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Abstract
A lower bound and an upper bound for the spectral radius for nonnegative tensors
are obtained. A numerical example is given to show that the new bounds are sharper
than the corresponding bounds obtained by Yang and Yang (SIAM J. Matrix Anal.
Appl. 31:2517-2530, 2010), and that the upper bound is sharper than that obtained by
Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014).
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1 Introduction
A real order m dimension n tensor A = (ai···im ), denoted by A ∈ R[m,n], consists of nm real
entries:

ai···im ∈ R,

where ij = , . . . , n for j = , . . . , m. A tensor A is called nonnegative (positive), denoted
by A ≥  (A > ), if every entry ai···im ≥  (ai···im > , respectively). Given a tensor
A = (ai···im ) ∈ R[m,n], if there are a complex number λ and a nonzero complex vector
x = (x, x, . . . , xn)T that are solutions of the following homogeneous polynomial equations:

Axm– = λx[m–],

then λ is called an eigenvalue of A and x an eigenvector of A associated with λ [–],
where Axm– and x[m–] are vectors, whose ith entries are

(
Axm–)

i =
∑

i,...,im∈N

aii···im xi · · ·xim
(
N = {, , . . . , n})

and (x[m–])i = xm–
i , respectively. Moreover, the spectral radius ρ(A) [] of the tensor A is

defined as

ρ(A) = max
{|λ| : λ is an eigenvalue of A

}
.

Eigenvalues of tensors have become an important topic of study in numerical multilinear
algebra, and they have a wide range of practical applications; see [, , –]. Recently, for
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the largest eigenvalue of a nonnegative tensor, Chang et al. [] generalized the well-known
Perron-Frobenius theorem for irreducible nonnegative matrices to irreducible nonnega-
tive tensors. Here a tensorA = (ai···im ) ∈ Rm,n is called reducible, if there exists a nonempty
proper index subset I ⊂ N such that

aii···im =  for all i ∈ I, for all i, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.

Theorem  (Theorem . in []) If A ∈ R[m,n] is irreducible nonnegative, then ρ(A) is a
positive eigenvalue with an entrywise positive eigenvector x, i.e., x > , corresponding to it.

Subsequently, Yang and Yang [] extended this theorem to nonnegative tensors.

Theorem  (Theorem . in []) If A ∈ R[m,n] is nonnegative, then ρ(A) is an eigenvalue
with an entrywise nonnegative eigenvector x, i.e., x ≥ , x �= , corresponding to it.

For the spectral radius of a nonnegative tensor, Yang and Yang [] provided a lower
bound and an upper bound for the spectral radius of a nonnegative tensor.

Theorem  (Lemma . in []) Let A = (ai···im ) ∈ R[m,n] be nonnegative. Then

Rmin ≤ ρ(A) ≤ Rmax,

where Rmin = mini∈N Ri(A), Rmax = maxi∈N Ri(A), and Ri(A) =
∑

i,...,im∈N aii···im .

In order to obtain much sharper bounds of the spectral radius of a nonnegative tensor,
Li et al. [] have given an upper bound which estimates the spectral radius more precisely
than that in Theorem .

Theorem  (Theorems . and . in []) Let A = (ai···im ) ∈ R[m,n] be nonnegative with
n ≥ . Then

ρ(A) ≤ �max,

where

�max = max
i,j∈N ,

j �=i




(
ai···i + aj···j + rj

i(A) +
√(

ai···i – aj···j + rj
i(A)

) + aij···jrj(A)
)

.

Furthermore, �max ≤ Rmax.

In this paper, we continue this research, and we give a lower bound and an upper bound
for ρ(A) of a nonnegative tensor A, which all depend only on the entries of A. It is proved
that these bounds are shaper than the corresponding bounds in [] and []. A numerical
example is also given to verify the obtained results.



Li and Li Journal of Inequalities and Applications  (2015) 2015:166 Page 3 of 9

2 New bounds for the spectral radius of nonnegative tensors
In this section, bounds for the spectral radius of a nonnegative tensors are obtained. We
first give some notation. Given a nonnegative tensor A = (ai···im ) ∈ R[m,n], we denote

�i =
{

(i, i, . . . , im) : ij = i for some j ∈ {, . . . , m}, where i, i, . . . , im ∈ N
}

,

�i =
{

(i, i, . . . , im) : ij �= i for any j ∈ {, . . . , m}, where i, i, . . . , im ∈ N
}

,

ri(A) =
∑

i,...,im∈N ,
δii ···im =

aii···im =
∑

i,...,im∈N

aii···im – ai···i = Ri(A) – ai···i,

rj
i(A) =

∑

δii...im =,
δji ···im =

aii···im =
∑

i,...,im∈N ,
δii...im =

aii···im – aij···j = ri(A) – aij···j,

r�i
i (A) =

∑

(i,...,im)∈�i ,
δii ···im =

|aii···im |, r�i
i (A) =

∑

(i,...,im)∈�i

|aii···im |,

where

δi···im =

{
, if i = · · · = im,
, otherwise.

Obviously, ri(A) = r�i
i (A) + r�i

i (A), and rj
i(A) = r�i

i (A) + r�i
i (A) – |aij···j|.

For an irreducible nonnegative tensor, we give the following bounds for the spectral
radius.

Lemma  Let A = (ai···im ) ∈ R[m,n] be an irreducible nonnegative tensor with n ≥ . Then

�min ≤ ρ(A) ≤ �max,

where

�min = min
i,j∈N ,

j �=i

�i,j(A), �max = max
i,j∈N ,

j �=i

�i,j(A)

and

�i,j(A) =



(
ai···i + aj···j + r�i

i (A) +
√(

ai···i – aj···j + r�i
i (A)

) + r�i
i (A)rj(A)

)
.

Proof Let x = (x, x, . . . , xn)T be an entrywise positive eigenvector of A corresponding to
ρ(A), that is,

Axm– = ρ(A)x[m–]. ()

Without loss of generality, suppose that

xtn ≥ xtn– ≥ · · · ≥ xt ≥ xt > .



Li and Li Journal of Inequalities and Applications  (2015) 2015:166 Page 4 of 9

(i) We first prove

�min = min
i,j∈N ,

j �=i

�i,j(A) ≤ ρ(A).

From (), we have

∑

i,...,im∈N

ati···im xi · · ·xim = ρ(A)xm–
t ,

equivalently,

(
ρ(A) – at···t

)
xm–

t =
∑

(i,...,im)∈�t ,
δti...im =

ati···im xi · · ·xim +
∑

(i,...,im)∈�t

ati···im xi · · ·xim .

Hence,

(
ρ(A) – at···t

)
xm–

t ≥
∑

(i,...,im)∈�t ,
δti...im =

ati···im xm–
t +

∑

(i,...,im)∈�t

ati···im xm–
t

= r�t
t (A)xm–

t + r�t
t (A)xm–

t ,

i.e.,

(
ρ(A) – at···t – r�t

t (A)
)
xm–

t ≥ r�t
t (A)xm–

t ≥ . ()

Similarly, we have, from (),

∑

i,...,im∈N

ati···im xi · · ·xim = ρ(A)xm–
t

and

(
ρ(A) – at···t

)
xm–

t ≥ rt (A)xm–
t ≥ . ()

Multiplying inequality () with inequality () gives

(
ρ(A) – at···t – r�t

t (A)
)(

ρ(A) – at···t

)
xm–

t xm–
t ≥ rt (A)r�t

t (A)xm–
t xm–

t .

Note that xt ≥ xt > , hence

(
ρ(A) – at···t – r�t

t (A)
)(

ρ(A) – at···t

) ≥ rt (A)r�t
t (A),

that is,

ρ(A) –
(
at···t + at···t + r�t

t (A)
)
ρ(A) + at···t

(
at···t + r�t

t (A)
) ≥ rt (A)r�t

t (A).
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Furthermore, since

(
at···t + at···t + r�t

t (A)
) – at···t

(
at···t + r�t

t (A)
)

=
(
at···t – at···t + r�t

t (A)
),

then solving for ρ(A) gives

ρ(A) ≥ �t,t (A) ≥ min
i,j∈N ,

j �=i

�i,j(A) = �min.

(ii) We now prove

ρ(A) ≤ max
i,j∈N ,

j �=i

�i,j(A) = �max.

From (), we have

∑

i,...,im∈N

atni···im xi · · ·xim = ρ(A)xm–
tn

and

∑

i,...,im∈N

atn–i···im xi · · ·xim = ρ(A)xm–
tn– .

Similar to the proof in (i), we obtain easily

ρ(A) ≤ �tn ,tn– (A) ≤ max
i,j∈N ,

j �=i

�i,j(A) = �max.

The conclusion follows from (i) and (ii). �

Now we establish upper and lower bounds for ρ(A) of a nonnegative tensor A.

Lemma  (Lemma . in []) Suppose  ≤A < C . Then ρ(A) ≤ ρ(C).

Theorem  Let A = (ai···im ) ∈ R[m,n] be a nonnegative tensor with n ≥ . Then

�min ≤ ρ(A) ≤ �max.

Proof LetAk = A+ 
kE , where k = , , . . . , and E denote the tensor with every entry being .

Then Ak is a sequence of positive tensors satisfying

 ≤A < · · ·Ak+ < Ak < · · · < A.

By Lemma , {ρ(Ak)}+∞
k= is a monotone decreasing sequence with lower bound ρ(A). From

the proof of Theorem . in [], we have

lim
k→+∞

ρ(Ak) = ρ(A).



Li and Li Journal of Inequalities and Applications  (2015) 2015:166 Page 6 of 9

Note that for any i, j ∈ N , j �= i,

�i,j(A) < · · · < �i,j(Ak+) < �i,j(Ak) < · · · < �i,j(A),

we obtain easily

lim
k→+∞

�i,j(Ak) = �i,j(A).

