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Abstract
We generalize Steffensen’s inequality to the class of n-convex functions using Taylor’s
formula. Further, we use inequalities for the Čebyšev functional to obtain bounds for
identities related to generalizations of Steffensen’s inequality, and we give
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results to obtain new Stolarsky-type means.
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1 Introduction
In  Steffensen proved the following inequality (see []).

Theorem . Suppose that f is nonincreasing and g is integrable on [a, b] with  ≤ g ≤ 
and λ =

∫ b
a g(t) dt. Then we have

∫ b

b–λ

f (t) dt ≤
∫ b

a
f (t)g(t) dt ≤

∫ a+λ

a
f (t) dt. (.)

The inequalities are reversed for f nondecreasing.

Since its appearance many papers have been devoted to generalizations and refinements
of Steffensen’s inequality and its connection to other important inequalities.

The following identities are the starting point for our generalizations of Steffensen’s in-
equality:

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt

=
∫ a+λ

a

[
f (t) – f (a + λ)

][
 – g(t)

]
dt +

∫ b

a+λ

[
f (a + λ) – f (t)

]
g(t) dt (.)

and
∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt

=
∫ b–λ

a

[
f (t) – f (b – λ)

]
g(t) dt +

∫ b

b–λ

[
f (b – λ) – f (t)

][
 – g(t)

]
dt. (.)
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In [] Mitrinović stated that the inequalities in (.) follow from identities (.) and (.).
Let us recall the well-known Taylor’s formula needed for our generalizations:

f (x) =
n–∑

i=

f (i)(a)
i!

(x – a)i +


(n – )!

∫ x

a
f (n)(t)(x – t)n– dt. (.)

Similarly, we have Taylor’s formula in point b, i.e.

f (x) =
n–∑

i=

f (i)(b)
i!

(x – b)i –


(n – )!

∫ b

x
f (n)(t)(x – t)n– dt. (.)

In this paper we generalize Steffensen’s inequality to n-convex functions using Taylor’s
formula. Further, we use inequalities for the Čebyšev functional to obtain bounds for iden-
tities related to generalizations of Steffensen’s inequality. We continue with Ostrowski-
type inequalities related to obtained generalizations, and we conclude the paper with an
application to Stolarsky-type means.

2 Generalizations via Taylor’s formula
We begin this section with the proof of some identities related to generalizations of Stef-
fensen’s inequality.

Theorem . Let f : [a, b] →R be such that f (n–) is absolutely continuous for some n ≥ ,
and let g : [a, b] → R be an integrable function such that  ≤ g ≤ . Let λ =

∫ b
a g(t) dt and

let the function G be defined by

G(x) =

⎧
⎨

⎩

∫ x
a ( – g(t)) dt, x ∈ [a, a + λ],

∫ b
x g(t) dt, x ∈ [a + λ, b].

(.)

Then

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

= –


(n – )!

∫ b

a

(∫ b

t
G(x)(x – t)n– dx

)

f (n)(t) dt (.)

and

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx

=


(n – )!

∫ b

a

(∫ t

a
G(x)(x – t)n– dx

)

f (n)(t) dt. (.)

Proof Applying Taylor’s formula (.) to the function f ′ and replacing n with n –  (n ≥ ),
we have

f ′(x) =
n–∑

i=

f (i+)(a)
i!

(x – a)i +
∫ x

a
f (n)(t)

(x – t)n–

(n – )!
dt. (.)
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Applying integration by parts and then using the definition of the function G, identity
(.) becomes

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt

= –
∫ a+λ

a

(∫ x

a

(
 – g(t)

)
dt

)

df (x) –
∫ b

a+λ

(∫ b

x
g(t) dt

)

df (x)

= –
∫ b

a
G(x)f ′(x) dx.

Hence, using (.) we obtain

∫ b

a
G(x)f ′(x) dx =

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

+


(n – )!

∫ b

a
G(x)

(∫ x

a
(x – t)n–f (n)(t) dt

)

dx. (.)

After applying Fubini’s theorem to the last term in (.) we obtain (.).
Similarly, applying Taylor’s formula (.) to the function f ′ we obtain (.). �

Theorem . Let f : [a, b] →R be such that f (n–) is absolutely continuous for some n ≥ ,
and let g : [a, b] → R be an integrable function such that  ≤ g ≤ . Let λ =

∫ b
a g(t) dt and

let the function G be defined by

G(x) =

⎧
⎨

⎩

∫ x
a g(t) dt, x ∈ [a, b – λ],

∫ b
x ( – g(t)) dt, x ∈ [b – λ, b].

(.)

Then

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt +
n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

= –


(n – )!

∫ b

a

(∫ b

t
G(x)(x – t)n– dx

)

f (n)(t) dt (.)

and

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt +
n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx

=


(n – )!

∫ b

a

(∫ t

a
G(x)(x – t)n– dx

)

f (n)(t) dt. (.)

Proof Similar to the proof of Theorem . applying integration by parts to identity (.)
and then using identity (.). �

In the following theorem we obtain generalizations of Steffensen’s inequality for n-
convex functions.
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Theorem . Let f : [a, b] → R be such that f (n–) is absolutely continuous for some n ≥ ,
and let g : [a, b] → R be an integrable function such that  ≤ g ≤ . Let λ =

∫ b
a g(t) dt and

let the function G be defined by (.).
(i) If f is n-convex, then

∫ b

a
f (t)g(t) dt ≥

∫ a+λ

a
f (t) dt +

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx. (.)

(ii) If f is n-convex and
∫ t

a
G(x)(x – t)n– dx ≤ , t ∈ [a, b], (.)

then

∫ b

a
f (t)g(t) dt ≥

∫ a+λ

a
f (t) dt +

n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx. (.)

Proof If the function f is n-convex, without loss of generality we can assume that f is n-
times differentiable and f (n) ≥  (see [], p. and p.). Since  ≤ g ≤ , the function G

is nonnegative, and for every n ≥  we have

∫ b

t
G(x)(x – t)n– dx ≥ , t ∈ [a, b].

