
ε

. (.)

If i = , we easily see that (.) is just the definition of dual p-mixed volume, i.e.,
W̃–p,(K , L) = Ṽ–p(K , L).

From (.), the integral representation of the dual p-mixed quermassintegrals is given
by Wang and Leng []: If K , L ∈ Sn

o , p ≥ , and real i �= n, i �= n + p, then

W̃–p,i(K , L) =

n

∫

Sn–
ρ

n+p–i
K (u)ρ–p

L (u) dS(u). (.)

Together with (.) and (.), for K ∈ Sn
o , p ≥ , and i �= n, n + p, it follows that

W̃–p,i(K , K) = W̃i(K).
Further, Wang and Leng [] proved the following analog of the Minkowski inequality

for the dual p-mixed quermassintegrals: If K , L ∈ Sn
o , p ≥ , then, for i < n or i > n + p,

W̃–p,i(K , L)n–i ≥ W̃i(K)n+p–iW̃i(L)–p, (.)

and for n < i < n + p, inequality (.) is reverse, with equality in every inequality if and
only if K and L are dilates of each other.

Another consequence of inequality (.) will be needed (see []): Suppose K , L ∈ Sn
o ,

p ≥  and λ,μ > . If real i < n or n < i < n + p, then

W̃i(λ ∗ K +̂–pμ ∗ L)–p/(n–i) ≥ λW̃i(K)–p/(n–i) + μW̃i(L)–p/(n–i), (.)

with equality in every inequality if and only if K and L are dilates of each other, and for
n > n + p inequality (.) is reverse.

The following result will be needed.

Lemma . If p ≥ , i ∈R, M⊂ Sn
o is a class of bodies such that K , L ∈M. If

W̃–p,i(K , Q)/W̃i(K) = W̃–p,i(L, Q)/W̃i(L) for all Q ∈M, (.)

then K = L.

Proof Taking Q = L gives W̃–p,i(K , L)/W̃i(K) = W̃–p,i(L, L)/W̃i(L) = . Now inequality (.)
gives W̃i(L) ≥ W̃i(K) with equality if and only if K and L are dilates. Take Q = K and get
W̃i(K) ≥ W̃i(L) with equality if and only if L and K are dilates. Hence, W̃i(K) = W̃i(L), and
K and L must be dilates. Thus, K = L. �

By inequality (.), for convex bodies, we introduce the following definition: Suppose
K ∈Kn

o and L ∈ Sn
o . For p ≥  and i ∈ {, , . . . , n – }, define Wp,i(K , L∗) by

Wp,i
(
K , L∗) =


n

∫

Sn–
ρL(u)–p dSp,i(K , u). (.)
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Since hQ∗ = /ρQ for Q ∈ Kn
o , it follows from the integral representation (.) that, if L

happens to belong to Kn
o (rather than just Sn

o ), the new definition of Wp,i(K , L∗) agrees
with the old definition.

2.3 The ith p-curvature function and ith p-curvature image
A convex body K ∈Kn is said to have a continuous ith curvature function fi(K , ·) : Sn– →
R if its mixed surface area measure Si(K , ·) is absolutely continuous with respect to the
spherical Lebesgue measure S and has the Radon-Nikodym derivative (see [])

dSi(K , ·)
dS

= fi(K , ·), for i ∈ {, , . . . , n – }. (.)

Let Fn
i , Fn

i,o, Fn
i,c denote a set of all bodies in Kn, Kn

o , Kn
c , respectively, that have an ith

positive continuous curvature function. In particular, Fn
 := Fn, Fn

,o := Fn
o , Fn

,c := Fn
c .

A convex body K ∈ Kn
o is said to have a p-curvature function fp(K , ·) : Sn– → R if its

p-surface area measure Sp(K , ·) is absolutely continuous with respect to the spherical
Lebesgue measure S and has the Radon-Nikodym derivative (see [])

dSp(K , ·)
dS

= fp(K , ·). (.)

Lutwak [] showed the notion of p-curvature image as follows: For each K ∈ Fn
o and

p ≥ , define �pK ∈ Sn
o , the p-curvature image of K , by

ρ(�pK , ·)n+p =
V (�pK)

ωn
fp(K , ·). (.)

It should be noted that, for p = , this definition of curvature image differs from the defi-
nition used by the author in [, ], and [].

Recently, Liu et al. [], Lu and Wang [], as well as Ma and Liu [, , ] inde-
pendently introduced the concept of ith p-curvature function of K ∈ Kn

o as follows: Let
p ≥ , i ∈ {, , . . . , n – }, a convex body K ∈Kn

o is said to have an ith p-curvature function
fp,i(K , ·) : Sn– →R if its ith p-surface area measure Sp,i(K , ·) is absolutely continuous with
respect to the spherical Lebesgue measure S and has the Radon-Nikodym derivative

dSp,i(K , ·)
dS

= fp,i(K , ·). (.)

If the ith surface area measure Si(K , ·) is absolutely continuous with respect to the spherical
Lebesgue measure S, we have

fp,i(K , ·) = h(K , ·)–pfi(K , ·). (.)

Together with (.) and (.), we easily get that, for K ∈Kn
o and real λ > ,

fp,i(λK , ·) = λn–p–ifp,i(K , ·). (.)

According to the concept of ith p-curvature function of convex body, Lu and Wang []
as well as Ma [] introduced independently the concept of ith p-curvature image of con-
vex body as follows: For each K ∈Fn

i,o, i ∈ {, , . . . , n – }, and real p ≥ , define �p,iK ∈ Sn
o ,
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the ith p-curvature image of K , by

ρ(�p,iK , ·)n+p–i =
W̃i(�p,iK)

ωn
fp,i(K , ·). (.)

For the case p =  or i = , the subscript p or i in �p,i will often be suppressed. If �p,iK ∈Kn
o ,

write �∗
p,iK for (�p,iK)∗. The unusual normalization of definition (.) is chosen so that,

for the unit ball Bn, it follows that �p,iBn = Bn. From definitions (.), (.), and (.), if
i = , then �p,K = �pK . In particular, we note that if p =  in (.), then

ρ(�iK , ·)n+–i =
W̃i(�iK)

ωn
fi(K , ·). (.)

An immediate consequence of the definition of the ith p-curvature image and the inte-
gral representations of Wp,i and W̃–p,i is the following results.

Proposition . If p ≥ , i ∈ {, , . . . , n – }, and K ∈Fn
i,o, then, for all Q ∈ Sn

o ,

Wp,i
(
K , Q∗) = ωnW̃–p,i(�p,iK , Q)/W̃i(�p,iK). (.)

The following characterization follows directly from Proposition . and Lemma ..

Proposition . Suppose K ∈Fn
i,o and L ∈ Sn

o . If p ≥ , i ∈ {, , . . . , n – } and if

Wp,i
(
K , Q∗) = ωnW̃–p,i(L, Q)/W̃i(L) for all Q ∈ Sn

o , (.)

then L = �p,iK .

3 The ith p-affine surface area
Let O(n) denotes an orthogonal transformation group in R

n.

Lemma . (see []) Suppose K , L ∈ Kn
o , p ≥ , and i ∈ {, , . . . , n – }. Then, for any

φ ∈ O(n),

Wp,i(φK ,φL) = Wp,i(K , L).

Lemma . (see []) Suppose K , L ∈ Sn
o , p ≥ , and real i ∈ R as well as i �= n, i �= n + p.

Then, for any φ ∈ O(n),

W̃–p,i(φK ,φL) = W̃–p,i(K , L).

An immediate consequence of the definition of �
(i)
p and Lemma . as well as Lemma .

is the following.

Proposition . If p ≥ , i ∈ {, , . . . n – }, and K ∈Kn
o , then, for all φ ∈ O(n),

�(i)
p (φK) = �(i)

p (K).

The ordinary surface area measure of a polytope is concentrated on a finite set of points
of Sn– (see, for example, Lutwak []). From this, (.) and (.), it follows that the ith p-
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surface area measure Sp,i(P, ·) of a polytope P ∈Kn
o is concentrated on a finite set of points

of Sn–. A direct consequence of this fact and the definition of ith p-affine surface area is
as follows.

Proposition . If p ≥ , and P ∈ Kn
o is a polytope, then �

(i)
p (P) =  for any i ∈ {, , . . . ,

n – }.

If i = , Proposition . reduces to the isotropy of the p-surface area measures, which
was essentially proved in [] by Lutwak.

Lemma . If p ≥  and Kj is a sequence of convex bodies in Kn
o such that Kj → K ∈ Kn

o ,
then, for i = , , . . . , n – , Sp,i(Kj, ·) → Sp,i(K, ·) weakly.

Proof Suppose f ∈ C(Sn–). Since Kj → K, by the definition of support function, hKj →
hK uniformly on S

n–. Since the continuous function hK is positive, hKj are uniformly
bounded away from . It follows that h–p

Kj
→ h–p

K
uniformly on S

n–, and thus that

fh–p
Kj

→ fh–p
K

uniformly on S
n–.

But Kj → K also implies that

Si(Kj, ·) → Si(K, ·) weakly on S
n–

follows from the weak continuity of surface area measures (see, for example, Schneider
[, ]). Hence,

∫

Sn–
f (u)h(Kj, u)–p dSi(Kj, u) →

∫

Sn–
f (u)h(K, u)–p dSi(K, u),

or equivalently,
∫

Sn–
f (u) dSp,i(Kj, u) →

∫

Sn–
f (u) dSp,i(K, u). �

An immediate consequence of Lemma . and definition (.) is the following.

Proposition . If p ≥ , i ∈ {, , . . . , n – }, and L ∈ Sn
o , then Wp,i(·, L∗) : Kn

o → (,∞) is
continuous.

Lemma . Suppose Kj → K ∈ Kn
o and Lj → L ∈ Kn

o . If p ≥  and i ∈ {, , . . . , n – },
then Wp,i(Kj, Lj) → Wp,i(K, L).

Proof Since hLj → hL uniformly on S
n– and hL is continuous, then hLi are uniformly

bounded on S
n–. Hence,

hp
Lj

→ hp
L

uniformly on S
n–.

By Lemma . Kj → K implies that

Sp,i(Kj, ·) → Sp,i(K, ·) weakly on S
n–.
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Hence,
∫

Sn–
hp

Lj
dSp,i(Kj, u) →

∫

Sn–
hp

L
dSp,i(K, u). �

By the definition of dual p-mixed quermassintegrals and the continuity of the radial
function, we have the following.

Lemma . Suppose Kj → K ∈ Sn
o and Lj → L ∈ Sn

o . If p ≥ , i ∈ R, and i �= n, i �= n + p,
then W̃–p,i(Kj, Lj) → W̃–p,i(K, L).

An immediate consequence of the definition of �
(i)
p , definition (.), and Proposi-

tion . is the following.

Proposition . For p ≥  and i ∈ {, , . . . n – }, the function �
(i)
p : Kn

o → [,∞) is upper
semicontinuous.

Proof of Theorem . From the definition of �
(i)
p (K), it can be seen that in order to prove

the theorem, it need be shown that

inf
{

Wp,i
(
K , Q∗)W̃i(Q)

p
n–i : Q ∈ Sn

o
}

=
[


n

∫

Sn–
fp,i(K , u)

n–i
n+p–i dS(u)

] n+p–i
n–i

. (.)

