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Abstract

A new upper bound for the infinity norm of inverse matrix of a strictly diagonally
dominant M-matrix is given, and the lower bound for the minimum eigenvalue of the
matrix is obtained. Furthermore, an upper bound for the infinity norm of inverse
matrix of a strictly e-diagonally dominant M-matrix is presented. Finally, we give
numerical examples to illustrate our results.
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1 Introduction

Let R™" denote the set of all # x n real matrices, N = {1,2,...,n} and A = (a;) € ™"
(n > 2). A matrix A is called a nonsingular M-matrix if there exist a nonnegative matrix B
and some real number s such that

A=sI-B, s>p(B),

where I is the identity matrix, p(B) is the spectral radius of B. 7(A) denotes the minimum
of all real eigenvalues of the nonsingular M-matrix A.

Very often in numerical analysis, one needs a bound for the condition number of a
square 7 x n matrix A, Cond(A) = |Allc - |47} ||eo. Bounding [|A || is not usually diffi-
cult, but a bound of ||A™} || is not usually available unless A is known explicitly.

However, if A = (a;) € R™" is a strictly diagonally dominant matrix, Varah [1] bound
|A7}| oo quite easily by the following result:

1

A < '
” ”00 ~ mingen{la;| - Zj;’i la;[}

1)

Remark1 [2] Ifthe diagonal dominance of A is weak, i.e., min;en{|a;| — Zj i lagl} is small,

then using (1) in estimating ||A~}| ., the bound may yield a large value.

In 2007, Cheng and Huang [2] presented the following results.
If A = (ay) is a strictly diagonally dominant M-matrix, then

. 1 n 1 i-1 Mj
||A “oo E ﬂll(l — Mlll) + Z|:ﬂii(1 — Ll,'l,') !_1[<1 * 1- Mll]>:| (2)

i=2
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If A = (aj;) is a strictly diagonally dominant M-matrix, then the bound in (2) is sharper
than that in Theorem 3.3 in [3], i.e.,

n

1 1 i-1 W n i -1
aiu(l —alD + ;[7%(1 ) !_1[(1 + - M/lj):| < Z|:ﬂiil_[(1 - uj):| .

i=1 j=1

In 2009, Wang [4] obtained the better result: Let A = (a;;) be a strictly diagonally domi-

nant M-matrix. Then
i1

o 1 - 1 1
47 e < an(l-wmh) ’ Z[ﬂii(l - uil;) 1_1[ 1- I/ljlj:|‘ ®

i=2 j=

In this paper, we present new upper bounds for ||A7!||«, of a strictly («-)diagonally dom-
inant M-matrix A, which improved the above results. As an application, a lower bound of
7(A) is obtained.

For convenience, for i,j,k € N, j # i, denote

Ri(A)
R(A) =) layl,  CiA)=) lagl,  di=——,
i i 4
n
, 2 i lai] D k<i<n il
JA) ={ieNldi<1},  w=""—",  f=max{=" 4
|l ksizn |
|ai]
Li=u,=0, ri=—-co———,  rp=max{r},
lajl = 3 kg 1] j#i
lajil + 3 iy 1k |ai]
O'ji = ’ ;= Hla. )
;] i# Uagloji = 3 iy 1kl o
L lajil + 3 1y 1kl owibi " |l + 3 iy 1k i
ji = ) ji = )
|l lajil

We will denote by A1) the principal submatrix of A formed from all rows and all
columns with indices between #; and n, inclusively; e.g., A®@" ig the submatrix of A ob-

tained by deleting the first row and the first column of A.

Definition 1 [3] A = (a;) € R™" is a weakly chained diagonally dominant if for all i € N,
d; <1 and J(A) # ¢, and for all i € N, i ¢ J(A), there exist indices iy, is,..., i in N with
@, 70,0 <r<k-1, where iy = i and iy € J(A).

Definition 2 [5] A = (a;) € R"*" is called a strictly a-diagonally dominant matrix if there
exists @ € [0,1] such that

|a;| >OlRi(A) + (l—Ol)C,'(A), VieN.
2 Upper bounds for |A7'| , of a strictly diagonally dominant M-matrix

In this section, we give several bounds of |[A™! ||« and 7 (A) for a strictly diagonally domi-

nant M-matrix A.
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Lemmal (2] Let A = (a;) be a weakly chained diagonally dominant M-matrix, B = AN,
A= (ay), and Bl= (By). Then, fori,j=2,...,n,

1 1 o 1 <
o1 = N o = A kX_;ﬂik(‘“kl): oy = A kX_Z:,Bkj(—ﬂlk),

n n n
;i = B + o) Z Bik(—ax), A=ayn - lelk (Z ﬂkiﬂil) > 0.
k=2 i=2

k=2

Furthermore, if J(A) = N, then
A>an(-dih) > an(l-d).

Lemma 2 [2] IfA = (ay) is a strictly diagonally dominant M-matrix, then
A>an(-dl)>an1-d)>0.

Lemma 3 Let A = (a;) be a strictly diagonally dominant M-matrix. Then, for A™ = (ay),
Qi S wjict;,  LjEN,jF L.

Proof This proof is similar to the one of Lemma 2 in [6]. d

Lemma 4 Let A = (a;) be a strictly diagonally dominant M-matrix. Then, for A™ = (o),

1
— <o <——=———, i€eN.
ai; T ay - > i laglwsi
Proof This proof is similar to the one of Lemma 2.3 in [7]. g

Lemma5 [3] Let A = (a;) be a weakly chained diagonally dominant M-matrix, A™' = (o),
and t = t(A). Then

. . 1 1
T < min{a;}, T < max E aj(, T > min E aji, —=<T1T=<—,
ieN ieN ieN | 4 M m
jeEN JjEN

where

mempd Yol memnl Yl

JjeN jeN

Theorem1 Let A = (a;) be a strictly diagonally dominant M-matrix, B = A AT = (o),
and B! = (By). Then

1 1

+
an -3 L laylop  1-dih

[A™ ] = 187
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Proof Let
,
m=ewp  Ma=[at o Mp=|BT
Then
:
My = max{n;}, Mg = zrilfl’i{;ﬁff}'

By Lemma 1, Lemma 2, and Lemma 4,

n n n
1 1 1 1
m=on+ E ay=—+— E (—aw) E By < — + —andiMp
- A A P = A A

1 dlMB 1 MB
<—+ < - + .
A 1- dlll an — Zj:Z |a1,|a),-1 1- dlll

Let 2 <i < n. Then, by Lemma 1 and Lemma 3,

Zﬁik(—ﬂkl) =A-ap < Awjog = w; <1,
n
aj; = i + o) Z Bik(—ax) < By + arjwn < Bij + ayj.

k=2

Therefore, for 2 < i < n, we have

ni = ot E a; <apw + E (Bij + arjwin) = mowy + Mp < ml + Mp

j=2 j=2
1 d1Mp ) 1 Mp 1 Mp
<| -+ Lh+Mp<—+ < + .
(A 1- dlll ! A 1- dlll an — 2;12 |a1j|a)j1 1- dlll

Furthermore, from (4) and (5), we obtain

My —— gt ||
_6111—Zj=2|ﬂ1;‘|wj1 1-dil o0

The result follows.

Theorem 2 Let A = (ay) be a strictly diagonally dominant M-matrix. Then

1 n i-1
A,z >
|| Hoo an — ZZ:Z |ll1k|6l)k1 i |: Zk i+1 |alk|wkl 1- ]

j=1

(4)

(5)

(7)

Proof The result follows by applying the principle of mathematical induction with respect

to k on A% in (6).

By Lemma 5 and Theorem 1, we can obtain a new bound of t(A4).

O
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Corollary 1 IfA = (ay) is a strictly diagonally dominant M-matrix, then

1 n i-1 -1
T(A) > +
{ﬂu - Zzzz |a1k| W ;|: Zk i+l | @ik | Wi l_[ 1- :| }

j=1

Theorem 3 Let A = (a;;) be a strictly diagonally dominant M-matrix. Then the bound in
(7) is better than that in (3), i.e.,

1 n i-1
; 2|2 [
an — Zk=2 |ﬂlk|wk1 i=2 Zk i+l |ﬂzk|a)kz 1-

j=1

) " 1 I
< + :
an(l - wmh) ; |:lliz’(1 - u;l;) 1_1[ 1- ”jli:|

j=

Proof Since A is a strictly diagonally dominant matrix, so 0 < u;, /; < 1 for all j. By the
definition of u;, I;, wy, we have wy; < I; and azu; = Y ;_;,; lax| for all i. Obviously, the
result follows. O

3 Upper bounds for |A™'| ., of a strictly a-diagonally dominant M-matrix

In this section, we present an upper bound of ||A™! || for a strictly a-diagonally dominant
M-matrix A.

Lemma 6 [8] Let A,B € R"™". IfA and A — B are nonsingular, then

(A-B)'=A" +AB(1-A7'B) A

Lemma?7 LetA = (a;) € R™" be a strictly diagonally dominant M-matrix, and B = (b;;) €
R™" If@o - || Blle <1, then |A7B|| o < 1, where

1 i 1 =
po= an — Y o laiklon ’ 122:|:61n' = i lal o [1[ 1- ujlj:|.
Proof By Theorem 2, we get
|A7B| < A7 LIBlleo < @0llBllo < 1.
The result follows. O

Lemma 8 (8] If |A™ oo < 1, then I — A is nonsingular and

1

- A" -

Theorem 4 Let A = (a;) € R™" be a strictly a-diagonally dominant matrix, o € (0,1] and
A be an M-matrix. If {i € N|R,(A) > C;(A)} # 0, and

1
max; <j<, a(R;(A) — C;(A))’

@1 <
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then

[A7 e < -
oo

1 — 1 max; <j<, o (R;(A) — C;(A))’

(8)

where

1 n 1 i-1 1
¢1= + ,
V1= D ks lalon ; |: vi— 3"

D keivt @ikl 11—l

~.
I
=N

V; 1I£1a<x {a,,,a“ + a(R A) - C,»(A))}.

Proof Let A = B - C, where B = (by), C = (¢;), and

{au + a(Ri(A) - Ci(A)),
by =

i=),Ri(A) > Ci(A),
al];

otherwise,

) {oz(Ri(A) -GiA), i=j
Ci]‘ =

Ri(A) > C;(A),
0)

otherwise.
For any i € {i € N|R;(A) > C;(A)}, we get
b = ai + a(Ri(A) - Ci(A)) > Ri(A) = Ri(B).

For any i € {i € N|R;(A) < C;(A)}, we have

bii = a;; > aRi(A) + (1 - a)Ci(A) > R;(A) = Ri(B).

Thus, B is a strictly diagonal dominant M-matrix. By Lemma 7, we get ||B1C||« < 1. By
Lemma 6, Lemma 8, and Theorem 2, we have

1 n i-1
B 1
” “°° ~ b - ZZ:z a1kl wia * Z|: 1 1- :|

i=2 Zk i+1 |alk|wkl j
1 " i-1
- 7 2|5
=Yk lalon 4 Zk i1 ikl ok i 1-u
Therefore
|87

o < @1 max a(Ri(A) - Ci(A)).

1<i<n

Furthermore, we have

At = 1= - | e BcU- ) B
<|BY +|BC|, - [-BO) |- B

» IB'Cll .
=187+ e 127

oo
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B Ml

" 1- B Cllo

< $1

T 1- ¢ maxi<i<, a(Ri(A) - Ci(A))

The result follows. g

4 Numerical examples
In this section, we present numerical examples to illustrate the advantages of our derived
results.

Example1 Let

It is easy to see that A is a strictly diagonally dominant M-matrix. By calculations with
Matlab 7.1, we have

a7 <100 (by(V), |47, <112862 (by(2)),
|A7| =52305 (by(3),  [|A7|_ <10003 (by (7))

respectively. It is obvious that the bound in (7) is the best result.

Example 2 Let

2 -1 -1
A=| -1 2 -1
-05 -05 2

It is easy to see that A is a strictly «-diagonally dominant M-matrix by taking « = 0.5,
and A is not a strictly diagonally dominant matrix. Thus the bound of |A~}||,, cannot be
estimated by (1), (2), and (3), but it can be estimated by (8). By (8), we get

|A™ <8.0322.
[e¢]
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