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Abstract
In this paper, the dynamically consistent nonlinear evaluations that were introduced
by Peng are considered in probability space L2(�,F , (Ft)t≥0,P). We investigate the
n-dimensional (n ≥ 1) Jensen inequality, Hölder inequality, and Minkowski inequality
for dynamically consistent nonlinear evaluations in L1(�,F , (Ft)t≥0,P). Furthermore,
we give four equivalent conditions on the n-dimensional Jensen inequality for
g-evaluations induced by backward stochastic differential equations with
non-uniform Lipschitz coefficients in Lp(�,F , (Ft)0≤t≤T ,P) (1 < p ≤ 2). Finally, we give
a sufficient condition on g that satisfies the non-uniform Lipschitz condition under
which Hölder’s inequality and Minkowski’s inequality for the corresponding
g-evaluation hold true. These results include and extend some existing results.
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1 Introduction
It is well known that (see Peng [, ]) a dynamically consistent nonlinear evaluation in
probability space L(�,F , (Ft)t≥, P), where {Ft}t≥ is a given filtration, is a system of op-
erators:

Es,t[X] : X ∈ L(�,Ft , P) �→ L(�,Fs, P),  ≤ s ≤ t < ∞,

which satisfies the following properties:
(i) Es,t[X] ≥ Es,t[X], if X ≥ X;

(ii) Et,t[X] = X ;
(iii) Er,s[Es,t[X]] = Er,t[X], if  ≤ r ≤ s ≤ t < ∞;
(iv) AEs,t[X] = AEs,t[AX], ∀A ∈Fs.
Of course, we can define this notion in L(�,F , (Ft)t≥, P).
In a financial market, the evaluation of the discounted value of a derivative is often

treated as a dynamically consistent nonlinear evaluation (expectation). The well-known g-
evaluation (g-expectation) induced by backward stochastic differential equations (BSDEs
for short), which was put forward by Peng, is a special case of a dynamically consistent
nonlinear evaluation (expectation). While nonlinear BSDEs were firstly introduced by
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Pardoux and Peng [], who proved the existence and uniqueness of adapted solutions,
when the coefficient g is Lipschitz in (y, z) uniformly in (t,ω), with square-integrability as-
sumptions on the coefficient g(t,ω, y, z) and terminal condition ξ . Later many researchers
developed the theory of BSDEs and their applications in a series of papers (for example see
Hu and Peng [], Lepeltier and San Martin [], El Karoui et al. [], Pardoux [, ], Briand
et al. [] and the references therein) under some other assumptions on the coefficients
but for a fixed terminal time T > . In , Chen and Wang [] obtained the existence
and uniqueness theorem for L solutions of infinite time interval BSDEs when T = ∞,
by the martingale representation theorem and fixed point theorem. Recently, Zong []
have obtained the result on Lp ( < p < ) solutions of infinite time interval BSDEs. One of
the special cases is the existence and uniqueness theorem of BSDEs with non-uniformly
Lipschitz coefficients.

The original motivation for studying nonlinear evaluation (expectation) and g-eval-
uation (g-expectation) comes from the theory of expected utility, which is the foundation
of modern mathematical economics. Chen and Epstein [] gave an application of dynam-
ically consistent nonlinear evaluation (expectation) to recursive utility, Peng [, , –]
and Rosazza Gianin [] investigated some applications of dynamically consistent nonlin-
ear evaluations (expectations) and g-evaluations (g-expectations) to static and dynamic
pricing mechanisms and risk measures.

Since the notions of nonlinear evaluation (expectation) and g-evaluation (g-expectation)
were introduced, many properties of the nonlinear evaluation (expectation) and g-eval-
uation (g-expectation) have been studied in [, , , –]. In [, ], Peng obtained an
important result: he proved that if a dynamically consistent nonlinear evaluation Es,t[·]
can be dominated by a kind of g-evaluation, then Es,t[·] must be a g-evaluation. Thus, in
this case, many problems on dynamically consistent nonlinear evaluations Es,t[·] can be
solved through the theory of BSDEs.

It is well known that Jensen’s inequality for classic mathematical expectations holds in
general, which is a very important property and has many important applications. But for
nonlinear expectation, even for its special case: g-expectation, by Briand et al. [], we
know that Jensen’s inequality for g-expectations usually does not hold in general. So un-
der the assumption that g is continuous with respect to t, some papers, such as [, ,
, , ] have been devoted to Jensen’s inequality for g-expectations, with the help of
the theory of BSDEs, they have obtained the necessary and sufficient conditions under
which Jensen’s inequality for g-expectations holds in general. Under the assumptions that
g does not depend on y and is convex, Chen et al. [, ] studied Jensen’s inequality for
g-expectations and gave a necessary and sufficient condition on g under which Jensen’s in-
equality holds for convex functions. Provided g only does not depend on y, Jiang and Chen
[] gave another necessary and sufficient condition on g under which Jensen’s inequal-
ity holds for convex functions. It was an improved result in comparison with the result
that Chen et al. found. Later, this result was improved by Hu [] and Jiang [], in fact,
Jiang [] showed that g must be independent of y. In addition, Fan [] studied Jensen’s
inequality for filtration-consistent nonlinear expectations without domination condition.
Jia [] studied the n-dimensional (n > ) Jensen’s inequality for g-expectations and got
the result that the n-dimensional (n > ) Jensen’s inequality holds for g-expectations if and
only if g is independent of y and linear with respect to z, in other words, the corresponding
g-expectation must be linear. Then the natural question is asked:
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For more general dynamically consistent nonlinear evaluation Es,t[·], what are the suffi-
cient and necessary conditions under which Jensen’s inequality for Es,t[·] holds in general?
Roughly speaking, what conditions on Es,t[·] are equivalent with the inequality

Es,t
[
ϕ(ξ )

] ≥ ϕ
(
Es,t[ξ ]

)
a.s.

holding for any convex function ϕ : R �→R?
One of the objectives of this paper is to investigate this problem. At the same time, this

paper will also investigate the sufficient and necessary conditions on Es,t[·] under which the
n-dimensional (n > ) Jensen inequality holds. As applications of these two results, we give
four equivalent conditions on the -dimensional Jensen inequality and the n-dimensional
(n > ) Jensen inequality for g-evaluations induced by BSDEs with non-uniform Lipschitz
coefficients in Lp(�,F , (Ft)≤t≤T , P) ( < p ≤ ), respectively.

The remainder of this paper is organized as follows: In Section , we study the
n-dimensional (n ≥ ) Jensen inequality, Hölder inequality, and Minkowski inequality for
dynamically consistent nonlinear evaluations in L(�,F , (Ft)t≥, P). In Section , we give
four equivalent conditions on the -dimensional Jensen inequality and the n-dimensional
(n > ) Jensen inequality for g-evaluations induced by BSDEs with non-uniform Lipschitz
coefficients in Lp(�,F , (Ft)≤t≤T , P) ( < p ≤ ), respectively. These results generalize the
known results on Jensen’s inequality for g-expectation in [, , , –, ]. In Sec-
tion , we give a sufficient condition on g that satisfies the non-uniform Lipschitz condi-
tion under which Hölder’s inequality and Minkowski’s inequality for the corresponding
g-evaluation hold true.

2 Jensen’s inequality, Hölder’s inequality, and Minkowski’s inequality for
dynamically consistent nonlinear evaluations

Let (�,F , P) be a probability space carrying a standard d-dimensional Brownian mo-
tion (Bt)t≥, and let (Ft)t≥ be the σ -algebra generated by (Bt)t≥. We always assume that
(Ft)t≥ is complete. Let T >  be a given real number. In this paper, we always work in the
probability space (�,FT , P), and only consider processes indexed by t ∈ [, T]. We denote
Lp(�,Ft , P) (p ≥ ), the space of Ft-measurable random variables satisfying EP[|X|p] < ∞,
and by Lp

+(�,Ft , P) the space of non-negative random variables in Lp(�,Ft , P). Let A de-
note the indicator of event A. For notational simplicity, we use Lp(Ft) := Lp(�,Ft , P) and
Lp

+(Ft) := Lp
+(�,Ft , P). For the convenience of the reader, we recall the notion of a dy-

namically consistent nonlinear evaluation, defined in L(FT ) in Peng [, ], but defined
in L(FT ) in this section.

Definition . An Ft-consistent nonlinear evaluation in L(FT ) is a system of operators:

Es,t[X] : X ∈ L(Ft) �→ L(Fs),  ≤ s ≤ t ≤ T ,

which satisfies the following properties:
(A.) monotonicity: Es,t[X] ≥ Es,t[X], if X ≥ X;
(A.) Et,t[X] = X ;
(A.) dynamical consistency: Er,s[Es,t[X]] = Er,t[X], if  ≤ r ≤ s ≤ t ≤ T ;
(A.) zero one law: AEs,t[X] = AEs,t[AX], ∀A ∈Fs.
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First, we consider Jensen’s inequality for Ft-consistent nonlinear evaluations. We have
the following results.

Theorem . Suppose that Es,t[·],  ≤ s ≤ t ≤ T is an Ft-consistent nonlinear evaluation
in L(FT ), then the following two statements are equivalent:

(i) Jensen’s inequality for Ft-consistent evaluation Es,t[·] holds in general, i.e., for each
convex function ϕ : R �→R and ξ ∈ L(Ft), if ϕ(ξ ) ∈ L(Ft), then we have

Es,t
[
ϕ(ξ )

] ≥ ϕ
(
Es,t[ξ ]

)
a.s.;

(ii) ∀(ξ , a, b) ∈ L(Ft) ×R×R, Es,t[aξ + b] ≥ aEs,t[ξ ] + b a.s.

Proof First, we prove (i) implies (ii). Suppose (i) holds, for each (ξ , a, b) ∈ L(Ft) ×R×R,
let ϕ(x) := ax + b. Obviously, ϕ(x) is a convex function and ϕ(ξ ) ∈ L(Ft), then we have

Es,t[aξ + b] = Es,t
[
ϕ(ξ )

] ≥ ϕ
(
Es,t[ξ ]

)
= aEs,t[ξ ] + b a.s.

In the following, we prove (ii) implies (i). Suppose (ii) holds, for each (ξ , a, b) ∈ L(Ft) ×
R×R, we have

Es,t[aξ + b] ≥ aEs,t[ξ ] + b a.s. (.)

But, for any convex function ϕ : R �→R, there exists a countable set D ⊆R such that

ϕ(x) = sup
(a,b)∈D

(ax + b). (.)

In view of (.), for any (a, b) ∈D, we have

Es,t
[
ϕ(ξ )

] ≥ Es,t[aξ + b] ≥ aEs,t[ξ ] + b a.s.,

which implies (i) by taking into consideration of (.). �

Theorem . Suppose that Es,t[·],  ≤ s ≤ t ≤ T is an Ft-consistent nonlinear evaluation
in L(FT ) and n > , then the following two statements are equivalent:

(i) the n-dimensional Jensen inequality for a Ft-consistent evaluation Es,t[·] holds in
general, i.e., for each convex function ϕ : Rn �→R and ξi ∈ L(Ft) (i = , , . . . , n), if
ϕ(ξ, ξ, . . . , ξn) ∈ L(Ft), then we have

Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)
a.s.;

(ii) Es,t is linear, i.e.,
(a) Es,t[λX] = λEs,t[X] a.s., ∀(X,λ) ∈ L(Ft) ×R;
(b) Es,t[X + Y ] = Es,t[X] + Es,t[Y ] a.s., ∀(X, Y ) ∈ L(Ft) × L(Ft);
(c) Es,t[μ] = μ a.s., ∀μ ∈R.

Proof We prove (i) implies (ii).
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First, we prove (i) implies (ii)(a). For each (X,λ) ∈ L(Ft) ×R, let ϕ(x, x, . . . , xn) := λx

and ξ := X. Obviously, ϕ(x, x, . . . , xn) is a convex function and ϕ(ξ, ξ, . . . , ξn) ∈ L(Ft),
then we have

Es,t[λX] = Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)
= λEs,t[X] a.s. (.)

On the other hand, let ϕ(x, x, . . . , xn) := x – (λ – )x, ξ := λX, and ξ := X. By (i), we can
deduce that

Es,t[X] = Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)

= Es,t[λX] – (λ – )Es,t[X] a.s.,

i.e.,

Es,t[λX] ≤ λEs,t[X] a.s. (.)

It follows from (.) and (.) that (ii)(a) holds true.
Next we prove (ii)(b) holds. For each (X, Y ) ∈ L(Ft) × L(Ft), let ϕ(x, x, . . . , xn) := x +

x, ξ := X, and ξ := Y , then we have

Es,t[X + Y ] = Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)

= Es,t[X] + Es,t[Y ] a.s. (.)

On the other hand, let ϕ(x, x, . . . , xn) := x – x, ξ := X + Y , and ξ := Y . By (i), we have

Es,t[X] = Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)

= Es,t[X + Y ] – Es,t[Y ] a.s.,

i.e.,

Es,t[X + Y ] ≤ Es,t[X] + Es,t[Y ] a.s. (.)

Thus, from (.) and (.), we can see that (ii)(b) holds.
Finally, we prove (ii)(c) holds. For each μ ∈R, let ϕ(x, x, . . . , xn) := μ, then we have

Es,t[μ] = Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)
= μ a.s. (.)

On the other hand, let ϕ(x, x, . . . , xn) := x – μ and ξ := μ. By (i), we can obtain

Es,t[μ] = Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
Es,t[ξ],Es,t[ξ], . . . ,Es,t[ξn]

)
= Es,t[μ] – μ a.s.,

i.e.,

Es,t[μ] ≤ μ a.s. (.)

It follows from (.) and (.) that (ii)(c) holds true.
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In the following, we prove (ii) implies (i). Suppose (ii) holds, for any (a, a, . . . , an, b) ∈
Rn+ and ξi ∈ L(Ft) (i = , , . . . , n), we have

Es,t

[ n∑

i=

aiξi + b

]

=
n∑

i=

aiEs,t[ξi] + b a.s. (.)

But, for any convex function ϕ : Rn �→R, there exists a countable set D ⊆Rn+ such that

ϕ(x, x, . . . , xn) = sup
(a,a,...,an ,b)∈D

( n∑

i=

aixi + b

)

. (.)

In view of (.), for any (a, a, . . . , an, b) ∈D, we have

Es,t
[
ϕ(ξ, ξ, . . . , ξn)

] ≥ Es,t

[ n∑

i=

aiξi + b

]

=
n∑

i=

aiEs,t[ξi] + b a.s.,

which implies (i) by taking into consideration of (.). �

The basic version of Hölder’s inequality for the classical mathematical expectation EP

defined in (�,FT , P) reads

EP[XY ] ≤ (
EP

[
Xp]) 

p
(
EP

[
Y q]) 

q , (.)

where X, Y are non-negative random variables in (�,FT , P) and  < p, q < ∞ is a pair of
conjugated exponents, i.e., 

p + 
q = . One may proceed in the following way (cf., e.g., Krein

et al. [], p.). By elementary calculus, one verifies

ab = inf
r>

(
rp

p
ap +

r–q

q
bq

)

for any constant a, b ≥ . This yields XY ≤ rp

p Xp + r–q

q Y q a.s. for any r > . Taking the
expectation yields EP[XY ] ≤ rp

p EP[Xp] + r–q

q EP[Y q] for any r > , and taking the infimum
with respect to r again we arrive at (.).

By the above argument, we have the following Hölder inequality for Ft-consistent non-
linear evaluations.

Theorem . Suppose that Es,t[·],  ≤ s ≤ t ≤ T is an Ft-consistent nonlinear evaluation
in L(FT ). If Es,t[·] satisfies the following conditions:

(d) Es,t[ξ + η] ≤ Es,t[ξ ] + Es,t[η] a.s., ∀(ξ ,η) ∈ L
+(Ft) × L

+(Ft);
(e) Es,t[λξ ] ≤ λEs,t[ξ ] a.s., ∀ξ ∈ L

+(Ft), λ ≥ ,
then, for any X, Y ∈ L(Ft) and |X|p, |Y |q ∈ L(Ft) (p, q >  and /p + /q = ), we have

Es,t
[|XY |] ≤ (

Es,t
[|X|p]) 

p
(
Es,t

[|Y |q]) 
q a.s.

Similarly, we have the following Minkowski inequality for Ft-consistent nonlinear eval-
uations.



Zong et al. Journal of Inequalities and Applications  (2015) 2015:152 Page 7 of 18

Theorem . Suppose that Es,t[·],  ≤ s ≤ t ≤ T is an Ft-consistent nonlinear evaluation
in L(FT ). If Es,t[·] satisfies the following conditions:

(d) Es,t[ξ + η] ≤ Es,t[ξ ] + Es,t[η] a.s., ∀(ξ ,η) ∈ L
+(Ft) × L

+(Ft);
(e) Es,t[λξ ] ≤ λEs,t[ξ ] a.s., ∀ξ ∈ L

+(Ft), λ ≥ ,
then, for any X, Y ∈ L(Ft) and |X|p, |Y |p ∈ L(Ft) (p > ), we have

(
Es,t

[|X + Y |p]) 
p ≤ (

Es,t
[|X|p]) 

p +
(
Es,t

[|Y |p]) 
p a.s. (.)

Proof Here h : [,∞) × [,∞) �→ [,∞) is of the form

h(x, x) =
(
x


p
 + x


p

)p = inf

r∈Q∩(,)

{
r–px + ( – r)–px

}
, (.)

where Q is the set of all rational numbers in R. Let x := |X|p and x := |Y |p. From (.),
we have

(|X| + |Y |)p ≤ r–p|X|p + ( – r)–p|Y |p a.s.

for all r ∈Q∩ (, ). It follows from (d) and (e) that

Es,t
[(|X| + |Y |)p] ≤ r–pEs,t

[|X|p] + ( – r)–pEs,t
[|Y |p] a.s.

for all r ∈Q∩ (, ). Taking the infimum with respect to r in Q∩ (, ), we have

Es,t
[(|X| + |Y |)p] ≤ {(

Es,t
[|X|p]) 

p +
(
Es,t

[|Y |p]) 
p
}p a.s.

Thus, (.) holds true. �

3 Jensen’s inequality for g-evaluations
In this section, first, we present some notations, notions, and propositions which are useful
in this paper.

Let

Sp(, t; P;R) :=
{

V : Vs is R-valued Fs-adapted continuous process with

EP

[
sup

≤s≤t
|Vs|p

]
< ∞

}
,

S(, t; P;R) :=
⋃

p>

Sp(, t; P;R),

Lp(, t; P;Rd) :=
{

V : Vs is Rd-valued and Fs-adapted process with

EP

[(∫ t


|Vs| ds

) p

]

< ∞
}

,

L
(
, t; P;Rd) :=

⋃

p>

Lp(, t; P;Rd),

Mp(, t; P;R) :=
{

V : Vs is R-valued Fs-adapted process with
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EP

[(∫ t


|Vs|ds

)p]
< ∞

}
,

M(, t; P;R) :=
⋃

p>

Mp(, t; P;R)

and

L(Ft) :=
⋃

p>

Lp(Ft).

For each t ∈ [, T], we consider the following BSDE with terminal time t:

ys = X +
∫ t

s
g(r, yr , zr) dr –

∫ t

s
zr · dBr , s ∈ [, t]. (.)

Here the function g :

g(ω, t, y, z) : � × [, T] ×R×Rd �→R

satisfies the following assumptions:
(B.) there exist two non-negative deterministic functions α(t) and β(t) such that for all

y, y ∈R, z, z ∈Rd ,

∣
∣g(t, y, z) – g(t, y, z)

∣
∣ ≤ α(t)|y – y| + β(t)|z – z|, ∀t ∈ [, T],

where α(t) and β(t) satisfy
∫ T

 α(t) dt < ∞,
∫ T

 β(t) dt < ∞;
(B.) g(t, , ) ∈M(, t; P;R);
(B.) g(t, y, ) = , dP × dt-a.s., ∀y ∈R.
It is well known that (see Zong []) if we suppose that the function g satisfies (B.)

and (B.), then for each given X ∈ L(Ft), there exists a unique solution (Y X , ZX) ∈
S(, t; P;R) ×L(, t; P;Rd) of BSDE (.).

Example . For each given ξ ∈L(FT ), the BSDE

yt = ξ +
∫ T

t

(

√s

ys +


√T – s
|zs|

)
ds –

∫ T

t
zs · dBs, t ∈ [, T],

has a unique solution in S(, T ; P;R) ×L(, T ; P;Rd).

We denote E g
s,t[X] := Y X

s . We thus define a system of operators:

E g
s,t[X] : X ∈L(Ft) �→L(Fs),  ≤ s ≤ t ≤ T .

This system is completely determined by the above given function g . We have the follow-
ing.

Proposition . We assume that the function g satisfies (B.) and (B.). Then the system of
operators E g

s,t[·],  ≤ s ≤ t ≤ T is an Ft-consistent nonlinear evaluation defined in L(FT ).
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The proof of Proposition . is very similar to that of Corollary . in [], so we omit it.

Remark . From Proposition ., we know that the dynamically consistent nonlinear
evaluation E g

s,t[·],  ≤ s ≤ t ≤ T is completely determined by the given function g . Thus,
we call E g

s,t[·],  ≤ s ≤ t ≤ T a g-evaluation.

Definition . (g-Expectation) (see Zong []) Suppose that the function g satisfies (B.)
and (B.). The g-expectation Eg[·] : L(FT ) �→R is defined by Eg[ξ ] = Y ξ

 .

Definition . (Conditional g-expectation) (see Zong []) Suppose that the function g
satisfies (B.) and (B.). The conditional g-expectation of ξ with respect to Ft is defined
by Eg[ξ |Ft] = Y ξ

t .

Proposition . (see Zong []) Eg[ξ |Ft] is the unique random variable η in L(Ft) such
that

Eg[Aξ ] = Eg[Aη], ∀A ∈Ft .

Proposition . For any ξn ∈L(Ft), if limn→∞ ξn = ξ a.s. and |ξn| ≤ η a.s. with η ∈L(Ft),
then for  ≤ s ≤ t ≤ T ,

lim
n→∞E g

s,t[ξn] = E g
s,t[ξ ] a.s.

The proof of Proposition . is very similar to that of Theorem . in Hu and Chen [],
so we omit it.

In the following, we study Jensen’s inequality for g-evaluations. First, we introduce some
notions on g .

Definition . Let g : � × [, T] × R × Rd �→ R. The function g is said to be super-
homogeneous if for each (y, z) ∈R×Rd and λ ∈R, then g(t,λy,λz) ≥ λg(t, y, z), dP × dt-
a.s. The function g is said to be positively homogeneous if for each (y, z) ∈R×Rd and λ ≥
, then g(t,λy,λz) = λg(t, y, z), dP × dt-a.s. The function g is said to be sub-additive if, for
any (y, z), (y, z) ∈R×Rd , g(t, y + y, z + z) ≤ g(t, y, z) + g(t, y, z), dP ×dt-a.s. The function g is
said to be super-additive if, for any (y, z), (y, z) ∈R×Rd , g(t, y+y, z+z) ≥ g(t, y, z)+g(t, y, z),
dP × dt-a.s.

Theorem . Suppose that E g
s,t[·],  ≤ s ≤ t ≤ T is a g-evaluation, then the following three

statements are equivalent:
(i) Jensen’s inequality for g-evaluation E g

s,t[·] holds in general, i.e., for each convex
function ϕ(x) : R �→R and each ξ ∈L(Ft), if ϕ(ξ ) ∈L(Ft), then we have

E g
s,t

[
ϕ(ξ )

] ≥ ϕ
(
E g

s,t[ξ ]
)

a.s.;

(ii) ∀(ξ , a, b) ∈L(Ft) ×R×R, E g
s,t[aξ + b] ≥ aE g

s,t[ξ ] + b a.s.;
(iii) g is independent of y and super-homogeneous with respect to z.

Theorem . Suppose that E g
s,t[·],  ≤ s ≤ t ≤ T is a g-evaluation, then the following three

statements are equivalent:
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(i) the n-dimensional (n > ) Jensen inequality for the g-evaluation E g
s,t[·] holds in

general, i.e., for each convex function ϕ : Rn �→ R and ξi ∈L(Ft) (i = , , . . . , n), if
ϕ(ξ, ξ, . . . , ξn) ∈L(Ft), then we have

E g
s,t

[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
E g

s,t[ξ],E g
s,t[ξ], . . . ,E g

s,t[ξn]
)

a.s.;

(ii) E g
s,t is linear in L(Ft);

(iii) g is independent of y and linear with respect to z, i.e., g is of the form
g(t, y, z) = g(t, z) = αt · z, dP × dt-a.s., ∀(y, z) ∈R×Rd , where α is a Rd-valued
progressively measurable process.

In order to prove Theorems . and ., we need the following lemmas. These lemmas
can be found in Zong and Hu [].

Lemma . Suppose that the function g satisfies (B.) and (B.). Then the following three
conditions are equivalent:

(i) The function g is independent of y.
(ii) The corresponding dynamically consistent nonlinear evaluation E g[·] satisfies: for

each  ≤ s ≤ t ≤ T , Ft measurable simple function X and y ∈R,

E g
s,t[X + y] = E g

s,t[X] + y a.s.

(iii) The corresponding dynamically consistent nonlinear evaluation E g[·] satisfies: for
each  ≤ s ≤ t ≤ T , X ∈L(Ft), and η ∈L(Fs),

E g
s,t[X + η] = E g

s,t[X] + η a.s.

Lemma . Suppose that the function g satisfies (B.) and (B.). Then the following three
conditions are equivalent:

(i) The function g is positively homogeneous.
(ii) The corresponding dynamically consistent nonlinear evaluation E g[·] satisfies: for

each  ≤ s ≤ t ≤ T , λ ≥ , and Ft measurable simple function X ,

E g
s,t[λX] = λE g

s,t[X] a.s.

(iii) The corresponding dynamically consistent nonlinear evaluation E g[·] is positively
homogeneous: for each  ≤ s ≤ t ≤ T , λ ≥ , and X ∈L(Ft),

E g
s,t[λX] = λE g

s,t[X] a.s.

Lemma . Suppose that the function g satisfies (B.) and (B.). Then the following three
conditions are equivalent:

(i) The function g is sub-additive (super-additive).
(ii) The corresponding dynamically consistent nonlinear evaluation E g[·] satisfies: for

each  ≤ s ≤ t ≤ T and Ft measurable simple functions X and X ,

E g
s,t[X + X] ≤ (≥)E g

s,t[X] + E g
s,t[X] a.s.
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(iii) The corresponding dynamically consistent nonlinear evaluation E g[·] is sub-additive
(super-additive): for each  ≤ s ≤ t ≤ T and X , X ