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Abstract
Firstly we study necessary and sufficient conditions for the constant row sums
symmetric inverse eigenvalue problem to have a solution and sufficient conditions
for the symmetric stochastic inverse eigenvalue problem to have a solution. Then we
introduce the concept of general solutions for the symmetric stochastic inverse
eigenvalue problem and the concept of totally general solutions for the 3× 3
symmetric stochastic inverse eigenvalue problem. Finally we study the necessary and
sufficient conditions for the symmetric stochastic inverse eigenvalue problems of
order 3 to have general solutions, and the necessary and sufficient conditions for the
symmetric stochastic inverse eigenvalue problems of order 3 to have a totally general
solution.
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1 Introduction
For a square matrix A, let σ (A) denote the spectrum of A. Given an n-tuple � = (λ, . . . ,λn)
of numbers, the problem of deciding the existence of an n × n matrix A (of a certain class)
with σ (A) = � is called the inverse eigenvalue problem (of a certain class) which has for a
long time been one of the problems of main interest in the theory of matrices.

Sufficient conditions for the existence of an entrywise nonnegative matrix A with σ (A) =
� have been investigated by several authors such as Borobia [], Fiedler [], Kellogg [],
Marijuan et al. [] and Salzmann []. Soto and Rojo [] investigated the existence of cer-
tain entrywise nonnegative matrices with a prescribed spectrum under certain conditions.
Since stochastic matrices are important nonnegative matrices, it is surely important to in-
vestigate the existence of stochastic matrices with a prescribed spectrum under certain
conditions. It is well known [] that the nonnegative inverse eigenvalue problem and the
stochastic inverse eigenvalue problem are equivalent problems. Hwang et al. [, ] and []
gave some interesting results for the symmetric stochastic inverse eigenvalue problem. In
this work we mainly study the symmetric stochastic inverse eigenvalue problem.

For simplicity, we use SIEP for Symmetric Inverse Eigenvalue Problem, SSIEP for the
Symmetric Stochastic Inverse Eigenvalue Problem; and we use CRS for Constant Row
Sums, and SCRSIEP for the SIEP with Constant Row Sums.
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Since the spectrum of an n × n real symmetric matrix is a set of n real numbers, we
use � to denote a real n-tuple (λ, . . . ,λn), whose entries are not necessarily distinct, for
the given possible spectrum of the n × n SSIEP. For convenience, we may arrange � in
non-increasing order, i.e., λ ≥ λ ≥ · · · ≥ λn. A n-tuple � is SS (resp. SCRS) realizable if
there exists an n × n symmetric stochastic matrix (symmetric matrix with CRS) A with
σ (A) = �. In this case, A is called a SS (resp. SCRS) realization of �. For any two matrices
A and B of order n we say that B is permutationally similar to A if B = PAPT for some
permutation matrix P of order n.

Throughout the paper, we denote by e ∈ Rn the all-ones column vector of dimension n,
we use un to denote the unit vector √

n e, and In the identity matrix of order n.
The paper is organized as follows. In Section , we give necessary and sufficient condi-

tions for the SCRSIEP. In Section , we give sufficient conditions for the SSIEP. In Section ,
we introduce the concept of general solution for SSIEP and the totally general solution for
the  ×  SSIEP and we give the necessary and sufficient conditions for the  ×  and  × 
SSIEP to have a general solution and the necessary and sufficient conditions for the  × 
SSIEP to have totally general solution. Three examples are presented there.

2 Necessary and sufficient conditions for the SCRSIEP
The following result shows that any given set of real numbers is SCRS realizable.

Theorem . Let � = (λ, . . . ,λn) be a real n-tuple.
() An n × n symmetric matrix A is a SCRS realization of � with CRS λk if and only if A

can be written as

A = S diag(λ, . . . ,λn)ST = λξξ
T
 + λξξ

T
 + · · · + λnξnξ

T
n , (.)

where S = (ξ, . . . , ξn) ∈ Rn×n is an orthogonal matrix (in column block form) with
ξk = un.

() The SCRSIEP for � always has a solution A given by (.).

Proof () For the necessity, let A be a SCRS realization of � with CRS λk , then σ (A) = �

and Ae = λke, and that means un is the unit eigenvector of A associated with eigen-
value λk . The symmetry of A implies that A has orthonormal eigenvectors ξ, . . . , ξn such
that Aξj = λjξj, j = , , . . . , n. Let S = (ξ, . . . , ξn), D� = diag(λ, . . . ,λn), then S is an orthog-
onal matrix with ξk = un satisfying AS = SD� and hence A = SD�ST is expressed as (.).
For the sufficiency, let A be the n × n symmetric matrix given in (.). Then AS = SD�. It
follows that ξj �= , Aξj = λjξj for each j = , , . . . , n and Ae = A