Recall that �p,iK ∈ Sn
o is defined by fp,i(K , ·) = ωnρ(�p,iK , ·)n+p–i/W̃i(�p,iK). From this and

the formula for the ith dual quermassintegrals, it follows that the quantity on the right in
(.) is just ωnW̃i(�p,iK)

p
n–i . By Proposition .,

Wp,i
(
K , Q∗)W̃i(Q)

p
n–i = ωnW̃–p,i(�p,iK , Q)W̃i(Q)

p
n–i /W̃i(�p,iK).

Hence to prove (.) it need only be shown that

inf
{

W̃–p,i(�p,iK , Q)W̃i(Q)
p

n–i : Q ∈ Sn
o
}

= W̃i(�p,iK)
n+p–i

n–i . (.)

The fact that the quantity on the left in (.) is no less than the quantity on the right is a
simple consequence of the dual p-mixed quermassintegrals inequality (.). To see that
the quantity on the right in (.) is no less than the quantity on the left, take Q = �p,iK and
note that

W̃–p,i(�p,iK ,�p,iK)W̃i(�p,iK)p/(n–i) = W̃i(�p,iK)(n+p–i)/(n–i).

Thus the result of Theorem . is obtained. �

An immediate consequence of the definition of the ith p-curvature image and the inte-
gral representations of �

(i)
p as well as W̃i is as follows.

Proposition . If p ≥ , i ∈ {, , . . . , n – }, and K ∈Fn
i,o, then

�(i)
p (K) = nω

n–i
n+p–i
n W̃i(�p,iK)

p
n+p–i . (.)
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The following lemmas will be needed.

Lemma . (see []) Suppose K ∈Kn
o and  < i < n, i ∈R, then

W̃i(K) ≤ V (K)
n–i
n ω

i
n
n (.)

with equality if and only if K is an n-ball (centered at the origin).

Lemma . (see []) If K ∈Kn
o and i ∈ {, . . . , n – }, then

W̃i(K) ≤ Wi(K) (.)

with equality if and only if K is an n-ball (centered at the origin).

Proof of Theorem . From the definition of �
(i)
p (K) it follows that, for K ∈ Kn

c and all
Q ∈ Sn

o ,

�(i)
p (K)n+p–i ≤ nn+p–iWp,i

(
K , Q∗)n–iW̃i(Q)p.

Taking Q = K∗, we have

�(i)
p (K)n+p–i ≤ nn+p–iWi(K)n–iW̃i

(
K∗)p. (.)

Hence, together with Lemma . and the Blaschke-Santaló inequality (.), it follows
that

�(i)
p (K)n+p–iW̃i(K)p ≤ nn+p–iWi(K)n–i(W̃i

(
K∗)W̃i(K)

)p

≤ nn+p–iWi(K)n–iω
ip
n

n
(
V (K)V

(
K∗)) (n–i)p

n

≤ nn+p–iωp
n Wi(K)n–i.

Therefore

�(i)
p (K)n+p–i ≤ nn+p–iωp

n Wi(K)n–iW̃i(K)–p.

By the equality condition of the Blaschke-Santaló inequality (.) and Lemma ., equality
holds in the inequality of Theorem . for i =  if and only if K is an ellipsoid, for  < i ≤
n –  if and only if K is an n-ball centered at the origin. �

Proof of Theorem . Together with inequality (.), Lemma ., equation (.), and the
Blaschke-Santaló inequality (.), we have

�(i)
p (K)n+p–i ≤ nn+p–iWi(K)n–iWi

(
K∗)p

= nn+p–iWi(K)n–p–i[Wi(K)Wi
(
K∗)]p

= nn+p–iWi(K)n–p–iω
p
i

(
n
i

)–p[
Vn–i(K)Vn–i

(
K∗)]p

≤ nn+p–i(ωiωn–i)p
(

n
i

)–p

Wi(K)n–p–i.
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In the proof process, we can easily know that for i =  equality of inequality (.) holds
if and only if K is an ellipsoid, and for  < i ≤ n –  if and only if all (n – i)-dimensional
sub-convex bodies contained in K are (n – i)-ball centered at the origin. �

Remark . More recently, the author in [] defined the notion of ith p-geominimal
surface area: For K ∈Kn

o , p ≥ , i ∈ {, , . . . , n – }, then

ω
p

n–i
n Gp,i(K) = inf

{
nWp,i(K , Q)W̃i

(
Q∗) p

n–i : Q ∈Kn
o
}

. (.)

Comparing to (.) and (.), we easily obtain that if K ∈Kn
o , p ≥ , i ∈ {, , . . . , n – }, then

�(i)
p (K)n+p–i ≤ (nωn)pGp,i(K)n–i. (.)

The inequality above is (.) of the article [], and from the proof in [] we know that
equality holds in (.) if and only if K ∈Wn

p,i, where symbol Wn
p,i is defined in (.).

Some results of this paper can immediately be given by (.). For example, Theorem .
of [] implies our Theorem .; Theorem . of [] implies our Theorem .. But we
need to note in particular that the condition of equality holds in inequalities (.) and
(.) cannot be determined.

Proof of Theorem . By using the definition of �
(i)
p (K), it follows that

n– p
n–i �(i)

p (K)
n+p–i

n–i ≤ nWp,i
(
K , Q∗)W̃i(Q)

p
n–i

for any Q ∈ Sn
o . Taking K∗ for Q and noticing that K∗∗ = K , we get

n– p
n–i �(i)

p (K)
n+p–i

n–i ≤ nWi(K)W̃i
(
K∗) p

n–i . (.)

Taking K∗ for K , we get

n– p
n–i �(i)

p
(
K∗) n+p–i

n–i ≤ nWi
(
K∗)W̃i(K)

p
n–i . (.)

Combining with (.), (.), and Lemma ., it follows that

(
�(i)

p (K)�(i)
p

(
K∗)) n+p–i

n–i ≤ n
(n+p–i)

n–i Wi(K)Wi
(
K∗)(W̃i(K)W̃i

(
K∗)) p

n–i

≤ n
(n+p–i)

n–i
(
Wi(K)Wi

(
K∗)) n+p–i

n–i .

