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Abstract
We investigate locally compact topological groups for which a generalized analog of
the Heisenberg uncertainty inequality hold. In particular, it is shown that this
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1 Introduction
In , Heisenberg presented a principle related to the uncertainties in the measurements
of position and momentum of microscopic particles. This principle is known as Heisenberg
uncertainty principle and can be stated as follows:

It is impossible to know simultaneously the exact position and momentum of a particle.
That is, the more exactly the position is determined, the less known the momentum, and
vice versa.

In , Wiener gave the following mathematical formulation of the Heisenberg uncer-
tainty principle:

A nonzero function and its Fourier transform cannot both be sharply localized.

Heisenberg’s uncertainty inequality is a precise quantitative formulation of the above
principle.

The Fourier transform of f ∈ L(Rn) is given by

f̂ (ξ ) =
∫
Rn

f (x)e–π i〈x,ξ〉 dx,

where 〈·, ·〉 denotes the usual inner product on R
n. This definition of Fourier transform

holds for functions in L(Rn) ∩ L(Rn). Since L(Rn) ∩ L(Rn) is dense in L(Rn), the defi-
nition of Fourier transform can be extended to the functions in L(Rn).

The following theorem gives the Heisenberg uncertainty inequality for the Fourier trans-
form on R

n. For a proof of the theorem, see [].
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Theorem . For any f ∈ L(Rn), we have

n‖f ‖


π
≤

(∫
Rn

‖x‖∣∣f (x)
∣∣ dx

)/(∫
Rn

‖y‖∣∣f̂ (y)
∣∣ dy

)/

, (.)

where ‖ · ‖ denotes the L-norm and ‖ · ‖ denotes the Euclidean norm.

The Heisenberg uncertainty inequality has been established for the Fourier transform
on the Heisenberg group by Thangavelu []. Further generalizations of the inequality on
the Heisenberg group have been established by Sitaram et al. [] and Xiao and He []. For
some more details, see [].

The inequality given below can be proved using Hölder’s inequality and the inequality
(.).

Theorem . For any f ∈ L(Rn) and a, b ≥ , we have

n‖f ‖( 
a + 

b )


π
≤

(∫
Rn

‖x‖a∣∣f (x)
∣∣ dx

) 
a

(∫
Rn

‖y‖b∣∣f̂ (y)
∣∣ dy

) 
b

,

where ‖ · ‖ denotes the L-norm and ‖ · ‖ denotes the Euclidean norm.

In Section , we shall prove a generalized analog of the Heisenberg uncertainty inequal-
ity for R

n × K , where K is a separable unimodular locally compact group of type I. In
the next section, a generalized analog of the Heisenberg uncertainty inequality for the Eu-
clidean motion group M(n) is proved. The last section deals with a generalized analog of
the Heisenberg uncertainty inequality for several general classes of nilpotent Lie groups
for which the Hilbert-Schmidt norm of the group Fourier transform πξ (f ) of f attains a
particular form. These classes include thread-like nilpotent Lie groups, -NPC nilpotent
Lie groups and several low-dimensional nilpotent Lie groups.

2 R
n × K , K a locally compact group

Consider G = R
n × K , where K is a separable unimodular locally compact group of type I.

The Haar measure of G is dg = dx dk, where dx is the Lebesgue measure on R
n and dk is

the left Haar measure on K . The dual Ĝ of G is Rn × K̂ , where K̂ is the dual space of K .
The Fourier transform of f ∈ L(G) is given by

f̂ (y,σ ) =
∫
Rn

∫
K

f (x, k)e–π i〈x,y〉σ
(
k–)dk dx,

for (y,σ ) ∈R
n × K̂ .

Theorem . For any f ∈ L(Rn ×K) (where K is a separable unimodular locally compact
group of type I) and a, b ≥ , we have

n‖f ‖( 
a + 

b )


π
≤

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a

×
(∫

Rn

∫
K̂

‖y‖b∥∥f̂ (y,σ )
∥∥

HS dy dσ

) 
b

. (.)



Bansal and Kumar Journal of Inequalities and Applications  (2015) 2015:168 Page 3 of 15

Proof Without loss of generality, we may assume that both integrals on the right-hand side
of (.) are finite.

Given that f ∈ L(Rn ×K), there exists A ⊆ K of measure zero such that for k ∈ K \A = A′

(say), we have

∫
Rn

∣∣f (x, k)
∣∣ dx < ∞.

For all k ∈ A′, we define fk(x) = f (x, k), for every x ∈R
n.

Clearly, for all k ∈ A′, fk ∈ L(Rn), and for all y ∈R
n,

f̂k(y) =
∫
Rn

f (x, k)e–π i〈x,y〉 dy = Ff (y, k).

By Theorem ., we have

n
π

∫
Rn

∣∣f (x, k)
∣∣ dx ≤

(∫
Rn

‖x‖∣∣fk(x)
∣∣ dx

)/(∫
Rn

‖y‖∣∣f̂k(y)
∣∣ dy

)/

.