√
nun =

√
nAξk =

√
nλkξk =√

nλkun = λke. Therefore, A is a SCRS realization of � with CRS λk .
() It suffices to prove that there always exists an n × n orthogonal matrix S = (ξ, . . . , ξn)

with ξk = un for any given k ∈ {, , . . . , n} since the matrix A given by (.) is a SCRS realiza-
tion of � with CRS λk by (). Assume, without loss of generality, that ξ = un. Expanding
this vector ξ into an orthonormal base of Rn, we obtain the desired orthogonal matrix
S = (ξ, . . . , ξn). �

It is obvious that if a SCRS realization A of a real n-tuple � = (λ, . . . ,λn) has CRS λ,
then λ = λk for some k ∈ {, , . . . , n}. From the proof of Theorem ., we can see that
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there are a lot of (actually infinite for n > ) SCRS realizations of �, each corresponds to a
construction of S.

Definition . An n × n typical orthogonal matrix is an orthogonal matrix with one col-
umn equal to ±un.

Remark . An n × n matrix S is typical orthogonal if and only if PSQD is typical orthog-
onal for any permutation matrices P and Q and any unipotent diagonal matrix D i.e. such
that D = In.

Definition . Two n × n typical orthogonal matrices M and H are equivalent if H =
PMQD for some permutation matrices P and Q and some diagonal unipotent matrix D.

Theorem . Let � = (λ, . . . ,λn) (n > ) be a given real n-tuple, S = (ξ, . . . , ξn), S′ =
(ξ ′

, . . . , ξ ′
n) be typical orthogonal matrices, and A = S diag(λ, . . . ,λn)ST , A′ = S′ diag(λ, . . . ,

λn)S′�. We have:
() If S and S′ are equivalent, then A′ is permutationally similar to A.
() If A′ is permutationally similar to A and λi �= λj for any i �= j, then S and S′ are

equivalent.

Proof () If S, S′ are equivalent, then S′ = PSQD for some permutation matrices P, Q and
diagonal unipotent matrix D. Denoting diag(λ, . . . ,λn) by D� we have

A′ = S′D�S′� = PSQDD�DQT ST PT = PSD�ST PT = PAPT

and hence A′ is permutationally similar to A.
() If A′ is permutationally similar to A, then there exists a permutation matrix P such

that S′D�S′� = A′ = PAPT = PSD�ST PT from which it follows that

D�ST PT S′ = ST PT S′D�.

Let ST PT S′ = D = (dij), then the foregoing expression produces

λidij = dijλj, i, j = , . . . , n. (.)

Now if λi �= λj for any i �= j, then (.) yields dij =  for any i �= j. Therefore, ST PT S′ = D
is a diagonal orthogonal matrix with each diagonal entry equal to ±, i.e. D = In, which
means D is a diagonal unipotent matrix. Finally, we have S′ = PSD = PSInD and conclude
that S and S′ are equivalent. �

Remark . The symmetric matrix A = S diag(λ, . . . ,λn)ST is called a solution of SCR-
SIEP for � = (λ, . . . ,λn) associated with the typical orthogonal matrix S. Then we can
say, by Theorem ., that two solutions of the SCRSIEP for � associated with equivalent
typical orthogonal matrices are permutationally similar to each other.

Lemma . If S is a typical orthogonal matrix of order n > , then S is indecomposable,
i.e., there is no p × q zero submatrix of S where p, q >  are two positive integers such that
p + q = n.
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Proof We prove it by contradiction and assume that S has the block form:

S =

(
B 
D C

)
,

where  is a p × q zero matrix with p + q = n. Then the q columns of C and the column of
D corresponding to the vector un form a system of q +  linearly independent vectors of
dimension q, which is impossible. �

The next two lemmas present two nonequivalent n × n typical orthogonal matrices Sn,
S∗

n for any n > :

Lemma . Let β = (
√

n – )/(n – ), n > . Then the symmetric matrix

Sn = (sij) =
√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

   · · · 
 ( – n)β –  β · · · β

 β ( – n)β –  · · · β

...
...

...
. . .

...
 β β · · · ( – n)β – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(.)

is a typical orthogonal matrix.

Proof Noticing that β is the positive root of (n – )β + β –  we can verify

ξT
j ξi =

{
, i = j,
, i �= j. �

A simple verification provides the next result.

Lemma . Let

S∗
n =

(
s∗

ij
)

=
√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –
√

n(n–)
n   · · · 


√

n
n(n–) –

√
n(n–)

n–
. . .  


√

n
n(n–)

√
n

(n–)(n–)
. . . . . .

...
...

...
...

. . . –
√

n
 


√

n
n(n–)

√
n

(n–)(n–) · · ·
√

n
· –

√ n



√

n
n(n–)

√
n

(n–)(n–) · · ·
√

n
·

√ n


⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (.)

i.e.,

s∗
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
n , j = ;

((n – j + )(n – j + ))–/, i ≥ j > ;
–( n–i

n–i+ )/, j = i + ;
, otherwise.

Then S∗
n is a non-symmetric typical orthogonal matrix for any integer n > .
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Theorem ., together with Lemma . and Lemma ., produces the following result
for the SCRSIEP.

Theorem . Let � = (λ,λ, . . . ,λn) (n > , λ ≥ λ ≥ · · · ≥ λn), D� = diag(λ, . . . ,λn), and
Sn, S∗

n are the typical orthogonal matrices given by (.), (.), respectively. Then both A =
SD�ST and A∗ = S∗D�S∗T are symmetric matrices with CRS equal to λ and σ (A) = �.

There is only one  ×  typical orthogonal matrix with the first column equal to un, i.e.

S =

(
√


√


√
 – √



)
.

But for any n ≥  there are infinite many n × n typical orthogonal matrices with the first
column equal to un, as shown in the next lemma.

Lemma . Any × typical orthogonal matrix which having no entry equal to zero must
be equivalent to

S(x) =

⎛
⎜⎜⎜⎝

√


√
(x+x+)

x+√
(x+x+)

√
 – x+√

(x+x+)
–x√

(x+x+)
√


x√
(x+x+)

– x+√
(x+x+)

⎞
⎟⎟⎟⎠ (.)

for some x ∈ (, ).

Proof Let S be a  ×  typical orthogonal matrix which has no zero entry. There is no loss
of generality to assume that S is equivalent to

S(u, v, x, y) =

⎛
⎜⎜⎝

√
 u v

√
 –(x + )u yv

√
 xu –(y + )v

⎞
⎟⎟⎠ ,

where u, v, x, y are positive parameters. Normal orthogonality of S(u, v, x, y) implies

u =
√

(x + x + )
, v =

√
(y + y + )

,

and

x( + y) + y( + x) = . (.)

It follows from (.) that y = ( – x)/(x + ) (> ), which yields x <  and

y + y +  = 
(
x + x + 

)
/(x + ).

Therefore, S(u, v, x, y) = S(x),  < x < , obeys the expression as shown in (.). �
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Theorem . Any  ×  typical orthogonal matrix must be equivalent to the matrix S(x)
given by (.) for some x ∈ [, ]. Any solution of the  ×  SCRSIEP for � = (λ,λ,λ) must
be permutationally similar to

A(x) = S(x) diag(λ,λ,λ)ST
 (x) (.)

for some x ∈ [, ].

Proof Let S be a  ×  typical orthogonal matrix. Then S cannot have two zero entries in
the same row or column by Lemma .. If S has two zero entries, then the inner product
of the two columns containing the two zero entries is surely nonzero, a contradiction to
the orthogonality of S. Therefore, S has at most one zero entry. If S has no zero entry,
then the first assertion holds by Lemma .. If S has exact one zero entry, then S must be
equivalent to both S′ = (u,β , ζ ) and S′′ = (u, ζ ,β) with β = (/

√
, –/

√
, )�. Now the

orthogonality of S produces ζ = (/
√

, /
√

, –
√

/)�, and hence S′ = S(), S′′ = S().
Therefore, the first assertion holds.

The second assertion holds by Theorem . and the first assertion. �

Remark . It is interesting to note that the  ×  typical orthogonal matrix S∗
 given by

(.) is equivalent to both S() and S(), and S given by (.) is equivalent to S(
√

–
 ).

The following are some important  ×  irreducible typical orthogonal matrices:

S =



⎛
⎜⎜⎜⎝

   
 – 








 
 – 





 



 – 



⎞
⎟⎟⎟⎠ , S∗

 =



⎛
⎜⎜⎜⎜⎝

 –
√

  
 √

 – √



 √


√


√


 √


√


–
√



⎞
⎟⎟⎟⎟⎠ ,

S′
(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝




–
√


  






√


√

(x+x+)
x+√

(x+x+)





√


–(x+)√
(x+x+)

–x√
(x+x+)






√


x√

(x+x+)
–x–√

(x+x+)

⎞
⎟⎟⎟⎟⎟⎟⎠

,  ≤ x ≤ , (.)

S′′
 =




⎛
⎜⎜⎜⎝

 
√

 
  –

√
 

 – 
√


 –  –

√


⎞
⎟⎟⎟⎠ , (.)

S(x) =

⎛
⎜⎜⎜⎜⎝




x+√
x+x+x+x+

√
x+x+

x+√
x+x+




–x–x–√
x+x+x+x+

x√
x+x+

–x√
x+x+




–x√
x+x+x+x+

–(x+)√
x+x+

–x√
x+x+




x+x√
x+x+x+x+

x√
x+x+

–x–√
x+x+

⎞
⎟⎟⎟⎟⎠ . (.)

Note that S∗
 is equivalent to both S() and S(); S is equivalent to S( 

 ) and S′′
 cannot

be equivalent to any S(x), x ∈ [, ].
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3 Sufficient conditions for the SSIEP
In this section we give two sets of sufficient conditions for the SSIEP. It is obvious that A
is a solution of the SSIEP if and only if A is a solution of the SCRSIEP, ρ(A) =  and A is
(entrywise) nonnegative. It is well known that

 = λ ≥ λ ≥ · · · ≥ λn ≥ – (.)

and

 + λ + · · · + λn ≥ , (.)

are necessary for the non-increasing n-tuple � to be SS realizable.

Theorem . Let � = (λ = ,λ, . . . ,λn) (n > ) satisfy (.) and


n

+
λ

n(n – )
+

λ

(n – )(n – )
+ · · · +

λn

 · 
≥ . (.)

Then � is SS realizable. Moreover, the realizing matrix is (entrywise) positive if  > λ and
(.) is a strict inequality.

Proof Let D = diag(,λ, . . . ,λn) and A = S∗
nDS∗T

n , where S∗
n = (sij) is the n × n typical or-

thogonal matrix given in (.). Then A is symmetric with CRS equal to  and σ (A) = � by
Theorem ..

In order to prove the first assertion we only need to verify the nonnegativity of A when
(.) and (.) hold. For any i = , , . . . , n – , we have

aii = eT
i S∗

nDS∗T
n ei = s

i + λs
i + · · · + λi+s

i,i+

=

n

+
λ

n(n – )
+ · · · +

λi

(n – i + )(n – i + )
+

(n – i)λi+

(n – i + )
;

ann =

n

+
λ

n(n – )
+

λ

(n – )(n – )
+ · · · +

λn–

 · 
+

λn

 · 
= an–,n–.

Since  = λ ≥ λ ≥ · · · ≥ λn, we obtain by simple calculation

ai–,i– – aii =
n – i

n – i + 
(λi – λi+) ≥ 

for any i = , . . . , n – . Therefore, condition (.) guarantees that

a ≥ · · · ≥ ann ≥ .

Now let us prove that aij ≥  for all  ≤ i < j ≤ n. In fact, since

aij = eT
i S∗

nDS∗T
n ej = sisj + λsisj + · · · + λnsinsjn

=

n

+
λ

n(n – )
+ · · · +

λi

(n – i + )(n – i + )
–

λi+

n – i + 
,
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we have (by (.))

aij ≥
(


n

+
λ

n(n – )
+ · · · +

λi–

(n – i + )(n – i + )

)
+

λi

(n – i + )(n – i + )
–

λi

n – i + 

=
(


n

+
λ

n(n – )
+ · · · +

λi–

(n – i + )(n – i + )

)
–

λi

n – i + 

≥
(


n

+
λ

n(n – )
+ · · · +

λi–

(n – i + )(n – i + )

)
–

λi–

n – i + 
· · ·
≥ 

n
–


n

= 

for  ≤ i < j ≤ n. Hence A is nonnegative, and the first assertion is proved.
It is easy to see that if  > λ and (.) is a strict inequality, then aij >  for  ≤ i ≤ j ≤ n.

The second assertion is proved. �

Remark . The sufficient condition (.) of SSIEP was first given by Theorem  of [].
The first assertion of Theorem . is the same as the first assertion of Theorem  of [],
the proof of the former presented here is simpler than the proof of the latter. Meanwhile,
Fang [] disproved the second assertion made in Theorem  of [], which says that � is
SS realizable by a positive matrix A if  > λ, together with (.) and (.). Our Theorem .
shows that this assertion does hold if  > λ and (.) is a strict inequality.

Theorem . Let � = (λ = ,λ, . . . ,λn) (n > ) satisfy (.), (.), and β =
√

n–
n– . If

 + β(λ + · · · + λn–) +
(
(n – )β + 

)
λn ≥ , (.)

 –
(
(n – )β + 

)
λ + β(λ + · · · + λn) ≥ , (.)

 –
(
(n – )β + 

)
(λ + λ) + β(λ + · · · + λn) ≥ , (.)

then � is SS realizable. Moreover, the realizing matrix is positive if (.), (.), (.), and
(.) are all strict inequalities.

Proof Let D = diag(,λ, . . . ,λn) and A = SnDST
n , where Sn = (sij) is the typical orthogonal

matrix given in (.). Then A is a symmetric matrix with CRS equal to  and σ (A) = � by
Theorem .. In order to prove the first assertion we only need to verify that A is nonneg-
ative under the conditions (.), (.), (.), and (.).

