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1 Introduction

Motivated by Griiss [1], our purpose is to prove more general versions of Griiss type in-
equalities for delta discrete fractional calculus. It is well known that Griiss type inequalities
in continuous and discrete cases play a crucial role in studying the qualitative behavior of
differential and difference equations, respectively, as well as many other areas of mathe-
matics [2-9]. For the background and a summary on these particular subjects, we refer
the interested reader to the excellent references [2, 10—18].

The study of discrete fractional calculus was pioneered by Diaz and Osler [19]. In the
mentioned work, the authors used an infinite sum to give a definition of discrete frac-
tional sum, whereas Gray and Zhang used a finite sum in [20]. In the last decade, new
results in this area have been established [21-24], as well as importance has been gained
by inequalities on discrete fractional calculus in [10, 24—27]

2 Preliminaries
We begin with basic definitions and results from [10].

Definition 1 The vth fractional sum of f is defined by

t-v

A7) = 1o D (=5~ D)

where f and A™'f are defined for s = amod(1) and ¢ = (@ + v)mod(1), respectively. In
particular, A~ maps functions defined on N, to functions defined on N,,,, where N; =
{t,t+1,t+2,...}.

Here,

_ T+1)
T T(-v+1)

v

From now on in this context for convenience we set A™"f(t,a) = A~f(¢t).
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Theorem 1 (28] Let f be a real valued function defined on N, and let ju,v > 0. Then
AT(ATF(E) = ATEF(E) = AT (ATUF(R))  forallt € Ny

Theorem 2 [21] Forv > 0 and p a positive integer we have

v-1
ATAPF() = MAT() =)

k=0

(If _ a)v—p+k .
= A ,
Fv+k-p+1) /(@)
where f is defined on N,,.

Remark 1 Let 1 >0 and m — 1< p < m, m = [u], where m is a positive integer, and set
v=m— > 0. Then by Theorem 2 we have

m-1 _ g \v=m+k
ATATS(@) = ATAF(@D) - Y % A (@)
k=0
where f is defined on N, and hence
m-1 _ \v=-m+k
A"ATF(E) = A+ Y %Akf(a) 2.1)
k=0

Definition 2 [21] The puth fractional Riemann-Liouville type difference is defined by
AFf(E) = AT (2) = A" (A7),
where u >0, m—-1<pu<m,andv=m—pu>0.

So from (2.1) we get

m-1

A'f() = ALF@E) + )

k=0

(t _ a)v—m+k ‘
Tik—ml) Af(a), (2.2)

where f is defined on N,,.

Theorem 3 [10] For > 0, u noninteger, m = [, v = m — u, the following holds:

m-1 t—
~ (t-—a) k 1 d "
f= ; o Afa)+ T S;(t —s=1ELALf(s) (2.3)

forallt € N,,,,, where f is defined on N, with a € Z* :={0,1,2,...}.

Remark 2 Here [a,b] denotes the discrete interval [a, b] = [a,a + 1,a + 2,...,b], where
a<banda,be{0,1,...}. Let u > 0 be noninteger such that m — 1< pu < m, i.e. m = [u].
Consider a function f defined on [a, b]. Then clearly the fractional discrete Taylor formula
(2.3) is valid only for ¢ € [a + m, b], a + m < b.
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We now give a discrete Caputo type fractional extended Taylor formula.

Theorem 4 [10] Let u > p, p € N, u not integer, m = [, v=m— . Then

k t—p+p

N?@-}j(k M@+ s D (=5 = DAL ) (2.4)

s=a+v

forallt € Ny,p,_p, where f is defined on N,, a € Z*.

Remark 3 We assume that f is defined on [a, b]. Then (2.4) is valid only for [a + m — p, b]
with a + m — p < b. Notice p = 0 applied to (2.4) yields (2.3).

Remark 4 For u > 0, ; not an integer, m = [], v=m — p, f defined on N,, a € Z* and
AXf(a) for k=0,...,m—1, we get

1

f@) = ) Z (t—s—1)“LA f(s) forallt e N,,,. (2.5)

s=a+v
Remark 5 For i > p, p € N, i noninteger, m = [u], v=m— p; f definedon N,, a € Z*, if
we assume that A¥f(a) = 0, k = p,...,m — 1, then we obtain

t—p+p
> (t—s-DELLALS(s) forall £ € Nyyyop. (2.6)

s=a+v

AT = Ty

3 Main results
We present the following discrete delta Griiss type inequality.

Theorem 5 Let v > p, p € Z*, |4 not an integer, m =[], v=m— u, f, g be defined on N,,
ac€l*anda+m—p<b,beN. Assume that

Akf(a):Akg(a):O fork=p+1,....m-1Lp<m-2,
and
my < Alf(s) < My, my < Alg(s) < M,

fors=a+1,...,b, where my, my, My, and M, are positive constants. Then

1 b
bammp, 2, (B0
1 b b
- m[ ) A"f(i)] [ > A"g(i)}
j=a+m-p+l j=a+m—p+1

- MMy Cy — mymy Gy
[C(n—-p+1D)]?