Integrating both sides with respect to dk, we obtain

n
π

∫
A′

∫
Rn

∣∣f (x, k)
∣∣ dx dk ≤

∫
A′

(∫
Rn

‖x‖∣∣fk(x)
∣∣ dx

)/(∫
Rn

‖y‖∣∣f̂k(y)
∣∣ dy

)/

dk.

The integral on the L.H.S. is equal to ‖f ‖
, so using the Cauchy-Schwarz inequality and

Fubini’s theorem, we have

n‖f ‖


π
≤

(∫
K

∫
Rn

‖x‖∣∣f (x, k)
∣∣ dx dk

)/(∫
Rn

‖y‖
∫

A′

∣∣f̂k(y)
∣∣ dk dy

)/

. (.)

Now, using Hölder’s inequality, we have

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a
(∫

Rn

∫
K

∣∣f (x, k)
∣∣ dk dx

)– 
a

≥
∫
Rn

∫
K

‖x‖∣∣f (x, k)
∣∣ 

a
∣∣f (x, k)

∣∣(– 
a ) dk dx

=
∫
Rn

∫
K

‖x‖∣∣f (x, k)
∣∣ dk dx,

which implies

∫
Rn

∫
K

‖x‖∣∣f (x, k)
∣∣ dk dx ≤

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a (‖f ‖


)– 

a . (.)

Combining (.) and (.), we obtain

n‖f ‖


π
≤

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a (‖f ‖


) 

 – 
a

×
(∫

Rn
‖y‖

∫
A′

∣∣f̂k(y)
∣∣ dk dy

)/

. (.)
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Since
∫
Rn

∫
A′

∣∣Ff (y, k)
∣∣ dy dk =

∫
Rn

∫
A′

∣∣f (x, k)
∣∣ dx dk = ‖f ‖

 < ∞,

therefore, Ff ∈ L(Rn × A′). Therefore, FFf is well defined a.e. By approximating f ∈
L(Rn × A′) by functions in L ∩ L(Rn × A′), we have

FFf = f̂ ,

for all f ∈ L(Rn × A′). Applying the Plancherel formula on the locally compact group K ,
we have

∫
A′

∣∣f̂k(y)
∣∣ dk =

∫
K̂

∥∥f̂ (y,σ )
∥∥

HS dσ .

Thus, (.) can be written as

n‖f ‖


π
≤

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a (‖f ‖


) 

 – 
a

×
(∫

Rn

∫
K̂

‖y‖∥∥f̂ (y,σ )
∥∥

HS dy dσ

)/

. (.)

Now, again using Hölder’s inequality, we have

(∫
Rn

∫
K̂

‖y‖b∥∥f̂ (y,σ )
∥∥

HS dy dσ

) 
b
(∫

Rn

∫
K̂

∥∥f̂ (y,σ )
∥∥

HS dy dσ

)– 
b

≥
∫
Rn

∫
K̂

‖y‖∥∥f̂ (y,σ )
∥∥ 

b
HS

∥∥f̂ (y,σ )
∥∥(– 

b )
HS dy dσ

=
∫
Rn

∫
K̂

‖y‖∥∥f̂ (y,σ )
∥∥

HS dy dσ ,

which implies

∫
Rn

∫
K̂

‖y‖∥∥f̂ (y,σ )
∥∥

HS dy dσ ≤
(∫

Rn

∫
K̂

‖y‖b∥∥f̂ (y,σ )
∥∥

HS dy dσ

) 
b (‖f ‖


)– 

b . (.)

Combining (.) and (.), we obtain

n‖f ‖


π
≤

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a (‖f ‖


) 

 – 
a

×
(∫

Rn

∫
K̂

‖y‖b∥∥f̂ (y,σ )
∥∥

HS dy dσ

) 
b (‖f ‖


) 

 – 
b ,

which implies

n‖f ‖( 
a + 

b )


π
≤

(∫
Rn

∫
K

‖x‖a∣∣f (x, k)
∣∣ dk dx

) 
a

(∫
Rn

∫
K̂

‖y‖b∥∥f̂ (y,σ )
∥∥

HS dy dσ

) 
b

. �
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3 Euclidean motion group M(n)
Consider M(n) to be the semi-direct product of Rn with K = SO(n). The group law is given
by

(z, k)
(
w, k′) =

(
z + k · w, kk′),

for z, w ∈ R
n and k, k′ ∈ K . The group M(n) is called the motion group of the Euclidean

plane R
n.

As in [], M = SO(n – ) can be considered as a subgroup of K leaving the point e =
(, , , . . . , ) fixed. All the irreducible unitary representations of M(n) relevant for the
Plancherel formula are parametrized (up to unitary equivalence) by pairs (λ,σ ), where
λ >  and σ ∈ M̂, the unitary dual of M.

Given σ ∈ M̂ realized on a Hilbert space Hσ of dimension dσ , consider the space,

L(K ,σ ) =
{
ϕ

∣∣∣ ϕ : K → Mdσ ×dσ ,
∫ ∥∥ϕ(k)

∥∥ dk < ∞,

ϕ(uk) = σ (u)ϕ(k), for u ∈ M and k ∈ K
}

.

Note that L(K ,σ ) is a Hilbert space under the inner product

〈ϕ,ψ〉 =
∫

K
tr
(
ϕ(k)ψ(k)∗

)
dk.

For each λ >  and σ ∈ M̂, we can define a representation πλ,σ of M(n) on L(K ,σ ) as
follows.

For ϕ ∈ L(K ,σ ), (z, k) ∈ M(n),

πλ,σ (z, k)ϕ(u) = eiλ〈u–·e,z〉ϕ(uk),

for u ∈ K .
If ϕj(k) are the column vectors of ϕ ∈ L(K ,σ ), then ϕj(uk) = σ (u)ϕj(k) for all u ∈ M.

Therefore, L(K ,σ ) can be written as the direct sum of dσ copies of H(K ,σ ), where

H(K ,σ ) =
{
ϕ

∣∣∣ ϕ : K → C
dσ ,

∫ ∥∥ϕ(k)
∥∥ dk < ∞,

ϕ(uk) = σ (u)ϕ(k), for u ∈ M and k ∈ K
}

.

It can be shown that πλ,σ restricted to H(K ,σ ) is an irreducible unitary representation of
M(n). Moreover, any irreducible unitary representation of M(n) which is infinite dimen-
sional is unitarily equivalent to one and only one πλ,σ .

The Fourier transform of f ∈ L(M(n)) is given by

f̂ (λ,σ ) =
∫

M(n)
f (z, k)πλ,σ (z, k)∗ dz dk.

f̂ (λ,σ ) is a Hilbert-Schmidt operator on H(K ,σ ).
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A solid harmonic of degree m is a polynomial which is homogeneous of degree m and
whose Laplacian is zero. The set of all such polynomials will be denoted by Hm and the
restriction of elements of Hm to Sn– is denoted by Sm. By choosing an orthonormal basis
{gmj : j = , , . . . , dm} of Sm for each m = , , , . . . , we get an orthonormal basis for L(Sn–).

The Haar measure on M(n) is dg = dz dk, where dz is Lebesgue measure on R
n and dk

is the normalized Haar measure on SO(n).
The Plancherel formula on M(n) is given as follows (see []).

Proposition . (Plancherel formula) Let f ∈ L(M(n)), then

∫
M(n)

∣∣f (z, z, . . . , zn, k)
∣∣ dz dz · · · dzn dk = cn

∫ ∞



(∑
σ∈M̂

dσ

∥∥f̂ (λ,σ )
∥∥

HS

)
λn– dλ,

where cn = 
n/�( n

 ) .

We shall now state and prove the following generalized Heisenberg uncertainty inequal-
ity for a Fourier transform on M(n).

Theorem . For any f ∈ L(M(n)) and a, b ≥ , we have

‖f ‖( 
a + 

b )


√cn
≤

(∫
K

∫
Rn

‖z‖a∣∣f (z, k)
∣∣ dz dk

) 
a

×
(∫ ∞



∑
σ∈M̂

dσ λb∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

) 
b

. (.)

Proof Consider the norm ‖ · ‖ on L(M(n)) defined by

‖f ‖ :=
(∫

Rn

∫
K

(
 + ‖z‖a)∣∣f (z, k)

∣∣ dz dk
)/

+
(∫ ∞



∑
σ∈M̂

dσ

(
 + λb)∥∥f̂ (λ,σ )

∥∥
HSλ

n– dλ

)/

.

This gives us a Banach space B = {f ∈ L(G) : ‖f ‖ < ∞}, which is contained in L(M(n)) and
the space S(M(n)) of C∞-functions which are rapidly decreasing on M(n) can be shown to
be dense in B. It suffices to prove the inequality of Theorem . for functions in S(M(n));
it is automatically valid for any f ∈ B. If  �= f ∈ L(M(n)) \ B, then the right-hand side of
the inequality is always +∞ and the inequality is trivially valid.

Let f ∈ S(M(n)). Assuming that both integrals on the right-hand side of (.) are finite,
we have

∫
Rn

∣∣f (z, k)
∣∣ dz < ∞, for all k ∈ K .

For k ∈ K , we define fk(z) = f (z, k), for every z ∈ R
n.

Clearly, fk ∈ L(Rn), for all k ∈ K .
Take z = (z, z, . . . , zn) and w = (w, w, . . . , wn).
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By the Heisenberg inequality on R
n, we have

‖fk‖


π
≤

(∫
Rn

|z|
∣∣fk(z)

∣∣ dz
)/(∫

Rn
|w|

∣∣f̂k(w)
∣∣ dw

)/

⇒ 
π

∫
Rn

∣∣f (z, k)
∣∣ dz ≤

(∫
Rn

|z|
∣∣f (z, k)

∣∣ dz
)/(∫

Rn
|w|

∣∣f̂k(w)
∣∣ dw

)/

.

Integrating both sides with respect to dk, we get


π

∫
K

∫
Rn

∣∣f (z, k)
∣∣ dz dk ≤

∫
K

(∫
Rn

|z|
∣∣f (z, k)

∣∣ dz
)/(∫

Rn
|w|

∣∣f̂k(w)
∣∣ dw

)/

dk,

which implies

‖f ‖


π
≤

∫
K

(∫
Rn

|z|
∣∣f (z, k)

∣∣ dz
)/(∫

Rn
|w|

∣∣f̂k(w)
∣∣ dw

)/

dk

≤
(∫

K

∫
Rn

|z|
∣∣f (z, k)

∣∣ dz dk
)/(∫

K

∫
Rn

|w|
∣∣f̂k(w)

∣∣ dw dk
)/

(by the Cauchy-Schwarz inequality)

≤
(∫

K

∫
Rn

‖z‖∣∣f (z, k)
∣∣ dz dk

)/(∫
K

∫
Rn

|w|
∣∣f̂k(w)

∣∣ dw dk
)/

. (.)

Now,

(∫
K

∫
Rn

‖z‖a∣∣f (z, k)
∣∣ dz dk

) 
a
(∫

K

∫
Rn

∣∣f (z, k)
∣∣ dz dk

)– 
a

=
(∫

K

∫
Rn

(‖z‖∣∣f (z, k)
∣∣ 

a
)a dz dk

) 
a
(∫

K

∫
Rn

(∣∣f (z, k)
∣∣(– 

a )) 
(– 

a ) dz dk
)– 

a

≥
∫

K

∫
Rn

‖z‖∣∣f (z, k)
∣∣ 

a
∣∣f (z, k)

∣∣(– 
a ) dz dk

(
by Hölder’s inequality

)

=
∫

K

∫
Rn

‖z‖∣∣f (z, k)
∣∣ dz dk. (.)

Combining (.) and (.), we get

‖f ‖


π
≤

(∫
K

∫
Rn

‖z‖a∣∣f (z, k)
∣∣ dz dk

) 
a (‖f ‖


) 

 – 
a

×
(∫

K

∫
Rn

|w|
∣∣f̂k(w)

∣∣ dw dk
)/

. (.)

Now, using the Plancherel formula on R
n, we have

∫
K

∫
Rn

|w|
∣∣f̂k(w)

∣∣ dw dk

=
∫

K

∫
Rn

|w|
∣∣∣∣
∫
Rn

f (z, k)e–π i〈z,w〉 dz
∣∣∣∣


dw dk
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=
∫

K

∫
Rn

|w|
∣∣F,,...,nf (w, w, . . . , wn, k)

∣∣ dw dw · · · dwn dk

=
∫

K

∫
Rn

|w|
∣∣Ff (w, z, . . . , zn, k)

∣∣ dw dz · · · dzn dk. (.)

Since ∂f
∂z

∈ S(M(n)), we have

∫
R

∣∣∣∣ ∂f
∂z

(z, z, . . . , zn, k)
∣∣∣∣


dz < ∞,

for all zi ∈R and k ∈ K .
Therefore, wFf (w, z, . . . , zn, k) ∈ L(R) and

(
∂f
∂z

(z, z, . . . , zn, k)
)∧

(w) = π iwFf (w, z, . . . , zn, k),

for all zi ∈R and k ∈ K . Then

∫
R

|w|
∣∣Ff (w, z, . . . , zn, k)

∣∣ dw

=


π

∫
R

∣∣∣∣ ∂f
∂z

(z, z, . . . , zn, k)
∣∣∣∣


dz,

which implies

∫
K

∫
Rn

|w|
∣∣Ff (w, z, . . . , zn, k)

∣∣ dw dz · · · dzn dk

=


π

∫
K

∫
Rn

∣∣∣∣ ∂f
∂z

(z, z, . . . , zn, k)
∣∣∣∣


dz dz · · · dzn dk. (.)

By Proposition ., we obtain

∫
K

∫
Rn

∣∣∣∣ ∂f
∂z

(z, z, . . . , zn, k)
∣∣∣∣


dz dz · · · dzn dk

= cn

∫ ∞



∑
σ∈M̂

dσ

∥∥∥∥
(

∂f
∂z

)∧
(λ,σ )

∥∥∥∥


HS
λn– dλ. (.)

Combining (.), (.), (.), and (.), we obtain

‖f ‖


√cn
≤

(∫
K

∫
Rn

‖z‖a∣∣f (z, k)
∣∣ dz dk

) 
a (‖f ‖


) 

 – 
a

×
(∫ ∞



∑
σ∈M̂

dσ

∥∥∥∥
(

∂f
∂z

)∧
(λ,σ )

∥∥∥∥


HS
λn– dλ

)/

. (.)

For each λ >  and σ ∈ M̂, consider the representation πλ,σ (z, k) realized on L(K ,σ ) as

πλ,σ (z, k)g(u) = eiλ〈u–·e,z〉g(uk), u ∈ SO(n).
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Denote u = [uij]n×n; we have

u– · e = uT · e = [u u · · · un]T .

Therefore, 〈u– · e, z〉 =
∑n

i= uizi.
Since f ∈ S(M(n)),

(
∂f
∂z

)∧
(λ,σ )g(u)

=
∫
Rn

∫
K

∂f
∂z

(z, z, . . . , zn, k)πλ,σ (z, z, . . . , zn, k)∗g(u) dz dz · · · dzn dk

=
∫
Rn

∫
K

lim
h→

[
f (z + h, z, . . . , zn, k) – f (z, z, . . . , zn, k)

h

]

× πλ,σ (z, z, . . . , zn, k)∗g(u) dz dz · · · dzn dk

= lim
h→


h

[∫
Rn

∫
K

f (z + h, z, . . . , zn, k)πλ,σ (z, z, . . . , zn, k)∗g(u) dz dz · · · dzn dk

–
∫
Rn

∫
K

f (z, z, . . . , zn, k)πλ,σ (z, z, . . . , zn, k)∗g(u) dz dz · · · dzn dk
]

= lim
h→


h

[∫
Rn

∫
K

f (z, z, . . . , zn, k)e–iλhuπλ,σ (z, z, . . . , zn, k)∗

× g(u) dz dz · · · dzn dk

–
∫
Rn

∫
K

f (z, z, . . . , zn, k)πλ,σ (z, z, . . . , zn, k)∗g(u) dz dz · · · dzn dk
]

= lim
h→

[
e–iλhu – 

h

]∫
Rn

∫
K

f (z, z, . . . , zn, k)πλ,σ (z, z, . . . , zn, k)∗

× g(u) dz dz · · · dzn dk

= iλu

∫
Rn

∫
K

f (z, z, . . . , zn, k)πλ,σ (z, z, . . . , zn, k)∗g(u) dz dz · · · dzn dk

= iλu f̂ (λ,σ )g(u).

Hence,

∥∥∥∥
(

∂f
∂z

)∧
(λ,σ )

∥∥∥∥


HS
=

∞∑
m=

dm∑
j=

∫
K

∣∣iλu f̂ (λ,σ )gmj(u)
∣∣ du

≤ λ
∞∑

m=

dm∑
j=

∫
K

∣∣f̂ (λ,σ )gmj(u)
∣∣ du = λ∥∥f̂ (λ,σ )

∥∥
HS.

Therefore, (.) can be written as

‖f ‖


√cn
≤

(∫
K

∫
Rn

‖z‖a∣∣f (z, k)
∣∣ dz dk

) 
a (‖f ‖


) 

 – 
a

×
(∫ ∞



∑
σ∈M̂

dσ λ∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

)/

. (.)
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Now, again using Hölder’s inequality, we have

(∫ ∞



∑
σ∈M̂

dσ λb∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

) 
b
(∫ ∞



∑
σ∈M̂

dσ

∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

)– 
b

≥
∫ ∞



∑
σ∈M̂

d/b
σ λ∥∥f̂ (λ,σ )

∥∥ 
b
HSd

(– 
b )

σ

∥∥f̂ (λ,σ )
∥∥(– 

b )
HS λn– dλ

=
∫ ∞



∑
σ∈M̂

dσ λ∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ,

which implies
∫ ∞



∑
σ∈M̂

dσ λ∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

≤
(∫ ∞



∑
σ∈M̂

dσ λb∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

) 
b (‖f ‖


)– 

b . (.)

Combining (.) and (.), we obtain

‖f ‖( 
a + 

b )


√cn
≤

(∫
K

∫
Rn

‖z‖a∣∣f (z, k)
∣∣ dz dk

) 
a

×
(∫ ∞



∑
σ∈M̂

dσ λb∥∥f̂ (λ,σ )
∥∥

HSλ
n– dλ

) 
b

.
�

4 A class of nilpotent Lie groups
In this section, we shall prove the Heisenberg uncertainty inequality for a class of con-
nected, simply connected nilpotent Lie groups G for which the Hilbert-Schmidt norm of
the group Fourier transform πξ (f ) of f attains a particular form.

Let g be an n-dimensional real nilpotent Lie algebra, and let G = expg be the associ-
ated connected and simply connected nilpotent Lie group []. Let B = {X, X, . . . , Xn} be a
strong Malcev basis of g through the ascending central series of g. We introduce a ‘norm
function’ on G by setting, for x = exp(xX + xX + · · · + xnXn) ∈ G, xj ∈R,

‖x‖ =
(
x

 + · · · + x
n
)/.

The composed map

R
n → g → G,

given as

(x, . . . , xn) →
n∑

j=

xjXj → exp

( n∑
j=

xjXj

)
,

is a diffeomorphism and maps a Lebesgue measure on R
n to a Haar measure on G. In this

manner, we shall always identify g, and sometimes G, as sets with R
n. Thus, measurable

(integrable) functions on G can be viewed as such functions on R
n.



Bansal and Kumar Journal of Inequalities and Applications  (2015) 2015:168 Page 11 of 15

Let g∗ denote the vector space dual of g and {X∗
 , . . . , X∗

n} the basis of g∗ which is dual to
{X, . . . , Xn}. Then {X∗

 , . . . , X∗
n} is a Jordan-Hölder basis for the coadjoint action of G on g∗.

We shall identify g∗ with R
n via the map

ξ = (ξ, . . . , ξn) →
n∑

j=

ξjX∗
j

and on g∗ we introduce the Euclidean norm relative to the basis {X∗
 , . . . , X∗

n}, i.e.

∥∥∥∥∥
n∑

j=

ξjX∗
j

∥∥∥∥∥ =
(
ξ 

 + · · · + ξ 
n
)

= ‖ξ‖.

Let gj = R-span{X, . . . , Xn}. For ξ ∈ g∗, Oξ denotes the coadjoint orbit of ξ . An index j ∈
{, , . . . , n} is a jump index for ξ if

g(ξ ) + gj �= g(ξ ) + gj–.

We consider

e(ξ ) = {j : j is a jump index for ξ}.

This set contains exactly dim(Ol) indices. Also, there are two disjoint sets S and T of
indices with S ∪ T = {, . . . , n} and a G-invariant Zariski open set U of g∗ such that
e(ξ ) = S for all ξ ∈ U . We define the Pfaffian Pf(ξ ) of the skew-symmetric matrix MS(ξ ) =
(ξ ([Xi, Xj]))i,j∈S as

∣∣Pf(ξ )
∣∣ = det MS(ξ ).

Let VS = R-span{X∗
i : i ∈ S}, VT = R-span{X∗

i : i ∈ T}, and dξ be the Lebesgue measure on
VT such that the unit cube spanned by {X∗

i : i ∈ T} has volume . Then g∗ = VT ⊕ VS and
VT meets U . Let W = U ∩ VT be the cross section for the coadjoint orbits through the
points in U . If dξ is the Lebesgue measure on W , then dμ(ξ ) = |Pf(ξ )|dξ is a Plancherel
measure for Ĝ. The Plancherel formula is given by

‖f ‖
 =

∫
W

∥∥πξ (f )
∥∥

HS dμ(ξ ), f ∈ L ∩ L(G),

where ‖πξ (f )‖HS denotes the Hilbert-Schmidt norm of πξ (f ) and dg is the Haar measure
on G.

We shall consider the case in which W takes the following form:

W =
{
ξ = (ξ, ξ, . . . , ξn) ∈ g

∗ : ξj = , for (n – k) values of j with
∣∣Pf(ξ )

∣∣ �= 
}

.

We denote the vanishing variables by ξj , ξj , . . . , ξjn–k .
We consider the class of groups for which for all ξ ∈ W and f ∈ L(G) the Hilbert-

Schmidt norm ‖πξ (f )‖
HS has the following form:

∥∥πξ (f )
∥∥

HS =
∣∣h(ξ )

∣∣
∫
Rn–k

∣∣F (f ◦ exp)(ξ, ξ + Q, . . . , ξn + Qn)
∣∣ dξj dξj · · · dξjn–k ,
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where F denotes the Fourier transform on R
n–k ; h is a function from W to R which is

nonzero on W and the functions Qm = Qm(ξ, ξ, . . . , ξm–) with  ≤ m ≤ n.
We have the following Heisenberg uncertainty inequality for such groups.

Theorem . For any f ∈ L ∩ L(G) and a, b ≥ , we have

‖f ‖( 
a + 

b )


π
≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a

×
(∫

W
‖ξ‖b∥∥πξ (f )

∥∥
HS


|h(ξ )|b|Pf(ξ )|b– dξ

) 
b

. (.)

Proof Assuming both integrals on the right-hand side of (.) to be finite, we have

(∫
G

‖x‖∣∣f (x)
∣∣ dx

)/(∫
W

‖ξ‖∥∥πξ (f )
∥∥

HS


|h(ξ )| dξ

)/

=

(∫
Rn

n∑
i=

|xi|
∣∣∣∣∣(f ◦ exp)

( n∑
i=

xiXi

)∣∣∣∣∣


dx · · · dxn

)/

×
(∫

Rk

∫
Rn–k

n∑
i=

|ξi|
∣∣F (f ◦ exp)(ξ, ξ + Q, . . . , ξn + Qn)

∣∣ dξ · · · dξn

)/

≥
(∫

Rn
|x|

∣∣∣∣∣(f ◦ exp)

( n∑
i=

xiXi

)∣∣∣∣∣


dx · · · dxn

)/

×
(∫

Rk

∫
Rn–k

|ξ|
∣∣F (f ◦ exp)(ξ, ξ + Q, . . . , ξn + Qn)

∣∣ dξ · · · dξn

)/

=
(∫

Rn
|x|

∣∣F(x, . . . , xn)
∣∣ dx · · · dxn

)/

×
(∫

Rn
|ξ|

∣∣̂F(ξ, ξ, . . . , ξn)
∣∣ dξ dξ · · · dξn

)/

, (.)

where F(x, . . . , xn) = (f ◦ exp)(
∑n

i= xiXi) which is in L(Rn), F̂ being its Fourier transform.
By the Heisenberg inequality on R

n, we have

‖F‖


π
≤

(∫
Rn

|x|
∣∣F(x, . . . , xn)

∣∣ dx · · · dxn

)/

×
(∫

Rn
|ξ|

∣∣̂F(ξ, ξ, . . . , ξn)
∣∣ dξ dξ · · · dξn

)/

. (.)

But

‖F‖
 =

∫
Rn

∣∣F(x, . . . , xn)
∣∣ dx · · · dxn

=
∫
Rn

∣∣∣∣∣(f ◦ exp)

( n∑
i=

xiXi

)∣∣∣∣∣


dx · · · dxn =
∫

G

∣∣f (x)
∣∣ dx = ‖f ‖

. (.)
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Combining (.), (.), and (.), we get

‖f ‖


π
≤

(∫
G

‖x‖∣∣f (x)
∣∣ dx

)/(∫
W

‖ξ‖∥∥πξ (f )
∥∥

HS


|h(ξ )| dξ

)/

. (.)

Now, as in the proof of Theorem ., applications of Hölder’s inequality give

∫
G

‖x‖∣∣f (x)
∣∣ dx ≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a (‖f ‖


)– 

a (.)

and
∫
W

‖ξ‖∥∥πξ (f )
∥∥

HS


|h(ξ )| dξ

≤
(∫

W
‖ξ‖b∥∥πξ (f )

∥∥
HS


|h(ξ )|b|Pf(ξ )|b– dξ

) 
b (‖f ‖


)– 

b . (.)

Combining (.), (.), and (.), we obtain

‖f ‖( 
a + 

b )


π
≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a

(∫
W

‖ξ‖b∥∥πξ (f )
∥∥

HS


|h(ξ )|b|Pf(ξ )|b– dξ

) 
b

. �

Example . We now list several classes that are included in the above general class.
. For thread-like nilpotent Lie groups (for details, see []), we have Pf(ξ ) = ξ and

W =
{
ξ = (ξ, , ξ, . . . , ξn–, ) : ξj ∈ R, ξ �= 

}
.

Also, ‖πξ (f )‖HS is given by

∥∥πξ (f )
∥∥

HS =


|ξ|
∫
R

∣∣F (f ◦ exp)(ξ, t, ξ + Q, . . . , ξn– + Qn–, s)
∣∣ ds dt,

where Qj(ξ, , ξ, . . . , ξj–, t) =
∑j–

k=

k!

tk

ξk

ξj–k , for  ≤ j ≤ n – .

Thus, for h(ξ ) = 
|ξ| = 

|Pf(ξ )| , one obtains the Heisenberg uncertainty inequality

‖f ‖( 
a + 

b )


π
≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a

(∫
W

‖ξ‖b∥∥πξ (f )
∥∥

HS|ξ|dξ

) 
b

.

. For -NPC nilpotent Lie groups (for details, see []), let {} = g ⊂ g ⊂ · · · ⊂ gn = g

be a Jordan-Hölder sequence in g such that gm = z(g) and h = gn–. Let us consider the ideal
[g,gm+] of g which is one or two dimensional in g. We discuss the two cases separately:

(a) dim [g,gm+] = .
In this case, for every basis {X, X} of h in g and every Y ∈ gm+ \ z(g), the vectors

Z = [X, Y] and Z = [X, Y] are linearly independent and lie in the center of g. Assume
that g = R-span{Z}, g = R-span{Z, Z}. Let Z, . . . , Zm be some vectors such that z(g) =
R-span{Z, . . . , Zm} and B = {Z, . . . , Zn} a Jordan-Hölder basis of g chosen as follows:

(i) z(g) = R-span{Z, . . . , Zm};
(ii) h = R-span{Z, . . . , Zn–};

(iii) g = R-span{Z, . . . , Zn–, X = Zn–, X = Zn}.
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For m = m+ and m+ ≤ m ≤ n–, we denote Zm = Zm+ = Y, Zm = Y. These vectors
can be chosen such that ξ = ξ ([X, Y]) �= , ξ, = ξ ([X, Y]) �= , for all ξ ∈W , where

W =
{
ξ = (ξ, ξ, . . . , ξm, , , ξm+, ξm+, . . . , ξn–, , ) : ξj ∈R,

∣∣Pf(ξ )
∣∣ �= 

}
.

Also, we have Pf(ξ ) = ξ (Z)ξ ([X, Y]) – ξ ([X, Y])ξ (Z) and ‖πξ (f )‖HS is given by

∥∥πξ (f )
∥∥

HS =
∣∣h(ξ )

∣∣
∫
R

∣∣∣∣F (f ◦ exp)
(

s, s, Pn–

(
ξ , –

t

ξ̃,
, –

t

ξ̃,

)
, . . . ,

Pm+

(
ξ , –

t

ξ̃,
, –

t

ξ̃,

)
, t, t, ξm, . . . , ξ

)∣∣∣∣


ds ds dt dt,

where h is the function defined by

h(ξ ) =
|ξξ,|

|ξξ, – ξ,ξ| ,

ξi,j = ξ ([Xi, Yj]), ξ̃i,j = ξ ([Xi(ξ ), Yj]), and Pj(ξ , t) is a polynomial function with respect to the
variables t = (t, t) and ξm+, . . . , ξj and rational in the variables ξ, . . . , ξm. Thus, one obtains
the Heisenberg uncertainty inequality

‖f ‖( 
a + 

b )


π
≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a

(∫
W

‖ξ‖b∥∥πξ (f )
∥∥

HS


|h(ξ )|b|Pf(ξ )|b– dξ

) 
b

.

(b) dim [g,gm+] = .
In this case, we have Pf(ξ ) = ξ ([X, Y]) · ξ ([X, Y]) and

W =
{
ξ = (ξ, ξ, . . . , ξm, , ξm+, . . . , ξm+d+, , ξm+d+, . . . , ξn–, , ) :

ξj ∈ R,
∣∣Pf(ξ )

∣∣ �= 
}

.

Also, ‖πξ (f )‖HS is given by

∥∥πξ (f )
∥∥

HS =


|Pf(ξ )|
∫
R

∣∣∣∣F (f ◦ exp)
(

s, s, Pn–

(
ξ , –

t

ξ
, –

t + R(– t
ξ

, ξ, . . . , ξm+d)
ξ,

)
,

. . . , t, . . . , Pm+

(
ξ , –

t

ξ

)
, t, ξm, . . . , ξ

)∣∣∣∣


ds ds dt dt.

Thus, for h(ξ ) = 
|Pf(ξ )| , one obtains the Heisenberg uncertainty inequality,

‖f ‖( 
a + 

b )


π
≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a

(∫
W

‖ξ‖b∥∥πξ (f )
∥∥

HS

∣∣Pf(ξ )
∣∣dξ

) 
b

.

. For connected, simply connected nilpotent Lie groups G = expg such that g(ξ ) ⊂ [g,g]
for all ξ ∈ U (for details, see []), we consider S = {j < · · · < jd} and T = {t < · · · < tr} to
be the collection of jump and non-jump indices, respectively, with respect to the basis B.
We have jd = n and

W =
{
ξ = (ξ, ξ, . . . , ξn) ∈ g

∗ : ξji = , for ji ∈ S with
∣∣Pf(ξ )

∣∣ �= 
}

.
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Also, ‖πξ (f )‖HS is given by

∥∥πξ (f )
∥∥

HS =
|ξ ([Xj , Xn])|

|Pf(ξ )|
∫
W

∣∣F (f ◦ exp)(ξ , w)
∣∣ dw,

where ξ = (ξti )ti∈T and w = (wji )ji∈S . Thus, for h(ξ ) = |ξ ([Xj ,Xn])|
|Pf(ξ )| , one obtains the Heisenberg

uncertainty inequality

‖f ‖( 
a + 

b )


π
≤

(∫
G

‖x‖a∣∣f (x)
∣∣ dx

) 
a

(∫
W

‖ξ‖b∥∥πξ (f )
∥∥

HS
|Pf(ξ )|b+

|ξ ([Xj , Xn])|b dξ

) 
b

.

. For low-dimensional nilpotent Lie groups of dimension less than or equal to  (for
details, see []) except for G,, G,, G,, G,, G,, an explicit form of ‖πξ (f )‖HS can
be obtained. Thus, an explicit Heisenberg uncertainty inequality can be written down.

. The classes mentioned above are distinct. For instance, G, is thread-like nilpotent
Lie group, but it does not belong to the class mentioned in item . above. Also, G, belongs
to the class mentioned in item . above, but it is not a thread-like nilpotent Lie group.
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