In fact (.) yields a =  + λ + · · · + λn ≥ ; (.) and (.) yield

aii = s
i + λs

i + · · · + λns
in

=

n

(
 +

(
(n – )β + 

)
λi + β

∑
k /∈{,i}

λk

)

≥ 
n

(
 +

(
(n – )β + 

)
λn + β

n–∑
k=

λk

)
≥ 
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for j = , . . . , n; (.) and (.) yield

aj = ssj + · · · + λnsnsjn

=

n

(
 –

(
(n – )β + 

)
λj + β

∑
k /∈{,j}

λk

)

≥ 
n

(
 –

(
(n – )β + 

)
λ + β

n∑
k=

λk

)
≥ 

for i = , . . . , n; and finally (.) and (.) yield

aij = sisj + · · · + λnsinsjn

=

n

(
 –

(
(n – )β + 

)
(λi + λj) + β

∑
k /∈{,i,j}

λk

)

≥ 
n

(
 –

(
(n – )β + 

)
(λ + λ) + β

n∑
k=

λk

)
≥ 

for  ≤ i ≤ n, j �= i. So A is nonnegative, and the first assertion is proved. The proof of the
second assertion is trivial. �

4 The general solution and the totally general solution for the 3 × 3 SSIEP
Definition . The general solution of the SSIEP for � = (λ, . . . ,λn) is a set 	 of n × n
symmetric stochastic matrices such that each element of 	 is a solution of the SSIEP for
� and each solution of the SSIEP for � is permutationally similar to one element of 	.

Since any possible  ×  typical orthogonal matrix is equivalent to

S =
√


(
 –
 

)
,

any possible  ×  symmetric stochastic matrix with σ (A) = � = {,λ} (|λ| ≤ ) must be
permutationally similar to

S diag(,λ)ST =



(
 + λ  – λ

 – λ  + λ

)
(.)

by Theorem . and Theorem .. Therefore, the general solution of the  ×  SSIEP for
given � = (,λ) exists if and only if |λ| ≤  and the solution is equivalent to the matrix
given in (.).

For n =  we have proved (Theorem .) that any solution of  ×  SIEP with unit row
sums must be permutationally similar to A(x) = S(x) diag(λ,λ,λ)ST

 (x) for some x ∈
[, ], where S(x) is given in (.). This motivates the following definition for the special
case of n = .

Definition . If A(x) = S(x) diag(,λ,λ)ST
 (x) is a solution of the SSIEP for � =

(,λ,λ) for each x ∈ [, ], then the function matrix {A(x),  ≤ x ≤ } is called the totally
general solution of the SSIEP for � = (,λ,λ).
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Note that the general solution of the SSIEP for any � = (,λ,λ) is a subset of {A(x),  ≤
x ≤ } and they may not be equal. In other words, for the SSIEP, the totally general solution
is the general solution, but the converse is not always true (see Example .).

Lemma . Let � = (,λ,λ) satisfy (.) and (.); S(x) = (u, ξ, ξ) ( ≤ x ≤ ) be the
 ×  typical orthogonal matrix given by (.), and A(x) = S(x) diag(,λ,λ)S(x)T . Then
A(x) is nonnegative if and only if  + λ ≥  and  – λ + λ ≥ .

Proof We have

A(x) =
(
aij(x)

)
= uuT

 + λξξ
T
 + λξξ

T


=



⎛
⎜⎝

  
  
  

⎞
⎟⎠ +

λ

α

⎛
⎜⎝

 – – x x
– – x ( + x) –x – x

x –x – x x

⎞
⎟⎠

+
λ

α

⎛
⎜⎝

( + x)  + x – x – – x – x

 + x – x ( – x) – + x + x

– – x – x – + x + x ( + x)

⎞
⎟⎠ , (.)

where α = x + x +  >  for all x ∈ [, ]. Then

αa(x) = ( + λ)x + ( + λ)x +  + λ + λ,

αa(x) = ( + λ + λ)x + ( + λ – λ)x +  + λ + λ,

αa(x) = ( + λ + λ)x + ( + λ)x +  + λ,

αa(x) = ( – λ)x + ( – λ + λ)x +  – λ + λ,

αa(x) = ( – λ)x + ( + λ – λ)x +  – λ,

αa(x) = ( – λ + λ)x + ( – λ + λ)x +  – λ.

Since α(a(x) – a(x)) = ( – x)λ – ( – x)λ = ( – x)(λ – λ) ≥ , we conclude
a(x) ≥ a(x),  ≤ x ≤ . Then if  + λ + λ >  we have

min
≤x≤

αa(x) ≥ min
x∈R

αa(x)

=  + λ –
( + λ)

( + λ + λ)
=

( + λ)( + λ)
 + λ + λ

and if  + λ + λ ≤ , we have

min
≤x≤

αa(x) = min
{

( + λ), ( + λ + λ)
}

.

Note that λ ≥ λ leads to  + λ + λ ≥  + λ + λ ≥ ( + λ) and  + λ ≥  + λ. If
 + λ ≥ , then

min
≤x≤

αa(x) ≥ min

{
( + λ),

( + λ)( + λ)
 + λ + λ

}
≥ .
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On the other hand, if a(x) ≥  for all x ∈ [, ], then

 + λ =



αa() ≥ 


min
≤x≤

αa(x) ≥ .

Therefore, a(x) ≥  ⇔  + λ ≥ .
Since  – λ ≥  and  + λ + λ ≥ ( + λ + λ) ≥  by (.) we have

min
≤x≤

a(x) = min
≤x≤


α

(
( + λ + λ)x + ( + λ – λ)x +  + λ + λ

) ≥ .

Now  + λ – λ ≥  – λ ≥  – λ +λ provides a(x) ≥ a(x),  ≤ x ≤ . Moreover,
α(a(x) – a(x)) = ( – x)(λ – λ) ≥  yields

min
{

a(x), a(x), a(x)
}

= a(x),  ≤ x ≤ .

Now if  – λ > , then

min
≤x≤

αa(x) ≥ min
x∈R

αa(x)

=  – λ + λ –
( – λ + λ)

( – λ)

=
( + λ – λ)( – λ + λ)

( – λ)
.

If  – λ = , then

αa(x) = ( – λ + λ)( + x).

Since  + λ – λ ≥ ,  + x > , we have

a(x) ≥  ⇔  – λ + λ ≥ .

Therefore, A(x) is nonnegative if and only if  + λ ≥  and  – λ + λ ≥ . �

Since  + λ ≥  ⇒  + λ + λ ≥ , Theorem . and Lemma . produce the following
result.

Theorem . The totally general solution of the SSIEP for � = (,λ,λ) ( ≥ λ ≥ λ ≥ –)
exists if and only if

 + λ ≥  and  – λ + λ ≥ , (.)

and the totally general solution is given by (.).

As we know, a quadratic real function f (x) = ax + bx + c with a �=  has two different real
zeros if and only if its discriminant � = b – ac > , and the two zeros are x± = –b±√

�
a . If



Zhang et al. Journal of Inequalities and Applications  (2015) 2015:180 Page 12 of 17

� >  and a >  (< ) then f (x) ≥  on [–∞, x–]∪[x+, +∞]([x–, x+]). The quadratic function
αa(x) = ( + λ + λ)x + ( + λ)x +  + λ has two real different zeros:

u± =
– – λ ± √

–( + λ)( + λ)
 + λ + λ

(.)

if and only if  + λ <  <  + λ; and αa(x) = ( – λ)x + ( – λ + λ)x +  – λ + λ

has two real different zeros:

v± =
– + λ – λ ± √

–( – λ + λ)( + λ – λ)
( – λ)

(.)

if and only if  – λ + λ <  <  + λ – λ.

Theorem . Let � = (,λ,λ) satisfy (.) and (.). Then the general solution of SSIEP
for � exists if and only if

 + λ + λ ≥ , (.)

and the general solution is given by (.) with  ≤ x ≤  when  + λ ≥  and  – λ +λ ≥
; with v+ ≤ x ≤  when  + λ ≥  and  – λ + λ < ; with u+ ≤ x ≤  when  + λ < 
and  – λ + λ ≥ ; with max{u+, v+} ≤ x ≤  when  + λ <  and  – λ + λ < .

Proof Let A(x) = (aij(x)) = S(x) diag(,λ,λ)S(x)T , where S(x) is given by (.). Let
Nij(x)( ≤ i, j ≤ n) ⊂ [, ] denote the ‘nonnegative interval’ of aij(x) such that aij(x) ≥ 
if and only if x ∈ Nij(x). Then A(x) for some x ∈ [, ] is a solution of the SSIEP for � if and
only if 	 =

⋂
i,j=,...,n Nij(x) �= ∅ by Theorem . and Theorem .. Since N(x) ⊆ N(x),

N(x) ⊆ N(x) ⊆ N(x) and N(x) = [, ] by Lemma ., 	 = N(x) ∩ N(x).
If (.) does not hold, then  + λ ≤  + λ + λ < . Moreover,  + λ + λ <  implies

αa(x) <  for all x ∈ [, ], and  + λ + λ ≥  >  + λ + λ implies

αa(x) ≤ ( + λ + λ)x + ( + λ)x +  + λ

=  + λ + λ +  + λ = ( + λ + λ) < ,

for all x ∈ [, ]. Therefore, N(x) = ∅, which yields 	 = N ∩ N(x) = ∅. This proves the
necessity.

To prove the sufficiency, it suffices to show that (.) implies 	 �= ∅. If  + λ ≥ , then
N(x) = [, ] by the proof of Lemma .. If  + λ < , then  + λ <  ≤ 

 ( +λ + λ) <
 + λ, which produces u– <  < u+ and hence N(x) = [, ] ∩ ([u+, +∞) ∪ [–∞, u–]) =
[u+, ]. Similarly if  – λ + λ ≥ , then N(x) = [, ] by the proof of Lemma .. If
 – λ +λ < , then λ > λ,  – λ +λ <  ≤  – λ <  +λ – λ, which produces v– <
 < v+ and hence N(x) = [, ] ∩ ([v+, +∞) ∪ [–∞, v–]) = [v+, ]. So 	 = N(x) ∩ N(x) =
[u+, ] ∩ [v+, ].

Now we prove, by contradiction, that condition (.) implies max{u+, v+} ≤ , which pro-
duces [u+, ] ∩ [v+, ] = [max{u+, v+}, ] �= ∅, and then the proof of sufficiency is completed.
As a matter of fact, if u+ > , then  + λ + λ < – – λ +

√
–( + λ)( + λ) by (.).
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So u+ >  is equivalent to

( + λ + λ) <
√

–( + λ)( + λ),

or

λ
 + λλ + λ + λ

 + λ +  < .

But this is impossible because the left side of the last inequality is equal to ( + λ +
λ)( + λ + λ) ≥ ( + λ + λ) ≥  by (.). Similarly if v+ > , then ( – λ – λ) <√

–( – λ + λ)( + λ – λ) by (.). So u+ >  is equivalent to

(λλ – λ – λ + ) < .

But this is impossible because the left side of the last inequality is equal to (–λ)(–λ),
which cannot be negative. �

Remark . Theorem  of [] shows that the real triple � = {,λ,λ} with |λi| ≤ ,
i = ,  is SS realizable if and only if

 + λ + λ ≥  and  + λ + λ ≥ . (.)

It is clear that condition (.) and |λi| ≤ , i = ,  is equivalent to conditions (.), (.),
and (.).

Example . Since � = (, , –.) satisfies condition (.) of Theorem ., the totally
general solution of the SSIEP for � is

{
A(x) =


α

M(x)
}

,  ≤ x ≤ ,

where

M(x) =

⎛
⎜⎝

α – .( + x) α – .( + x – x) α + .( + x + x)
∗ α – .( – x) α + .( – x – x)
∗ ∗ α – .( + x)

⎞
⎟⎠ ,

α = x + x +  > ,  ≤ x ≤ , and the entries marked by ‘∗’ are determined by the sym-
metry property of M(x).

Moreover, since � satisfies condition (.), Theorem . provides a solution of this
SSIEP:

A∗ = S

⎛
⎜⎝

  
  
  –.

⎞
⎟⎠ST

 =



⎛
⎜⎝

/ / /
/ / /
/ / 

⎞
⎟⎠ .
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Note that since � also satisfies the condition of Theorem  of [], a symmetric stochastic
matrix A with σ (A) = � can be found by the method given in [] to be

⎛
⎜⎝

/ / /
/ /, ,/,
/ ,/, /,

⎞
⎟⎠ ,

which is not equivalent to A∗. So our Theorem . and Theorem  of [] are really different.

Remark . If we find the general solution for the SSIEP, then we find all the possible
solutions (only different by a permutationally similar transformation) and we are able to
choose some interesting solution from them. As an example, for Example . it is inter-
esting to know: among all the possible SS realizations of �, which one has the greatest
(smallest) entry? and what is the value of this greatest (smallest) entry?

Using the expression of the general solution: A(x) = 
α

M(x),  ≤ x ≤ , we can easily find
that the (, ) entry of A() equal to 

 (the (, ) entry of A() equal to 
 > ) is the greatest

(least) entry among all the entries of all the possible SS realizations of �. Therefore, any
possible SS realization of � is always a positive matrix whose entries belong to the interval
[ 

 , 
 ].

Example . Since � = (, , –.) does not satisfy the conditions of both Theorem .
and Theorem ., the totally general solution of the SSIEP for � does not exist, and
A(

√
–
 ) is not a solution. But � does satisfy conditions (.) and (.), and this SSIEP

has a solution

A∗ =

⎛
⎜⎝

/ / /
/ / /
/ / /

⎞
⎟⎠

by Theorem ..
Now we use Theorem . to find the general solution of this SSIEP as follows. Since

 + λ <  ≤  + λ +λ and  < u+ = ––λ+
√

(+λ)(––λ)
+λ+λ

= . <  we have S(x) =
[u+, ] �= ∅; since  – λ + λ ≥  we have S(x) = [, ] and 	 = S = [u+, ]. Finally the
general solution is

⎧⎪⎨
⎪⎩A(x) =


α

⎛
⎜⎝

α – .( + x) α – .( + x – x) α + .( + x + x)
∗ α – .( – x) α + .( – x – x)
∗ ∗ α – .( + x)

⎞
⎟⎠

⎫⎪⎬
⎪⎭

with x ∈ [., ]. It is interesting to note that the preceding solution A∗ is permuta-
tionally similar to A().