’
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where

b

Cri=(b-a-m+p) Z [(j—a—v)ﬂ]2

j=a+m-p+1

and
i [(b-a—-v+ DL (- p—v+ 1)EPH)2
(u—p+1)2
Proof By (2.4), we have
— (j 1 j-1+p
5ﬂ) 3 Xx;slwpmw@
k S=a+v

By hypothesis Akf(zz):O,k:p+1,...,m—1,p<m—2. So we have

nt+p
1 Jj=

APf() = APf (@) + )Zo s = DEPL(ALS(s)) (3.1)
and
j—utp
Avg()) = Mgla) + s 2 Z(z s = 1= (ALg(s)) (3.2)

forallje[a+m—-p+1,...,b]. Multiplying (3.1) and (3.2) gives us

1
[T(u - p)]?

J-1+p J—+p

x [ D o G-s- I)W(Ai‘f(s»} [ Y G-s- I)W(A’:g(s))]
Apf(a) j—utp ( .

o Y (- s =1 (Akg(s))

F (M p) Ss=a+v

(APF())(A%g()) = (Af (@) (APg(a)) +

rw p)

S§=a+v

J—utp
Al’g(ﬂ |:Z (] ;L—p l Auf(s))j|

Summing from a + m — p + 1 to b yields

b
> (a770) (a%g0)
j=a+m-p+1
b 1
= 2 (@) 8e@) e

j=a+m-p+1

b J—m+p J-1+p
x Y i [ D o G-s- 1)“"“(A£:f(s))] [ D o G-s- I)W(Arg(s»} ]

Jj=a+m-p+1 s=a+v s=a+v
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AP f(a) b |:j—u+p . :|
+ (j—s—1)E2=(Akg(s)
F(,bL _p) j=a+mz—p+1 sgv ( )
Apg(a) b |:1’u+p . o :|
+ — (- s—l)%(Aff(s)) .
('u p); a%—:pﬂ SXLH:V
Then
1 b
b—a—mip. > (arF()) (A%g()
Jj=a+m-p+1
S N S e !
pmammep o (SO G
b J—utp J—itp
x Y HZ@ s~ DL (AL (s) ][Z(J s - 1) g(s>)”
Jj=a+m-p+1 s=a+v s=a+v
APf(a) b iy i f o
* (b a— m+I9)F(M P)l a§p+1|:s;1/(] ’ Di(A*g(S))
Apg(a) b J—1+p ‘ .
— 1P (AP . 3.3
' b-a-m+p)'(n- P)] a§p+1|:s;v(] - ( *f(S)) &2
On the other hand,
1 b
basmep 2 (AT0)
j=a+m-p+1
1 b J—H+p
=A? i _ 1) PL(AN
M@+ b-a-m+pl(n-p) a§p+l[s;v(] =1 (A*f(s))]
and
1 b
- - APg(j
b-a- m+P)/ m;pu( &)

1 b J-i+p
= M) G T |:Z(1'—S—1)“—"1(A5g(s))].

j=a+m-p+1 L s=a+v
Multiplying the above two terms yields

m{ > <A"f<f>)}[j > ()]

j=a+m-p+1 j=a+m-p+1

= (A%f(a))(APg(a))

APf(a) b Tae o
T-a- m+p)L (1 —p) Z |:Z(] s - L= (Alg(s))

j=a+m-p+1Ls=a+v
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APg(a) b j-1tp -
T o—a-m+p)T(u— > [Z(I—S DELZ(ALS(5))

P) j=a+m-p+1Ls=a+v

b J—u+p

1
+(b—a—m+p)21"(u_p)2 Z |:Z(/ 1)MplA”f(s))i|

j=a+m-p+1Ls=a+v

b J—i+p
x > {E:V - (A ﬂﬂﬁ~ (3.4)

j=a+m-p+1Ls=a+v

So, using (3.3) and (3.4), we get

1 b
bma-mip a;pﬂ[(“f(i))(ﬂg(n)]
1 b b
- - Pf(: e
(b —a—-m +l7)2 |:ja1§—:p+1(A f(]))j| |:ja1§—:p+1(A g(]))j|

b J—pt+p 2
MM, . Z |: Z (—s— 1)#p1:|

<
(b —a-m +P)2[F(/L —P)] j=a+m-p+1Ls=a+v

b J-utp
mymiy .
_(b—a—m+p)2[1"(“_p)]2|:] Z |:Z(/—S 1) j|i| .

j=a+m—p+1Ls=a+v

Now, calculating the sums:

e J—i+p+l

N . pept L
Z(] s—1) /f (j-o(0) At ,U-—p(] a— vz,

=a+v

S§=a+v

We get

b j—p+p 1 b ,
P P o (R

2
j=a+m—-p+1 Ls=a+v (M P) j=a+m-p+1

b J-tp 1 b-a-v 2
(St E
/ j

j=a+m—p+1 Ls=a+v (M P) j=a+m—p+1

1 1
T (u-p?(p-p+1)?

X [(b—a—v+1)“‘—p”—(m_p_v+1)#—19*1]2‘

Consequently, we get

b

> [(azr) (are())]

j=a+m-p+1

‘m[/ i (A"f@)MI i (A"gm)}

j=a+m-p+l j=a+m-p+1

1
b-a-m+p .
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MM, 1 b ) ep2
= b-—a-m+p)T(n-p)I? (u-p)? ,«:a;pﬂ[(] —-a-— V)—p]
myny 1

S (b—a-m+p)*[T(u-p)I? (1 -p)*(n—p+1)>
X [(b—cz—v+1)”_7'”1—(m—p—v+1)"_7’”1]2

_ M1M2C1 — WllWI2C2
S (b—a-m+pPC(u-p+DP
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