Furthermore, sinceAk is positive and also irreducible nonnegative for k = , , . . . , we have,
from Lemma ,

min
i,j∈N ,

j �=i

�i,j(Ak) ≤ ρ(Ak) ≤ max
i,j∈N ,

j �=i

�i,j(Ak).

Letting k → +∞, then

�min = min
i,j∈N ,

j �=i

�i,j(A) ≤ ρ(A) ≤ max
i,j∈N ,

j �=i

�i,j(A) = �max.

The proof is completed. �

We next compare the bounds in Theorem  with those in Theorem .

Theorem  Let A = (ai···im ) ∈ R[m,n] be a nonnegative tensor with n ≥ . Then

Rmin ≤ �min ≤ �max ≤ Rmax. ()

Proof We first prove Rmin ≤ �min. For any i, j ∈ N , j �= i, if Ri(A) ≤ Rj(A), then

aii···i – ajj···j + r�i
i (A) + r�i

i (A) ≤ rj(A).

Hence,

(
ai···i – aj···j + r�i

i (A)
) + r�i

i (A)rj(A)

≥ (
ai···i – aj···j + r�i

i (A)
)

+ r�i
i (A)

(
aii···i – ajj···j + r�i

i (A) + r�i
i (A)

)

=
(
ai···i – aj···j + r�i

i (A)
)

+ r�i
i (A)

(
aii···i – ajj···j + r�i

i (A)
)

+ 
(
r�i

i (A)
)

=
(
ai···i – aj···j + r�i

i (A) + r�i
i (A)

).

When

ai···i – aj···j + r�i
i (A) + r�i

i (A) > ,
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we have

ai···i + aj···j + r�i
i (A) +

√(
ai···i – aj···j + r�i

i (A)
) + r�i

i (A)rj(A)

≥ ai···i + aj···j + r�i
i (A) +

(
ai···i – aj···j + r�i

i (A) + r�i
i (A)

)

= 
(
ai···i + r�i

i (A) + r�i
i (A)

)

= Ri(A).

When

ai···i – aj···j + r�i
i (A) + r�i

i (A) ≤ ,

that is,

ai···i + r�i
i (A) + r�i

i (A) ≤ aj···j,

we have

ai···i + aj···j + r�i
i (A) +

√(
ai···i – aj···j + r�i

i (A)
) + r�i

i (A)rj(A)

≥ ai···i + aj···j + r�i
i (A) +

√(
ai···i – aj···j + r�i

i (A)
)

= ai···i + aj···j + r�i
i (A) –

(
ai···i – aj···j + r�i

i (A)
)

= aj···j

≥ 
(
ai···i + r�i

i (A) + r�i
i (A)

)

≥ 
(
ai···i + r�i

i (A) + r�i
i (A)

)

= Ri(A).

Therefore,




(
ai···i + aj···j + r�i

i (A) +
√(

ai···i – aj···j + r�i
i (A)

) + r�i
i (A)rj(A)

)
≥ Ri(A),

which implies

min
i,j∈N ,

j �=i




(
ai···i + aj···j + r�i

i (A) +
√(

ai···i – aj···j + r�i
i (A)

) + r�i
i (A)rj(A)

)

≥ min
i∈N

Ri(A),

i.e., Rmin ≤ �min.
On the other hand, if for any i, j ∈ N , j �= i,

Rj(A) ≤ Ri(A),



Li and Li Journal of Inequalities and Applications  (2015) 2015:166 Page 8 of 9

then

ajj···j – aii···i – r�i
i (A) + rj(A) ≤ r�i

i (A).

Similarly, we can also obtain




(
ai···i + aj···j + r�i

i (A) +
√(

ai···i – aj···j + r�i
i (A)

) + r�i
i (A)rj(A)

)
≥ Rj(A),

and that Rmin ≤ �min. Hence, the first inequality in () holds. In a similar way, we can prove
that the last inequality in () also holds. The conclusion follows. �

Example  Consider the nonnegative tensor

A =
[
A(:, :, ), A(:, :, ), A(:, :, )

] ∈ R[,],

where

A(:, :, ) =

⎛

⎜
⎝

. . .
. . .
. . .

⎞

⎟
⎠ ,

A(:, :, ) =

⎛

⎜
⎝

. . .
. . .
. . .

⎞

⎟
⎠ ,

A(:, :, ) =

⎛

⎜
⎝

. . .
. . .
. . .

⎞

⎟
⎠ .

We now compute the bounds for ρ(A). By Theorem , we have

. ≤ ρ(A) ≤ ..

By Theorem , we have

ρ(A) ≤ ..

By Theorem , we have

. ≤ ρ(A) ≤ ..

It is easy to see that the bounds in Theorem  are sharper than those in Theorem 
(Lemma . of []), and that the upper bound in Theorem  is sharper than that in The-
orem  (Theorem . of []) in some cases.

3 Conclusions
In this paper, we obtain a lower and an upper bound for the spectral radius of a nonnega-
tive tensor, which improved the known bounds obtained by Yang and Yang [], and Li et
al. [].
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