Example . Since � = (,λ,λ,λ) = (, , , –.) satisfies the conditions of both The-
orem . and Theorem ., the SSIEP for � has two solutions which are not permutation-
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ally similar to each other:

A =

⎛
⎜⎜⎜⎝

. . . .
. . . .
. . . .
. . . .

⎞
⎟⎟⎟⎠ , A∗ =

⎛
⎜⎜⎜⎝

. . . .
. . . .
. . . .
. . . .

⎞
⎟⎟⎟⎠ .

This shows that if the condition of Theorem .() is not satisfied, i.e. � contains two
equal elements, then for two typical orthogonal matrices S, S′ of order n, the relation
showing that S′ is equivalent to S cannot be guaranteed by the relation showing that
S diag(λ, . . . ,λn)ST is permutationally similar to S′ diag(λ, . . . ,λn)S′�.

Using the typical orthogonal matrix S′′
 given in (.) we have the following corollary.

Corollary . If

 + λ + λ ≥ , (.)

then

A = S′′
 diag(,λ,λ,λ)S′′�



=



⎛
⎜⎜⎜⎝

 + λ + λ  + λ – λ  – λ  – λ

 + λ – λ  + λ + λ  – λ  – λ

 – λ  – λ  + λ + λ  + λ – λ

 – λ  – λ  + λ – λ  + λ + λ

⎞
⎟⎟⎟⎠

is a solution of the  ×  SSIEP for � = (,λ,λ,λ) ( ≥ λ ≥ λ ≥ λ ≥ –).

Corollary . If

 + λ ≥ ,  + λ + λ ≥ ,  + λ – λ + λ ≥ , (.)

then the  ×  SSIEP for � = (,λ,λ,λ) ( ≥ λ ≥ λ ≥ λ ≥ –) has solutions with one
parameter x:

A(x) = S′
(x) diag(,λ,λ,λ)S′T

 (x),  ≤ x ≤ .

Proof Let A(x) = S′
(x) diag(,λ,λ,λ)S′T

 (x),  ≤ x ≤  with S′
(x) given by (.). Then for

 ≤ x ≤ , A(x) is a × symmetric matrix with unit row sums realizing � by Theorem .
and

A(x) =

⎛
⎜⎜⎜⎝

+λ


–λ


–λ


–λ


–λ


–λ
 A′(x)

–λ


⎞
⎟⎟⎟⎠ ,



Zhang et al. Journal of Inequalities and Applications  (2015) 2015:180 Page 16 of 17

where A′(x) = (, , )T (, , ) + S′
(x) diag(λ,λ,λ)S′T

 (x) with S′
(x) = S(x) diag( 

 , , ) ×
ST

 (x). Let S′
(x) diag(λ,λ,λ)S′T

 (x) = (a′
ij(x)), then a direct calculation produces

αa′
(x) =

(
λ


+ λ

)
x +

(
λ


+ λ

)
x +

λ


+ λ + λ,

αa′
(x) =

(
λ


+ λ + λ

)
x +

(
λ


– λ

)
x +

λ


+ λ + λ,

αa′
(x) =

(
λ


+ λ + λ

)
x +

(
λ


+ λ

)
x +

λ


+ λ,

αa′
(x) =

(
λ


– λ

)
x +

(
λ


– λ + λ

)
x +

λ


– λ + λ,

αa′
(x) =

(
λ


– λ

)
x +

(
λ


+ λ – λ

)
x +

λ


– λ,

αa′
(x) =

(
λ


– λ + λ

)
x +

(
λ


– λ + λ

)
x +

λ


– λ.

By the analysis used in the proof of Lemma . we conclude that for x ∈ [, ]

Minx∈[,] S′
(x) diag(λ,λ,λ)S′T

 (x)

= Min≤i<j≤n a′
ij(x) ≥ Min

{
λ


+ λ,

λ


– λ + λ

}
. (.)

Now condition (.) implies Min{ λ
 + λ, λ

 – λ + λ} ≥ –, and hence A′(x) =
(, , )T (, , ) + S′

(x) diag(λ,λ,λ)S′T
 (x) is a nonnegative matrix. Finally, since  –λ ≥ 

and  + λ ≥  by (.) we see that A(x) is also a nonnegative matrix, and hence a sym-
metric stochastic matrix with σ (A) = �. �

Open problems What are the necessary and sufficient conditions of the  ×  SSIEP to
have a solution? What is the general solution of this inverse eigenvalue problem when it
has a solution?
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