Hence, we can apply Theorem . to obtain (.) and (.) respectively. �

Theorem . Let f : [a, b] →R be such that f (n–) is absolutely continuous for some n ≥ ,
and let g : [a, b] → R be an integrable function such that  ≤ g ≤ . Let λ =

∫ b
a g(t) dt and

let the function G be defined by (.).
(i) If f is n-convex, then

∫ b

a
f (t)g(t) dt ≤

∫ b

b–λ

f (t) dt –
n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx. (.)

(ii) If f is n-convex and
∫ t

a
G(x)(x – t)n– dx ≤ , t ∈ [a, b], (.)

then

∫ b

a
f (t)g(t) dt ≤

∫ b

b–λ

f (t) dt –
n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx. (.)

Proof Similar as in the proof of Theorem ., we can apply Theorem . to obtain (.)
and (.). Again, since  ≤ g ≤ , the function G is nonnegative and for every n ≥  we
have

∫ b

t
G(x)(x – t)n– dx ≥ , t ∈ [a, b]. �
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Taking n =  in Theorems . and ., we obtain the following special cases for convex
functions.

Corollary . Let f : [a, b] → R be such that f ′ is absolutely continuous, let g : [a, b] → R

be an integrable function such that  ≤ g ≤  and let λ =
∫ b

a g(t) dt.
(i) If f is convex, then

∫ b

a
f (t)g(t) dt ≥

∫ a+λ

a
f (t) dt + f ′(a)

(∫ b

a
tg(t) dt – λa –

λ



)

.

(ii) If f is convex and

∫ t

a
(t – x)g(x) dx ≥ (t – a)


, t ∈ [a, a + λ],

∫ t

a
(t – x)g(x) dx ≥ λ


+ λ(t – a – λ), t ∈ [a + λ, b],

then

∫ b

a
f (t)g(t) dt ≥

∫ a+λ

a
f (t) dt + f ′(b)

(∫ b

a
tg(t) dt – λa –

λ



)

.

Corollary . Let f : [a, b] → R be such that f ′ is absolutely continuous, let g : [a, b] → R

be an integrable function such that  ≤ g ≤  and let λ =
∫ b

a g(t) dt.
(i) If f is convex, then

∫ b

a
f (t)g(t) dt ≤

∫ b

b–λ

f (t) dt – f ′(a)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)

.

(ii) If f is convex and

∫ t

a
(t – x)g(x) dx ≤ , t ∈ [a, b – λ],

∫ b

a
(b – x)g(x) dx ≤ (b – t) – λ


+ λ(t – b + λ), t ∈ [b – λ, b],

then

∫ b

a
f (t)g(t) dt ≤

∫ b

b–λ

f (t) dt – f ′(b)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)

.

3 Bounds for identities related to generalizations of Steffensen’s inequality
In the paper the symbol Lp[a, b] ( ≤ p < ∞) denotes the space of p-power integrable func-
tions on the interval [a, b] equipped with the norm

‖f ‖p =
(∫ b

a

∣
∣f (t)

∣
∣p dt

) 
p

,
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and L∞[a, b] denotes the space of essentially bounded functions on [a, b] with the norm

‖f ‖∞ = ess sup
t∈[a,b]

∣
∣f (t)

∣
∣.

For two Lebesgue integrable functions f , h : [a, b] → R, we consider the Čebyšev func-
tional

T(f , h) =


b – a

∫ b

a
f (t)h(t) dt –


b – a

∫ b

a
f (t) dt · 

b – a

∫ b

a
h(t) dt.

In [] the authors proved the following theorems.

Theorem . Let f : [a, b] →R be a Lebesgue integrable function and h : [a, b] →R be an
absolutely continuous function with (·– a)(b – ·)[h′] ∈ L[a, b]. Then we have the inequality

∣
∣T(f , h)

∣
∣ ≤ √


[
T(f , f )

] 
 √

b – a

(∫ b

a
(x – a)(b – x)

[
h′(x)

] dx
) 


. (.)

The constant √
 in (.) is best possible.

Theorem . Assume that h : [a, b] → R is monotonic nondecreasing on [a, b] and f :
[a, b] →R is absolutely continuous with f ′ ∈ L∞[a, b]. Then we have the inequality

∣
∣T(f , h)

∣
∣ ≤ 

(b – a)
∥
∥f ′∥∥∞

∫ b

a
(x – a)(b – x) dh(x). (.)

The constant 
 in (.) is best possible.

In the sequel we use the above theorems to obtain generalizations of the results proved
in the previous section.

Firstly, let us denote

�i(t) =
∫ b

t
Gi(x)(x – t)n– dx, i = , , (.)

and

�i(t) =
∫ t

a
Gi(x)(x – t)n– dx, i = , . (.)

We have that Čebyšev functionals T(�i,�i) and T(�i,�i), i = , , are given by:

T(�,�) =


(n – )(b – a)

[∫ b

a
�(t) dt –


n

∫ a+λ

a
(a + λ – t)n�(t) dt +

λn+

(n + )n

]

–


(b – a)(n – )n

(∫ b

a
g(x)(x – a)n dx –

λn+

n + 

)

,

T(�,�) =


(n – )(b – a)

[
(b – a)n+ – (b – λ – a)n+

(n + )n +
∫ b

a
�(t) dt

–

n

(

n

∫ b–λ

a
(b – t)n(b – λ – t)n dt +

∫ b

a
(b – t)n�(t) dt
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–
∫ b–λ

a
(b – λ – t)n�(t) dt

)]

–


(b – a)(n – )n

(
(b – λ – a)n+ – (b – a)n+

n + 
+

∫ b

a
g(x)(x – a)n dx

)

,

where �(t) =
∫ b

t g(x)(x – t)n– dx,

T(�,�) =


(n – )(b – a)

[
(a + λ – b)n+ – (a – b)n+

(n + )n +
∫ b

a
ϒ(t) dt

–

n

(

n

∫ b

a+λ

(a – t)n(a + λ – t)n dt +
∫ b

a
(a – t)nϒ(t) dt

–
∫ b

a+λ

(a + λ – t)nϒ(t) dt
)]

–


(b – a)(n – )n

(
(a + λ – b)n+ – (a – b)n+

n + 
+

∫ b

a
g(x)(x – b)n dx

)

and

T(�,�) =


(n – )(b – a)

[∫ b

a
ϒ(t) dt –


n

∫ b

b–λ

(b – λ – t)nϒ(t) dt +
λn+

(n + )n

]

–


(b – a)(n – )n

(∫ b

a
g(x)(x – b)n dx +

(–λ)n+

n + 

)

,

where ϒ(t) =
∫ t

a g(x)(x – t)n– dx.

Theorem . Let f : [a, b] → R be such that f (n) is an absolutely continuous function for
some n ≥  with (· – a)(b – ·)[f (n+)] ∈ L[a, b], and let g be an integrable function on [a, b]
such that  ≤ g ≤ . Let λ =

∫ b
a g(t) dt and let the functions G, � and � be defined by

(.), (.) and (.).
(i) Then

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

+
f (n–)(b) – f (n–)(a)

(b – a)(n – )!

∫ b

a
�(t) dt = H

n(f ; a, b), (.)

where the remainder H
n(f ; a, b) satisfies the estimation

∣
∣H

n(f ; a, b)
∣
∣ ≤

√
b – a√

(n – )!
[
T(�,�)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f (n+)(t)

] dt
∣
∣
∣
∣




. (.)

(ii) Then

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx

–
f (n–)(b) – f (n–)(a)

(b – a)(n – )!

∫ b

a
�(t) dt = H

n(f ; a, b), (.)
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where the remainder H
n(f ; a, b) satisfies the estimation

∣
∣H

n(f ; a, b)
∣
∣ ≤

√
b – a√

(n – )!
[
T(�,�)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f (n+)(t)

] dt
∣
∣
∣
∣




.

Proof (i) If we apply Theorem . for f → � and h → f (n), we obtain

∣
∣
∣
∣


b – a

∫ b

a
�(t)f (n)(t) dt –


b – a

∫ b

a
�(t) dt · 

b – a

∫ b

a
f (n)(t) dt

∣
∣
∣
∣

≤ √

[
T(�,�)

] 
 √

b – a

∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f (n+)(t)

] dt
∣
∣
∣
∣




.

Therefore we have


(b – a)(n – )!

∫ b

a
�(t) dt · 

b – a

∫ b

a
f (n)(t) dt =

f (n–)(b) – f (n–)(a)
(b – a)(n – )!

∫ b

a
�(t) dt.

Now if we add that to the both sides of identity (.), we obtain (.).
(ii) Similar to the first part. �

Theorem . Let f : [a, b] → R be such that f (n) is an absolutely continuous function for
some n ≥  with (· – a)(b – ·)[f (n+)] ∈ L[a, b], and let g be an integrable function on [a, b]
such that  ≤ g ≤ . Let λ =

∫ b
a g(t) dt and let the functions G, � and � be defined by

(.), (.) and (.).
(i) Then

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt +
n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

+
f (n–)(b) – f (n–)(a)

(b – a)(n – )!

∫ b

a
�(t) dt = H

n(f ; a, b), (.)

where the remainder H
n(f ; a, b) satisfies the estimation

∣
∣H

n(f ; a, b)
∣
∣ ≤

√
b – a√

(n – )!
[
T(�,�)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f (n+)(t)

] dt
∣
∣
∣
∣




.

(ii) Then

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt +
n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx

–
f (n–)(b) – f (n–)(a)

(b – a)(n – )!

∫ b

a
�(t) dt = H

n (f ; a, b), (.)

where the remainder H
n (f ; a, b) satisfies the estimation

∣
∣H

n (f ; a, b)
∣
∣ ≤

√
b – a√

(n – )!
[
T(�,�)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f (n+)(t)

] dt
∣
∣
∣
∣




.
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Proof Similar to the proof of Theorem .. �

Taking n =  in Theorems . and ., we obtain the following corollaries.

Corollary . Let f : [a, b] → R be such that f ′′ is an absolutely continuous function with
(· – a)(b – ·)[f ′′′] ∈ L[a, b], let g be an integrable function on [a, b] such that  ≤ g ≤  and
let λ =

∫ b
a g(t) dt.

(i) Then

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt + f ′(a)

(∫ b

a
tg(t) dt – λa –

λ



)

+
f ′(b) – f ′(a)

(b – a)

(∫ b

a
g(t)(t – a) dt –

λ



)

= H
(f ; a, b),

where the remainder H
(f ; a, b) satisfies the estimation

∣
∣H

(f ; a, b)
∣
∣ ≤

√
b – a√


[
T(φ,φ)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f ′′′(t)

] dt
∣
∣
∣
∣




and

T(φ,φ) =


b – a

[∫ b

a

(∫ b

t
g(x)(x – t) dx

)

dt +
λ



–
∫ a+λ

a
(a + λ – t)

(∫ b

t
g(x)(x – t) dx

)

dt
]

–


(b – a)

(∫ b

a
g(x)(x – a) dx –

λ



)

.

(ii) Then

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt + f ′(b)

(∫ b

a
tg(t) dt – λa –

λ



)

–
f ′(b) – f ′(a)

(b – a)

(
(b – a) – (b – a – λ)


–

∫ b

a
g(t)(b – t) dt

)

= H
 (f ; a, b),

where the remainder H
 (f ; a, b) satisfies the estimation

∣
∣H

 (f ; a, b)
∣
∣ ≤

√
b – a√


[
T(ω,ω)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f ′′′(t)

] dt
∣
∣
∣
∣




and

T(ω,ω) =


b – a

[
(a + λ – b) – (a – b)


–

(



∫ b

a+λ

(a – t)(a + λ – t) dt

+
∫ b

a
(a – t)

(∫ t

a
g(x)(x – t) dx

)

dt

–
∫ b

a+λ

(a + λ – t)
(∫ t

a
g(x)(x – t) dx

)

dt
)
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+
∫ b

a

(∫ t

a
g(x)(x – t) dx

)

dt
]

–


(b – a)

(
(a + λ – b) – (a – b)


+

∫ b

a
g(x)(x – b) dx

)

.

Corollary . Let f : [a, b] → R be such that f ′′ is an absolutely continuous function with
(· – a)(b – ·)[f ′′′] ∈ L[a, b], let g be an integrable function on [a, b] such that  ≤ g ≤  and
let λ =

∫ b
a g(t) dt.

(i) Then

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt + f ′(a)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)

+
f ′(b) – f ′(a)

(b – a)

(
(b – a)


–

(b – a – λ)


–




∫ b

a
g(x)(x – a) dx

)

= H
 (f ; a, b),

where the remainder H
 (f ; a, b) satisfies the estimation

∣
∣H

 (f ; a, b)
∣
∣ ≤

√
b – a√


[
T(φ,φ)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f ′′′(t)

] dt
∣
∣
∣
∣




and

T(φ,φ) =


b – a

[
(b – a) – (b – λ – a)



–
(




∫ b–λ

a
(b – t)(b – λ – t) dt

+
∫ b

a
(b – t)

(∫ b

t
g(x)(x – t) dx

)

dt

–
∫ b–λ

a
(b – λ – t)

(∫ b

t
g(x)(x – t) dx

)

dt
)

+
∫ b

a

(∫ b

t
g(x)(x – t) dx

)

dt
]

–


(b – a)

(
(b – λ – a) – (b – a)


+

∫ b

a
g(x)(x – a) dx

)

.

(ii) Then

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt + f ′(b)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)

–
f ′(b) – f ′(a)

(b – a)

(∫ b

a
g(t)(b – t) dt –

λ



)

= H
 (f ; a, b),

where the remainder H
 (f ; a, b) satisfies the estimation

∣
∣H

 (f ; a, b)
∣
∣ ≤

√
b – a√


[
T(ω,ω)

] 


∣
∣
∣
∣

∫ b

a
(t – a)(b – t)

[
f ′′′(t)

] dt
∣
∣
∣
∣




,
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and

T(ω,ω) =


b – a

[∫ b

a

(∫ t

a
g(x)(x – t) dx

)

dt +
λ



–
∫ b

b–λ

(b – λ – t)
(∫ t

a
g(x)(x – t) dx

)

dt
]

–


(b – a)

(∫ b

a
g(x)(x – b) dx –

λ



)

.

Using Theorem . we obtain the following Grüss-type inequalities.

Theorem . Let f : [a, b] → R be such that f (n) (n ≥ ) is an absolutely continuous func-
tion and f (n+) ≥  on [a, b]. Let the functions �i and �i, i = , , be defined by (.) and
(.).

(i) Then we have representation (.), and the remainder H
n(f ; a, b) satisfies the bound

∣
∣H

n(f ; a, b)
∣
∣

≤ 
(n – )!

∥
∥�′


∥
∥∞

{
f (n–)(b) + f (n–)(a)


–

f (n–)(b) – f (n–)(a)
b – a

}

. (.)

(ii) Then we have representation (.), and the remainder H
n(f ; a, b) satisfies the bound

∣
∣H

n(f ; a, b)
∣
∣ ≤ 

(n – )!
∥
∥�′


∥
∥∞

{
f (n–)(b) + f (n–)(a)


–

f (n–)(b) – f (n–)(a)
b – a

}

.

(iii) Then we have representation (.), and the remainder H
n(f ; a, b) satisfies the bound

∣
∣H

n(f ; a, b)
∣
∣ ≤ 

(n – )!
∥
∥�′


∥
∥∞

{
f (n–)(b) + f (n–)(a)


–

f (n–)(b) – f (n–)(a)
b – a

}

.

(iv) Then we have representation (.), and the remainder H
n (f ; a, b) satisfies the bound

∣
∣H

n (f ; a, b)
∣
∣ ≤ 

(n – )!
∥
∥�′


∥
∥∞

{
f (n–)(b) + f (n–)(a)


–

f (n–)(b) – f (n–)(a)
b – a

}

.

Proof (i) Applying Theorem . for f → � and h → f (n), we obtain

∣
∣
∣
∣


b – a

∫ b

a
�(t)f (n)(t) dt –


b – a

∫ b

a
�(t) dt · 

b – a

∫ b

a
f (n)(t) dt

∣
∣
∣
∣

≤ 
(b – a)

∥
∥�′


∥
∥∞

∫ b

a
(t – a)(b – t)f (n+)(t) dt. (.)

Since
∫ b

a
(t – a)(b – t)f (n+)(t) dt =

∫ b

a

[
t – (a + b)

]
f (n)(t) dt

= (b – a)
[
f (n–)(b) + f (n–)(a)

]
– 

(
f (n–)(b) – f (n–)(a)

)
,

using representation (.) and inequality (.), we deduce (.).
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Similarly, we can prove the other parts. �

Taking n =  in the previous theorem, we obtain the following corollary.

Corollary . Let f : [a, b] → R be such that f ′′ is an absolutely continuous function and
f ′′′ ≥  on [a, b]. Let g be an integrable function such that  ≤ g ≤ , λ =

∫ b
a g(t) dt and let

the functions Gi, i = , , be defined by (.) and (.).
(i) Then we have

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt + f ′(a)

(∫ b

a
tg(t) dt – λa –

λ



)

+
f ′(b) – f ′(a)

b – a

∫ b

a
(x – a)G(x) dx = H

(f ; a, b),

and the remainder H
(f ; a, b) satisfies the bound

∣
∣H

(f ; a, b)
∣
∣ ≤ ∥

∥�′

∥
∥∞

{
f ′(b) + f ′(a)


–

f (b) – f (a)
b – a

}

,

where

�′
(t) = –

∫ t

a

(
 – g(x)

)
dx.

(ii) Then we have

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt + f ′(b)

(∫ b

a
tg(t) dt – λa –

λ



)

–
f ′(b) – f ′(a)

b – a

∫ b

a
(b – x)G(x) dx = H

 (f ; a, b),

and the remainder H
 (f ; a, b) satisfies the bound

∣
∣H

 (f ; a, b)
∣
∣ ≤ ∥

∥�′

∥
∥∞

{
f ′(b) + f ′(a)


–

f (b) – f (a)
b – a

}

,

where

�′
(t) =

∫ b

t
g(x) dx.

(iii) Then we have

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt + f ′(a)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)

+
f ′(b) – f ′(a)

b – a

∫ b

a
(x – a)G(x) dx = H

 (f ; a, b),

and the remainder H
 (f ; a, b) satisfies the bound

∣
∣H

 (f ; a, b)
∣
∣ ≤ ∥

∥�′

∥
∥∞

{
f ′(b) + f ′(a)


–

f (b) – f (a)
b – a

}

,
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where

�′
(t) = –

∫ t

a
g(x) dx.

(iv) Then we have

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt + f ′(b)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)

–
f ′(b) – f ′(a)

b – a

∫ b

a
(b – x)G(x) dx = H

 (f ; a, b),

and the remainder H
 (f ; a, b) satisfies the bound

∣
∣H

 (f ; a, b)
∣
∣ ≤ ∥

∥�′

∥
∥∞

{
f ′(b) + f ′(a)


–

f (b) – f (a)
b – a

}

,

where

�′
(t) =

∫ b

t

(
 – g(x)

)
dx.

4 Ostrowski-type inequalities
In this section we give the Ostrowski-type inequalities related to generalizations of Stef-
fensen’s inequality obtained in Section .

Theorem . Suppose that all the assumptions of Theorem . hold. Assume that (p, q) is
a pair of conjugate exponents, that is,  ≤ p, q ≤ ∞, /p + /q = . Let f (n) ∈ Lp[a, b] for some
n ≥ . Then we have:

(i)

∣
∣
∣
∣
∣

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

∣
∣
∣
∣
∣

≤ 
(n – )!

∥
∥f (n)∥∥

p

∥
∥
∥
∥

∫ b

t
G(x)(x – t)n– dx

∥
∥
∥
∥

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .

(ii)

∣
∣
∣
∣
∣

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx

∣
∣
∣
∣
∣

≤ 
(n – )!

∥
∥f (n)∥∥

p

∥
∥
∥
∥

∫ t

a
G(x)(x – t)n– dx

∥
∥
∥
∥

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .
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Proof (i) Let us denote

C(t) =


(n – )!

∫ b

t
G(x)(x – t)n– dx.

Since  ≤ g ≤ , the function G is nonnegative and for every n ≥  we have C(t) ≥ ,
∀t ∈ [a, b]. Using identity (.) and applying Hölder’s inequality, we obtain

∣
∣
∣
∣
∣

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt +

n–∑

i=

f (i+)(a)

i!

∫ b

a
G(x)(x – a)i dx

∣
∣
∣
∣
∣

=
∣
∣
∣
∣–

∫ b

a
C(t)f (n)(t) dt

∣
∣
∣
∣ ≤ ∥

∥f (n)∥∥
p

∥
∥C(t)

∥
∥

q.

For the proof of the sharpness, we will find a function f for which the equality in (.) is
obtained.

For  < p < ∞ take f to be such that

f (n)(t) = sgn C(t)
∣
∣C(t)

∣
∣


p– .

For p = ∞, take f (n)(t) = sgn C(t).
For p = , we prove that

∣
∣
∣
∣

∫ b

a
C(t)f (n)(t) dt

∣
∣
∣
∣ ≤ max

t∈[a,b]

∣
∣C(t)

∣
∣
(∫ b

a

∣
∣f (n)(t)

∣
∣dt

)

(.)

is the best possible inequality. Suppose that |C(t)| attains its maximum at t ∈ [a, b], and
we have C(t) > . For ε small enough, we define fε(t) by

fε(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, a ≤ t ≤ t,


εn! (t – t)n, t ≤ t ≤ t + ε,

n! (t – t)n–, t + ε ≤ t ≤ b.

Then, for ε small enough,

∣
∣
∣
∣

∫ b

a
C(t)f (n)(t) dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t+ε

t

C(t)

ε

dt
∣
∣
∣
∣ =


ε

∫ t+ε

t

C(t) dt.

Now from inequality (.) we have


ε

∫ t+ε

t

C(t) dt ≤ C(t)
∫ t+ε

t


ε

dt = C(t).

Since

lim
ε→


ε

∫ t+ε

t

C(t) dt = C(t),

the statement follows.
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(ii) Here, we denote C(t) = 
(n–)!

∫ t
a G(x)(x – t)n– dx. Thus we have one more case when

|C(t)| attains its maximum at t ∈ [a, b] and C(t) < . In the case C(t) < , we define fε(t)
by

fε(t) =

⎧
⎪⎪⎨

⎪⎪⎩


n! (t – t – ε)n–, a ≤ t ≤ t,

– 
εn! (t – t – ε)n, t ≤ t ≤ t + ε,

, t + ε ≤ t ≤ b.

The rest of the proof is the same as above. �

For n = , we obtain the following result.

Corollary . Let f : [a, b] → R be such that f ′ is absolutely continuous, let g : [a, b] → R

be an integrable function such that  ≤ g ≤ , and let λ =
∫ b

a g(t) dt. Assume that (p, q) is a
pair of conjugate exponents, that is,  ≤ p, q ≤ ∞, /p + /q = . Let f ′′ ∈ Lp[a, b]. Then we
have:

(i)

∣
∣
∣
∣

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt + f ′(a)

(∫ b

a
tg(t) dt – λa –

λ



)∣
∣
∣
∣

≤ ∥
∥f ′′∥∥

p

(∫ a+λ

a

∣
∣
∣
∣t

∫ t

a
g(x) dx +

∫ b

t
xg(x) dx – λa –

λ


–

(t – a)



∣
∣
∣
∣

q

dt

+
∫ b

a+λ

∣
∣
∣
∣

∫ b

t
xg(x) dx – t

∫ b

t
g(x) dx

∣
∣
∣
∣

q

dt
) 

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .

(ii)

∣
∣
∣
∣

∫ a+λ

a
f (t) dt –

∫ b

a
f (t)g(t) dt + f ′(b)

(∫ b

a
tg(t) dt – λa –

λ



)∣
∣
∣
∣

≤ ∥
∥f ′′∥∥

p

(∫ a+λ

a

∣
∣
∣
∣
(t – a)


–

∫ t

a
(t – x)g(x) dx

∣
∣
∣
∣

q

dt

+
∫ b

a+λ

∣
∣
∣
∣
λ


+ λ(t – a – λ) –

∫ t

a
(t – x)g(x) dx

∣
∣
∣
∣

q

dt
) 

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .

Using identities (.) and (.) we obtain the following result.

Theorem . Suppose that all the assumptions of Theorem . hold. Assume (p, q) is a
pair of conjugate exponents, that is,  ≤ p, q ≤ ∞, /p + /q = . Let f (n) ∈ Lp[a, b] for some
n ≥ . Then we have:
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(i)

∣
∣
∣
∣
∣

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt +
n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx

∣
∣
∣
∣
∣

≤ 
(n – )!

∥
∥f (n)∥∥

p

∥
∥
∥
∥

∫ b

t
G(x)(x – t)n– dx

∥
∥
∥
∥

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .

(ii)

∣
∣
∣
∣
∣

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt +
n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx

∣
∣
∣
∣
∣

≤ 
(n – )!

∥
∥f (n)∥∥

p

∥
∥
∥
∥

∫ t

a
G(x)(x – t)n– dx

∥
∥
∥
∥

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible for
p = .

Proof Similar to the proof of Theorem .. �

Taking n =  in the previous theorem, we obtain the following corollary.

Corollary . Let f : [a, b] → R be such that f ′ is absolutely continuous, let g : [a, b] → R

be an integrable function such that  ≤ g ≤ , and let λ =
∫ b

a g(t) dt. Assume that (p, q) is a
pair of conjugate exponents, that is,  ≤ p, q ≤ ∞, /p + /q = . Let f ′′ ∈ Lp[a, b]. Then we
have:

(i)

∣
∣
∣
∣

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt + f ′(a)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)∣
∣
∣
∣

≤ ∥
∥f ′′∥∥

p

(∫ b–λ

a

∣
∣
∣
∣bλ –

λ


– t

∫ t

a
g(x) dx –

∫ b

t
xg(x) dx

∣
∣
∣
∣

q

dt

+
∫ b

b–λ

∣
∣
∣
∣
(b – t)


–

∫ b

t
(x – t)g(x) dx

∣
∣
∣
∣

q

dt
) 

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .

(ii)

∣
∣
∣
∣

∫ b

a
f (t)g(t) dt –

∫ b

b–λ

f (t) dt + f ′(b)
(

bλ –
λ


–

∫ b

a
tg(t) dt

)∣
∣
∣
∣

≤ ∥
∥f ′′∥∥

p

(∫ b–λ

a

∣
∣
∣
∣

∫ t

a
(t – x)g(x) dx

∣
∣
∣
∣

q

dt

+
∫ b

b–λ

∣
∣
∣
∣

∫ b

a
(b – x)g(x) dx –

(b – t) – λ


– λ(t – b + λ)

∣
∣
∣
∣

q

dt
) 

q
. (.)
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The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and best possible
for p = .

5 k-Exponential convexity and exponential convexity
In [] Bernstein defined exponentially convex functions on an open interval I in the fol-
lowing way.

Definition . A function ψ : I →R is exponentially convex on I if it is continuous and

n∑

i,j=

ξiξjψ(xi + xj) ≥ 

for all n ∈N and all choices ξi ∈ R, i = , . . . , n, such that xi + xj ∈ I ,  ≤ i, j ≤ n.

Proposition . Let ψ : I →R. The following statements are equivalent:
(i) ψ is exponentially convex on I ;

(ii) ψ is continuous and

n∑

i,j=

ξiξjψ

(
xi + xj



)

≥  (.)

for every ξi ∈ R and every xi ∈ I ,  ≤ i ≤ n.

Remark . From (.) we have the following properties of exponentially convex func-
tions:

(i) if ψ is exponentially convex on I , then ψ(x) ≥  for all x ∈ I ; for any c ≥ , cψ is
again exponentially convex;

(ii) if ψ and ψ are exponentially convex on I , then ψ + ψ is also exponentially
convex on I ;

(iii) if ψ is an exponentially convex function, then for any d, t ∈R, x → ψ(dx) and
x → ψ(x – t) are exponentially convex functions.

Using basic calculus we have the following corollary.

Corollary . If ψ is exponentially convex on I , then the matrix

[

ψ

(
xi + xj



)]n

i,j=

is positive semidefinite. Particularly,

det

[

ψ

(
xi + xj



)]n

i,j=
≥ 

for every n ∈N, xi ∈ I , i = , . . . , n.

One of the most important properties of exponentially convex functions is their integral
representation.
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Theorem . The function ψ : I →R is exponentially convex on I if and only if

ψ(x) =
∫ ∞

–∞
etx dσ (t), x ∈ I (.)

for some nondecreasing function σ : R →R.

Proof See [], p.. �

The most obvious example of an exponentially convex function is x �→ ceαx, where c ≥ 
and α ∈ R are constants. Other, less obvious, examples can be deduced using integral
representation (.) and some result from Laplace transformation (for details, see []).

For readers’ convenience we recall some other notions and definitions of some classes
of functions widely used in the literature which are related to the class of exponentially
convex functions.

Firstly, let us mention an important subclass of the class of exponentially convex func-
tions called completely monotonic functions. Let J ⊆ (,∞) be an open interval.

Definition . The function f : J →R is completely monotonic on J if

(–)kf (k)(x) ≥ , x ∈ J , k = , , . . . .

Theorem . The function f : J →R is completely monotonic on J if and only if

f (x) =
∫ ∞


e–tx dσ (t), x ∈ J ,

for some nondecreasing bounded function σ : (,∞) →R.

Proof See [], p.. �

In [] Bhatia uses the notion functions of positive type defined in the following way.

Definition . A complex-valued function ϕ on [,∞) is said to be of positive type if for
every positive integer n, we have

n∑

i,j=

ϕ(xi + xj)ξiξj ≥ 

for every choice of xi ∈ [,∞) and ξi ∈C, i = , . . . , n.

Remark . As noted in [], functions of positive type are characterized as being com-
pletely monotonic.

Another widely used term is positive definite functions. Survey of positive definite func-
tions is given in [] and [].
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Definition . A complex-valued function ϕ on R is said to be positive definite if for every
positive integer n, we have

n∑

i,j=

ϕ(xi – xj)ξiξj ≥ ,

for every choice of xi ∈R and ξi ∈C, i = , . . . , n; that is, if every square matrix [ϕ(xi –xj)]n
i,j=

is positive semidefinite.

Positive definite functions satisfy the following characterization (see []).

Theorem . (Bochner) A continuous function ϕ : R → C is positive definite if and only
if it is the Fourier transform of a finite positive measure μ on R, that is,

ϕ(x) =
∫ ∞

–∞
eitx dμ(t).

The class of positive definite functions and the class of exponentially convex functions
are not necessarily equivalent. However, in the following theorem we give a bijection be-
tween exponentially convex and entire positive definite functions.

Theorem . If a function ψ : R →R is an exponentially convex function, then it is entire,
and ϕ(t) = ψ(it), t ∈ R is a positive definite function. Conversely, if ϕ : R → C is an entire
positive definite function, then ψ(t) = ϕ(–it), t ∈R is an exponentially convex function.

Proof See []. �

Remark .
(i) Recall that ψ : R →C is entire if it can be extended to a necessarily unique analytic

function ψ : C →C.
(ii) Conclusions of Theorem . can be extended to exponentially convex functions

defined on any open interval (see []).
(iii) The key application of Theorem . lies in the explicit construction of

exponentially convex functions from positive definite functions.

The notion of exponential convexity is, for the sake of applications, refined in [] in the
following way.

Definition . A function ψ : I → R is k-exponentially convex in the Jensen sense on I if

k∑

i,j=

ξiξjψ

(
xi + xj



)

≥ 

holds for all choices ξ, . . . , ξk ∈ R and all choices x, . . . , xk ∈ I . A function ψ : I → R is
k-exponentially convex if it is k-exponentially convex in the Jensen sense and continuous
on I .
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Remark . A function ψ : I →R is exponentially convex in the Jensen sense on I if it is
k-exponentially convex in the Jensen sense for all k ∈N.

A function ψ : I → R is exponentially convex if it is exponentially convex in the Jensen
sense and continuous.

Remark . It is known that ψ : I →R is a log-convex in the Jensen sense if and only if

αψ(x) + αβψ

(
x + y



)

+ βψ(y) ≥ 

holds for every α,β ∈R and x, y ∈ I . It follows that a positive function is log-convex in the
Jensen sense if and only if it is -exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is -exponentially convex.

Motivated by inequalities (.), (.), (.) and (.), under the assumptions of The-
orems . and ., we define the following linear functionals:

L(f ) =
∫ b

a
f (t)g(t) dt –

∫ a+λ

a
f (t) dt –

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx, (.)

L(f ) =
∫ b

a
f (t)g(t) dt –

∫ a+λ

a
f (t) dt –

n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx, (.)

L(f ) =
∫ b

b–λ

f (t) dt –
∫ b

a
f (t)g(t) dt –

n–∑

i=

f (i+)(a)
i!

∫ b

a
G(x)(x – a)i dx, (.)

L(f ) =
∫ b

b–λ

f (t) dt –
∫ b

a
f (t)g(t) dt –

n–∑

i=

f (i+)(b)
i!

∫ b

a
G(x)(x – b)i dx. (.)

Remark . Under the assumptions of Theorems . and ., it holds Li(f ) ≥ , i =
, . . . , , for all n-convex functions f .

Lagrange- and Cauchy-type mean value theorems related to defined functionals are
given in the following theorems. Similar results were proved in [], so we omit the proof.

Theorem . Let f : [a, b] →R be such that f ∈ Cn[a, b]. If the inequalities in (.) (i = )
and (.) (i = ) hold, then there exist ξi ∈ [a, b] such that

Li(f ) = f (n)(ξi)Li(ϕ), i = , . . . , ,

where ϕ(x) = xn

n! and Li, i = , . . . , , are defined by (.)-(.).

Theorem . Let f , f̂ : [a, b] →R be such that f , f̂ ∈ Cn[a, b] and f̂ (n) = . If the inequalities
in (.) (i = ) and (.) (i = ) hold, then there exist ξi ∈ [a, b] such that

Li(f )
Li(f̂ )

=
f (n)(ξi)
f̂ (n)(ξi)

, i = , . . . , ,

where Li, i = , . . . , , are defined by (.)-(.).
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Now we produce k-exponentially and exponentially convex functions applying defined
functionals. We use an idea from []. In the sequel I and J will be intervals in R.

Theorem . Let � = {fp : p ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R such that the function p �→ [x, . . . , xn; fp] is k-exponentially
convex in the Jensen sense on J for every (n+) mutually different points x, . . . , xn ∈ I . Let Li,
i = , . . . , , be linear functionals defined by (.)-(.). Then p �→ Li(fp) is a k-exponentially
convex function in the Jensen sense on J .

If the function p �→ Li(fp) is continuous on J , then it is k-exponentially convex on J .

Proof For ξj ∈R and pj ∈ J , j = , . . . , k, we define the function

h(x) =
k∑

j,l=

ξjξlf pj+pl


(x).

Using the assumption that the function p �→ [x, . . . , xn; fp] is k-exponentially convex in the
Jensen sense, we have

[x, . . . , xn; h] =
k∑

j,l=

ξjξl[x, . . . , xn; f pj+pl


] ≥ ,

which in turn implies that h is an n-convex function on J , so Li(h) ≥ , i = , . . . , . Hence

k∑

j,l=

ξjξlLi(f pj+pl


) ≥ .

We conclude that the function p �→ Li(fp) is k-exponentially convex on J in the Jensen
sense.

If the function p �→ Li(fp) is also continuous on J , then p �→ Li(fp) is k-exponentially
convex by definition. �

The following corollary is an immediate consequence of the above theorem.

Corollary . Let � = {fp : p ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R such that the function p �→ [x, . . . , xn; fp] is exponentially
convex in the Jensen sense on J for every (n+) mutually different points x, . . . , xn ∈ I . Let Li,
i = , . . . , , be linear functionals defined by (.)-(.). Then p �→ Li(fp) is an exponentially
convex function in the Jensen sense on J . If the function p �→ Li(fp) is continuous on J, then
it is exponentially convex on J .

Now, we prove corollary of Theorem . which will be used in the next section to obtain
new Stolarsky-type means.

Corollary . Let � = {fp : p ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R such that the function p �→ [x, . . . , xn; fp] is -exponentially
convex in the Jensen sense on J for every (n + ) mutually different points x, . . . , xn ∈ I . Let
Li, i = , . . . , , be linear functionals defined by (.)-(.). Then the following statements
hold:
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(i) If the function p �→ Li(fp) is continuous on J , then it is a -exponentially convex
function on J . If p �→ Li(fp) is additionally strictly positive, then it is also log-convex
on J . Furthermore, the following inequality holds true:

[
Li(fs)

]t–r ≤ [
Li(fr)

]t–s[Li(ft)
]s–r , i = , . . . , ,

for every choice r, s, t ∈ J such that r < s < t.
(ii) If the function p �→ Li(fp) is strictly positive and differentiable on J, then for every

p, q, u, v ∈ J , such that p ≤ u and q ≤ v, we have

μp,q(Li,�) ≤ μu,v(Li,�), (.)

where

μp,q(Li,�) =

⎧
⎨

⎩

( Li(fp)
Li(fq) )


p–q , p = q,

exp(
d

dp Li(fp)
Li(fp) ), p = q,

(.)

for fp, fq ∈ �.

Proof (i) This is an immediate consequence of Theorem . and Remark ..
(ii) Since p �→ Li(fp) is positive and continuous, by (i) we have that p �→ Li(fp) is log-

convex on J , that is, the function p �→ log Li(fp) is convex on J . Hence we get

log Li(fp) – log Li(fq)
p – q

≤ log Li(fu) – log Li(fv)
u – v

(.)

for p ≤ u, q ≤ v, p = q, u = v. So, we conclude that

μp,q(Li,�) ≤ μu,v(Li,�).

Cases p = q and u = v follow from (.) as limit cases. �

6 Stolarsky-type means
In this section, we present several families of functions which fulfill the conditions of The-
orem ., Corollary . and Corollary .. This enables us to construct a large family of
functions which are exponentially convex. Explicit form of these functions is obtained af-
ter calculating an explicit action of functionals on a given family.

Firstly, let us recall Stolarsky means (see [] and []).
Let p, q ∈R and let  < x < y < ∞. The Stolarsky mean Ep,q(x, y) is defined by

Ep,q(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( q(yp–xp)
p(yq–xq) )


p–q , pq(p – q) = ,

( yq–xq

q(log y–log x) )

q , p = , q = ,

e– 
q ( xxq

yyq )


xq–yq , p = q = ,
√xy, p = q = .
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Stolarsky in [] and then Leach and Sholander in [] showed that the function Ep,q(x, y)
is increasing in both parameters p and q, i.e. for p ≤ r and q ≤ s, we have

Ep,q(x, y) ≤ Er,s(x, y).

Example . Let us consider a family of functions

� = {fp : R →R : p ∈R}

defined by

fp(x) =

⎧
⎨

⎩

epx

pn , p = ,
xn

n! , p = .

Since dnfp
dxn (x) = epx > , the function fp is n-convex on R for every p ∈ R and p �→ dnfp

dxn (x)
is exponentially convex by definition. Using analogous arguing as in the proof of Theo-
rem ., we also have that p �→ [x, . . . , xn; fp] is exponentially convex (and so exponen-
tially convex in the Jensen sense). Now, using Corollary . we conclude that p �→ Li(fp),
i = , . . . , , are exponentially convex in the Jensen sense. It is easy to verify that these map-
pings are continuous (although the mapping p �→ fp is not continuous for p = ), so they
are exponentially convex. For this family of functions, μp,q(Li,�), i = , . . . , , from (.),
becomes

μp,q(Li,�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( Li(fp)
Li(fq) )


p–q , p = q,

exp( Li(id·fp)
Li(fp) – n

p ), p = q = ,

exp( 
n+

Li(id·f)
Li(f) ), p = q = ,

where id is the identity function. By Corollary ., μp,q(Li,�), i = , . . . , , are monotonic
functions in parameters p and q.

Since

( dnfp
dxn

dnfq
dxn

) 
p–q

(log x) = x,

using Theorem . it follows that

Mp,q(Li,�) = logμp,q(Li,�), i = , . . . , ,

satisfy

a ≤ Mp,q(Li,�) ≤ b, i = , . . . , .

So, Mp,q(Li,�), i = , . . . , , are monotonic means.



Pečarić et al. Journal of Inequalities and Applications  (2015) 2015:207 Page 24 of 25

Example . Let us consider a family of functions

� =
{

gp : (,∞) →R : p ∈R
}

defined by

gp(x) =

⎧
⎨

⎩

xp

p(p–)···(p–n+) , p /∈ {, , . . . , n – },
xj log x

(–)n––j j!(n––j)! , p = j ∈ {, , . . . , n – }.

Since dngp
dxn (x) = xp–n > , the function gp is n-convex for x > , and p �→ dngp

dxn (x) is exponen-
tially convex by definition. Arguing as in Example . we get that the mappings p �→ Li(gp),
i = , . . . , , are exponentially convex. Hence, for this family of functions μp,q(Li,�),
i = , . . . , , from (.), is equal to

μp,q(Li,�) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( Li(gp)
Li(gq) )


p–q , p = q,

exp((–)n–(n – )! Li(ggp)
Li(gp) +

∑n–
k=


k–p ), p = q /∈ {, , . . . , n – },

exp((–)n–(n – )! Li(ggp)
Li(gp) +

∑n–
k=
k =p


k–p ), p = q ∈ {, , . . . , n – }.

Again, using Theorem . we conclude that

a ≤
(

Li(gp)
Li(gq)

) 
p–q

≤ b, i = , . . . , .

So, μp,q(Li,�), i = , . . . , , are means and by (.) they are monotonic.
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2. Mitrinović, DS: The Steffensen inequality. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 247-273, 1-14 (1969)
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