Therefore,

�(i)
p (K)�(i)

p
(
K∗) ≤ nWi(K)Wi

(
K∗). (.)

According to the conditions of equality holds in the inequality of Lemma ., we see that
equality holds in inequality (.) for i =  if and only if K is an ellipsoid, and for  < i ≤ n–
if and only if K is a ball centered at the origin. �



Ma and Feng Journal of Inequalities and Applications  (2015) 2015:187 Page 14 of 26

Proof of Corollary . Considering inequality (.), together with equation (.) and the
Blaschke-Santaló inequality (.), we now obtain the desired results. �

From inequality (.), this is summarized as follows.

Proposition . If p ≥ , i ∈ {, , . . . , n – } and K ∈Kn
o , then

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤ Wi(K)W̃i
(
K∗). (.)

Lemma . (see []) Suppose K , L ∈Kn
o , and B ⊂Kn

o is a class of bodies such that K , L ∈
B. If  ≤ i < n and n – i �= p > , and if

Wp,i(K , Q) = Wp,i(L, Q) for all Q ∈ B, (.)

then K = L. If  ≤ i < n – , p = n – i and satisfies (.), then K and L are dilates.

The next proposition shows that for p �= n – i, the functional �p,i : Fn
i,o → Sn

o is injective.

Proposition . Suppose that K , L ∈Fn
i,o are such that �p,iK = �p,iL. If p = n – i, then K

and L are dilates, and if n – i �= p > , then K = L.

Proof From Proposition ., it follows that �p,iK = �p,iL implies that

Wp,i(K , Q) = Wp,i(L, Q) for all Q ∈Kn
o .

The desired result is now a consequence of (.). �

Lemma . (see []) Suppose K , L ∈ Sn
o , p ≥ , i ∈ R and i �= n, i �= n + p. Then, for all

Q ∈ Sn
o , either

W̃–p,i(K , Q) = W̃–p,i(L, Q) or W̃–p,i(Q, K) = W̃–p,i(Q, L)

is true if and only if K = L.

From (.), (.), and (.), and noting that

W̃–p,i(λK ,λL) = λn–iW̃–p,i(K , L),

it is easy to know that for K ∈Fn
i,o and real λ > , then

�p,iλK = λ
n–p–i

p �p,iK . (.)

More generally, the next proposition shows that �∗
p,i commutes with members of O(n).

Proposition . If K ∈Fn
i,o and i ∈ {, , . . . , n – }, then, for any φ ∈ O(n),

�p,iφK = φ–t�p,iK .
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Proof Since φ ∈ O(n), then from Proposition ., Lemmas . and ., we have

W̃–p,i(�p,iφK , Q)
W̃i(�p,iφK)

=
Wp,i(φK , Q∗)

ωn
=

Wp,i(φK ,φφ–Q∗)
ωn

=
Wp,i(K ,φ–Q∗)

ωn
=

Wp,i(K , (φtQ)∗)
ωn

=
W̃–p,i(�p,iK ,φtQ)

W̃i(�p,iK)

=
W̃–p,i(φ–t�p,iK ,φ–tφtQ)

W̃i(φ–t�p,iK)
=

W̃–p,i(φ–t�p,iK , Q)
W̃i(φ–t�p,iK)

.

Take Q = �p,iφK and note that W̃–p,i(φ–t�p,iK ,φ–t�p,iK) = W̃i(φ–t�p,iK), it follows that

W̃–p,i
(
φ–t�p,iK ,φ–t�p,iK

)
= W̃–p,i

(
φ–t�p,iK ,�p,iφK

)
. (.)

Together with (.) and Lemma ., we immediately get the result. �

Recall that �p,i maps Bn, the centered unit ball, into Bn; i.e., �p,iBn = Bn. Since (φQ)∗ =
φ–tQ∗, for φ ∈ O(n) and Q ∈ Kn

o , Proposition . shows that if E is a centered ellipsoid
and E = φBn, then

�p,iE = �p,iφBn = φ–t�p,iBn = φ–tBn = φ–tB∗
n = (φBn)∗ = E∗,

namely,

�p,iE = E∗. (.)

It follows from Proposition . that for K ∈Fn
i,o and p > , the body �p,iK is a centered

ellipsoid if and only if K is a centered ellipsoid. Define

Wn
p,i =

{
K ∈Fn

i,o : there exists Q ∈Kn
o with fp,i(K , ·) = h(Q, ·)–(n+p–i)}. (.)

An immediate consequence of the definition of Wn
p,i and the definition of �p,i is the

following.

Proposition . If p ≥ , i ∈ {, , . . . , n – } and K ∈Fn
i,o, then

K ∈Wn
p,i if and only if �p,iK ∈Kn

o .

It follows from Propositions . and . that Wn
p,i is an orthogonal transformation

invariant class.

Proposition . Suppose K ∈ Fn
i,o and i ∈ {, , . . . , n – }. If p ≥  and φ ∈ O(n), then

K ∈Wn
p,i if and only if φK ∈Wn

p,i.

Define

En
i =

{
K ∈Fn

i,o : K∗ and �iK are dilates
}

. (.)
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For the case i = , the subscript i in En
i will often be suppressed. Namely, En

 = En. Ob-
viously, En

i ⊂ Wn
p,i for all p ≥  and i ∈ {, , . . . , n – }. From Proposition . and (.)

it follows that all centered ellipsoids belong to En
i . If K ∈ En

i , then from definition (.)
of the ith p-curvature image, (.) and (.), and noting that �iK = λK∗ with arbitrary
λ > , we have

ρ(�p,iK , ·)n+p–i =
W̃i(�p,iK)

ωn
fp,i(K , ·)

=
W̃i(�p,iK)

ωn
h(K , ·)–pfi(K , ·)

=
W̃i(�p,iK)
W̃i(�iK)

ρ
(
K∗, ·)p–

ρ(�iK , ·)n+–i

=
W̃i(�p,iK)
W̃i(λK∗)

ρ
(
K∗, ·)p–

ρ
(
λK∗, ·)n+–i

=
λW̃i(�p,iK)

W̃i(K∗)
ρ
(
K∗, ·)n+p–i.

Taking

λ =
W̃i(K∗)

W̃i(�p,iK)
×

(
Wi(K)

ωn

) n+p–i
p

,

and then

ρ(�p,iK , ·)n+p–i =
(

Wi(K)
ωn

) n+p–i
p

ρ
(
K∗, ·)n+p–i,

it follows immediately that

�p,iK =
[
Wi(K)/ωn

]/pK∗

for all p ≥  and i ∈ {, , . . . , n – }.
On the other hand, if p ≥ , i ∈ {, , . . . , n – } and the body K ∈ Fn

i,o is such that �p,iK
and K∗ are dilates, then let �p,iK = λK∗ with λ > . From definition (.) of the ith p-
curvature image, (.), (.), and (.) as well as (.), it follows that

(.) ⇒ ρ
(
λK∗, ·)n+p–i =

W̃i(λK∗)
ωn

fp,i(K , ·)

⇒ λpρ
(
K∗, ·)n+p–i =

W̃i(K∗)
ωn

h(K , ·)–pfi(K , ·)

⇒ λpρ
(
K∗, ·)n+–i =

W̃i(K∗)
ωn

fi(K , ·)

⇒ ρ
(
λK∗, ·)n+–i =

W̃i(λK∗)
ωn

fi
(
λ

–p
n–i– K , ·). (.)
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Comparing to (.) and (.) and using Proposition ., we let Q = λ
–p

n–i– K and λK∗ =
�iQ. Then from (.) we get

λK∗ = �iQ = �i
(
λ

–p
n–i– K

)
= λ–p�iK ,

that is,

�iK = λpK∗.

Accordingly, K ∈ En
i . Thus, the sets defined for p ≥  and i ∈ {, , . . . , n – } by En

p,i = {K ∈
Fn

i,o : K∗ and �p,iK are dilates} are one and the same. Namely, En
p,i = En

i for all p ≥  and
i ∈ {, , . . . , n – }.

It is known that if ∂K is a regular C hypersurface and K ∈ En, then K must be an ellip-
soid. It is known that if K ∈ En and K is a body of revolution, then K must be an ellipsoid.
It is also known that E consists only of centered ellipses. For all these facts, see Petty [].
It has been conjectured that En is exactly the class of centered ellipsoids (see []). There-
fore, we conjecture that En

i , i = , , . . . , n – , are exactly the class of centered ellipsoids.
None of the facts stated in this paragraph will be used in this article.

For K ∈Kn
o , define the ith p-curvature ratio of K as

(
ωn–i

n W̃i(�p,iK)p

Wi(K)n–p–i

) 
p

.

Since K ∈ En
i implies that �p,iK = [Wi(K)/ωn]/pK∗, it follows immediately that the ith

p-curvature ratio of K ∈ En
i equals Wi(K)W̃i(K∗) of K . Namely, if K ∈ En

i , then

(
ωn–i

n W̃i(�p,iK)p

Wi(K)n–p–i

) 
p

= Wi(K)W̃i
(
K∗)

for all p ≥  and i ∈ {, , . . . , n – }. The next proposition shows that this characterizes
bodies in En

i .

Proposition . If p ≥  and K ∈Fn
i,o with i ∈ {, , . . . , n – }, then

(
ωn–i

n W̃i(�p,iK)p

Wi(K)n–p–i

) 
p

≤ Wi(K)W̃i
(
K∗) (.)

with equality if and only if K ∈ En
i .

Proof Taking Q = K∗ in Proposition ., we get

Wi(K) = ωnW̃–p,i
(
�p,iK , K∗)/W̃i(�p,iK).

The dual p-mixed quermassintegrals inequality (.) gives

Wi(K)n–i ≥ ωn–i
n W̃i(�p,iK)pW̃i

(
K∗)–p

with equality if and only if �p,iK and K∗ are dilates. �
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For bodies with ith continuous curvature functions, the equality conditions for the in-
equality of Proposition . are easily obtained by combining Propositions . and ..

Theorem . If p ≥ , i ∈ {, , . . . , n – }, and K ∈Fn
i,o, then

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤ Wi(K)W̃i
(
K∗) (.)

with equality if and only if K ∈ En
i .

4 The cyclic inequalities and monotonicity of ith p-affine area ratio
Suppose that  ≤ p < q < r and K , L ∈Kn

o . Since

hq
Lh–q

K =
[
hp

Lh–p
K

](r–q)/(r–p)[hr
Lh–r

K
](q–p)/(r–p),

the Hölder inequality, together with (.) and (.), yields the following.

Proposition . If K , L ∈Kn
o , and  ≤ p < q < r, then, for i ∈ {, , . . . , n – },

Wq,i(K , L)r–p ≤ Wp,i(K , L)r–qWr,i(K , L)q–p (.)

with equality if and only if there exists a constant c >  such that hL = chK almost every-
where with respect to Si(K , ·).

Suppose  ≤ p < q and K ∈Kn
o with L ∈ Sn

o . Since

ρ
–p
L h–p

K =
[
ρ

–q
L h–q

K
]p/qh(q–p)/q

K ,

the Hölder inequality yields the following.

Proposition . Suppose K ∈Kn
o , L ∈ Sn

o , and  ≤ p < q. Then, for any i ∈ {, , . . . , n – },

(
Wp,i(K , L∗)

Wi(K)

) 
p

≤
(

Wq,i(K , L∗)
Wi(K)

) 
q

(.)

with equality if and only if there exists a constant c >  such that ρL = c/hK almost every-
where with respect to Si(K , ·).

Suppose  ≤ p < q and K ∈ Kn
o with L ∈ Sn

o . From the integral representation of
Wp,i(K , L∗) the easy estimate follows

∣∣Wp,i
(
K , L∗) – Wq,i

(
K , L∗)∣∣ ≤ Wp,i

(
K , L∗) max

u∈Sn–

∣∣[ρL(u)hK (u)
]p–q – 

∣∣.

This gives the following proposition.

Proposition . Suppose K ∈Kn
o , L ∈ Sn

o , and i ∈ {, , . . . , n – }. The function defined on
[,∞) by

p �→ Wp,i
(
K , L∗)

is continuous.
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From the equality conditions of Proposition . it follows that if K ∈ En
i , then the ith p-

curvature ratios are independent of p. The next proposition provides a strong converse by
showing that unless K ∈ En

i , the ith p-curvature ratios are (strictly) monotone increasing
in p.

Proposition . If K ∈Fn
i,o, i ∈ {, , . . . , n – }, and  ≤ p < q, then

(
ωn–i

n W̃i(�p,iK)p

Wi(K)n–p–i

) 
p

≤
(

ωn–i
n W̃i(�q,iK)q

Wi(K)n–q–i

) 
q

(.)

with equality if and only if K ∈ En
i .

Proof From Proposition ., with �q,iK taken for Q, and Proposition . it follows that

(
ωnW̃–p,i(�p,iK ,�q,iK)

Wi(K)W̃i(�p,iK)

) 
p

≤
(

ωnW̃–q,i(�q,iK ,�q,iK)
Wi(K)W̃i(�q,iK)

) 
q

=
(

ωn

Wi(K)

) 
q

.

The dual ith p-mixed quermassintegrals inequality (.) now gives the desired inequal-
ity and shows that equality implies that �p,iK and �q,iK must be dilates. But definition
(.) of ith p-curvature images and definition (.) of ith curvature images, together
with (.), show that �p,iK and �q,iK can be dilates if and only if K ∈ En

i . �

The following cyclic inequality will be needed.

Proposition . If K ∈Fn
i,o, i ∈ {, , . . . , n – }, and  ≤ p < q < r, then

W̃i(�q,iK)q(r–p) ≤ W̃i(�p,iK)p(r–q)W̃i(�r,iK)r(q–p) (.)

with equality if and only if K ∈ En
i .

Proof From (.) it follows that

fq,i(K , ·)r–p = fp,i(K , ·)r–qfr,i(K , ·)q–p.

Thus definition (.) of the ith p-curvature image shows that

W̃i(�q,iK)p–rρ(�q,iK , ·)(n+q–i)(r–p)

= W̃i(�p,iK)q–rρ(�p,iK , ·)(n+p–i)(r–q)W̃i(�r,iK)p–qρ(�r,iK , ·)(n+r–i)(q–p).

The Hölder inequality and formula (.) for ith dual quermassintegrals now yield the de-
sired inequality and show that equality is possible if and only if �p,iK and �r,iK are dilates,
or equivalently, if and only if K ∈ En

i . �

In contrast to the inequality of Proposition ., there is the following proposition.

Proposition . If K ∈Fn
i,o, i ∈ {, , . . . , n – }, and  ≤ p < q, then

(
W̃i(�q,iK)

W̃i(K∗)

)q

≤
(

W̃i(�p,iK)
W̃i(K∗)

)p

(.)

with equality if and only if K ∈ En
i .
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Proof From (.) it follows that

fq,i(K , ·) = fp,i(K , ·)h(K , ·)–(q–p).

Definition (.) of the ith p-curvature image thus gives

W̃i(�q,iK)–ρ(�q,iK , ·)n+q–i = W̃i(�p,iK)–ρ(�p,iK , ·)n+p–ih(K , ·)–(q–p).

The Hölder inequality, together with formula (.) for ith dual quermassintegrals, now
yields the desired inequality and shows that equality can occur if and only if �p,iK and K∗

are dilates, or equivalently, if and only if K ∈ En
i . �

It turns out that there is an inequality between the ith p-affine surface areas of a convex
body that is similar to the classical cyclic inequality between the quermassintegrals of the
convex body.

Theorem . Suppose K ∈Kn
o , i ∈ {, , . . . , n – } and  ≤ p < q < r. Then

�(i)
q (K)(n+q–i)(r–p) ≤ �(i)

p (K)(n+p–i)(r–q)�(i)
r (K)(n+r–i)(q–p).

Obviously, the case i =  of Theorem . is just the cyclic inequality for p-affine surface
areas of a convex body by Lutwak (see []).

Proof To show this, define Q ∈ Sn
o by

ρ
q(r–p)
Q

= ρ
p(r–q)
Q

ρ
r(q–p)
Q

.

Since

ρn–i
Q = ρ

p(r–q)(n–i)
q(r–p)

Q
ρ

r(q–p)(n–i)
q(r–p)

Q
,

the Hölder inequality and the dual quermassintegrals formula give

W̃i(Q)q(r–p) ≤ W̃i(Q)p(r–q)W̃i(Q)r(q–p). (.)

Since

ρ
–q
Q

h–q
K =

[
ρ

–p
Q

h–p
K

] r–q
r–p

[
ρ–r

Q h–r
K

] q–p
r–p ,

the Hölder inequality, together with (.) and (.), yields

Wq,i
(
K , Q∗


)r–p ≤ Wp,i

(
K , Q∗


)r–qWr,i

(
K , Q∗


)q–p. (.)

Definition (.) of the ith p-affine surface area, together with (.) and (.), yields

�(i)
q (K)(n+q–i)(r–p) ≤ �(i)

p (K)(n+p–i)(r–q)�(i)
r (K)(n+r–i)(q–p). �
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Note that if K is a polytope, then there is equality in the inequality of Theorem .. For
bodies with ith continuous curvature functions, the equality conditions of inequality of
Theorem . are easily obtained from Propositions . and ..

Proposition . Suppose K ∈Fn
i,o, i ∈ {, , . . . , n – } and  ≤ p < q < r. Then

�(i)
q (K)(n+q–i)(r–p) ≤ �(i)

p (K)(n+p–i)(r–q)�(i)
r (K)(n+r–i)(q–p) (.)

with equality if and only if K ∈ En
i .

For K ∈Kn
o , we define the ith p-affine area ratio of K by

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

. (.)

We can rewrite definition (.) for �
(i)
p (K) of K ∈Kn

o by

Wi(K)
(

�
(i)
p (K)

nWi(K)

) n+p–i
p

= inf
{[

Wp,i
(
K , Q∗)/Wi(K)

] n–i
p W̃i(Q) : Q ∈ Sn

o
}

. (.)

Together with definition (.) and Proposition ., the following shows that the ith
p-affine area ratios are monotone nondecreasing in p.

Proposition . If K ∈Kn
o and i ∈ {, , . . . , n – }, then, for  ≤ p ≤ q,

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤
(

�
(i)
q (K)n+q–i

nn+q–iWi(K)n–q–i

) 
q

. (.)

Proof of Theorem . Note that if K is a polytope, then there is equality in inequality (.).
For bodies with ith continuous curvature functions, the equality conditions of the inequal-
ity of Proposition . follow directly from Propositions . and .. This completes the
proof of Theorem .. �

In contrast to the inequality of Proposition ., we have the following proposition.

Proposition . If K ∈Kn
o and i ∈ {, , . . . , n – }, then, for  ≤ p ≤ q,

(
�

(i)
q (K)

nW̃i(K∗)

)n+q–i

≤
(

�
(i)
p (K)

nW̃i(K∗)

)n+p–i

. (.)

Proof The inequality of Proposition . follows immediately from the definition of ith p-
affine surface area once the following fact is established: Given Q ∈ Sn

o , there exists Q ∈ Sn
o

such that

Wq,i
(
K , Q∗)n–i W̃i(Q)q

W̃i(K∗)q
≤ Wp,i

(
K , Q∗)n–i W̃i(Q)p

W̃i(K∗)p
. (.)

To show this, define Q ∈ Sn
o by

ρQ =
[
W̃i

(
K∗)p–qW̃i(Q)–p] 

q(n–i) ρ
p
q

Q ρ
q–p

q
K∗ . (.)
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From (.) we have

ρ
–q
Q h–q

K = W̃i
(
K∗) q–p

n–i W̃i(Q)
p

n–i ρ
–p
Q h–p

K ,

the integral representation of Wp,i(K , Q∗) shows that

Wq,i
(
K , Q∗) = W̃i

(
K∗) q–p

n–i W̃i(Q)
p

n–i Wp,i
(
K , Q∗). (.)

The definition of Q, together with the Hölder inequality and the formula for ith dual quer-
massintegrals, shows that

W̃i(Q) = W̃i
(
K∗) p–q

q W̃i(Q)– p
q

[

n

∫

Sn–
ρQ(u)

(n–i)p
q ρK∗ (u)

(n–i)(q–p)
q dS(u)

]

≤ W̃i
(
K∗) p–q

q W̃i(Q)– p
q

(

n

∫

Sn–
ρn–i

Q (u) dS(u)
) p

q
(∫

Sn–
ρn–i

K∗ (u) dS(u)
) q–p

q

= . (.)

Together with (.) and (.), we show that (.), and this completes the argument.
�

If K is a polytope there is equality in the inequality of Proposition .. For bodies with
ith continuous curvature functions, the equality conditions in inequality (.) follow im-
mediately from Propositions . and ..

Theorem . If K ∈Fn
i,o and i ∈ {, , . . . , n – }, then, for  ≤ p < q,

(
�

(i)
q (K)

nW̃i(K∗)

)n+q–i

≤
(

�
(i)
p (K)

nW̃i(K∗)

)n+p–i

(.)

with equality if and only if K ∈ En
i .

An immediate consequence of Propositions . and . is the following.

Proposition . If K ∈ Kn
o , i ∈ {, , . . . , n – }, and �

(i)
p =  for some p ∈ [,∞), then

�
(i)
p =  for all p.

The cyclic inequality of Theorem . shows that the function defined on [,∞) by

p �→ (n + p – i) log�(i)
p (K)

is convex. The continuity of this function on [,∞) follows from this and Proposition ..
The continuity of this function immediately gives the following.

Proposition . If K ∈Kn
o and i ∈ {, , . . . , n – }, then the function defined on [,∞) by

p �→ �(i)
p (K)

is continuous.



Ma and Feng Journal of Inequalities and Applications  (2015) 2015:187 Page 23 of 26

5 Extremal ith affine surface area
Define the generalized Santaló product of K ∈Kn

o by Wi(K)W̃i(K∗). Proposition . states
that, for K ∈Kn

o , the ith p-affine area ratio

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

is monotone nondecreasing in p, and Theorem . states that this ratio is bounded by
the generalized Santaló product of K .

In order to facilitate the formulation of the ith p-affine area ratio for the case p = ∞, it
will be helpful to introduce a quermassintegrals-normalized version of ith p-mixed quer-
massintegrals. If K , L are convex bodies that contain the origin in their interiors, then for
each real p >  define

W p,i(K , L) =
(

Wp,i(K , L)
Wi(K)

) 
p

=
[


nWi(K)

∫

Sn–

(
hL(u)
hK (u)

)p

hK (u) dSi(K , u)
] 

p
,

and for p = ∞ define

W ∞,i(K , L) = lim
p→∞

(
Wp,i(K , L)

Wi(K)

) 
p

= max

{
hL(u)
hK (u)

: u ∈ supp Si(K , ·)
}

. (.)

Note that 
n hK dSi(K , ·)/Wi(K) = 

n h–i
K dS(K , ·)/Wi(K) is a probability measure on supp

Si(K , ·) (or S(K , ·)).
According to (.), we can define ith ∞-mixed quermassintegrals, W∞,i(K , L), of K , L ∈

Sn
o by

W∞,i(K , L) = Wi(K)W ∞,i(K , L). (.)

From definition (.) of ith p-affine surface area �
(i)
p (K), definition (.) of W ∞,i(K , L)

and definition (.) of W∞,i(K , L), we have

lim
p→∞

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

= lim
p→∞

(
infQ∈Sn

o {nn+p–iWp,i(K , Q∗)n–iW̃i(Q)}
nn+p–iWi(K)n–p–i

) 
p

= inf
Q∈Sn

o

{
lim

p→∞

(
Wp,i(K , Q∗)

Wi(K)

) n–i
p

lim
p→∞

W̃i(Q)
Wi(K)–

}

= inf
Q∈Sn

o

{
W ∞,i

(
K , Q∗)n–i · W̃i(Q)

Wi(K)–

}

=
infQ∈Sn

o {nn+–iW∞,i(K , Q∗)n–iW̃i(Q)}
nn+–iWi(K)n––i .

Therefore, we can define ith ∞-affine surface area �
(i)∞(K) of K ∈Kn

o by

n– 
n–i �(i)

∞(K)
n+–i

n–i = inf
{

nW∞,i
(
K , Q∗)W̃i(Q)


n–i : Q ∈ Sn

o
}

.
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Then

�
(i)∞(K)n+–i

nn+–iWi(K)n––i = lim
p→∞

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

. (.)

An immediate consequence of Proposition . and the definition of �
(i)∞(K) is that

�
(i)∞(K) is invariant under orthogonal transformations of K .

Proposition . If i ∈ {, , . . . n – } and K ∈Kn
o , then

�(i)
∞(φK) = �(i)

∞(K)

for all φ ∈ O(n).

An immediate consequence of Proposition . and the definition of �
(i)∞ is as follows.

Proposition . If p ≥  and P ∈ Kn
o is a polytope, then �

(i)∞(P) =  for any i ∈ {, , . . . ,
n – }.

From Proposition . and the definition of �
(i)∞ the proposition follows.

Proposition . If K ∈Kn
o and p ≥ , i ∈ {, , . . . n – }, then

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤ �
(i)∞(K)n+–i

nn+–iWi(K)n––i .

If K has the ith continuous curvature function, then the equality conditions in Propo-
sition . are easily obtained. Note that from Theorem . it follows that if K ∈ Fn

i,o \ En
i ,

then the limit

lim
p→∞

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

=
�

(i)∞(K)n+–i

nn+–iWi(K)n––i

is the limit of a strictly increasing function of p. Hence, from Theorem . and the defini-
tion of �

(i)∞, the proposition follows.

Proposition . If p ≥ , i ∈ {, , . . . n – } and K ∈Fn
i,o, then

(
�

(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤ �
(i)∞(K)n+–i

nn+–iWi(K)n––i (.)

with equality if and only if K ∈ En
i .

From Proposition . and the definition of �
(i)∞ we have

Proposition . If K ∈Kn
o and i ∈ {, , . . . , n – }, then

�
(i)∞(K)n+–i

nn+–iWi(K)n––i ≤ Wi(K)W̃i
(
K∗). (.)
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This immediately yields

Proposition . Suppose K ∈Kn
o and i ∈ {, , . . . , n – }, then

�(i)
∞(K)�(i)

∞
(
K∗) ≤ nWi(K)Wi

(
K∗). (.)

The inequality of Proposition . compares Wi(K)W̃i(K∗) and �
(i)∞(K) for K ∈ Kn

o . The
next proposition shows that for an important class of bodies, these quantities are the same.

Proposition . If i ∈ {, , . . . , n – } and K ∈Fn
i,o, then

�
(i)∞(K)n+–i

nn+–iWi(K)n––i = Wi(K)W̃i
(
K∗). (.)

Proof Since fp,i(K , ·) = h–p
K fi(K , ·), and hK and fi(K , ·) are positive continuous functions, it

is easily seen that

lim
p→∞ fp,i(K , ·) n–i

n+p–i = h–(n–i)
K uniformly on S

n–.

The formula for the ith dual quermassintegrals, together with the integral representation
of Theorem ., now yields the desired result. �

Proposition . shows that when restricted to Fn
i,o, the function �

(i)∞ : Fn
i,o → (,∞) is

continuous.
When Theorem . and Proposition . are combined with Proposition ., result is that

for K ∈Fn
i,o and  ≤ p ≤ q,

�(i)(K)n+–i

nn+–iWi(K)n––i ≤
(

�
(i)
p (K)n+p–i

nn+p–iWi(K)n–p–i

) 
p

≤
(

�
(i)
q (K)n+q–i

nn+q–iWi(K)n–q–i

) 
q

≤ �
(i)∞(K)n+–i

nn+–iWi(K)n––i = Wi(K)W̃i
(
K∗). (.)

Finally, we propose the following open question.

Conjecture . Suppose K ∈Fn
i,o, i ∈ {, , . . . , n – } and p ≥ . Does it follow that

�(i)
p (K)n+p–i ≤ nn+p–iωp

n Wi(K)n–p–i? (.)

with equality in inequality for i =  if and only if K is an ellipsoid, and for  < i ≤ n –  if
and only if Kis a ball.

Obviously, the case i =  of Conjecture . is just the p-affine isoperimetric inequality
by Lutwak (see []).
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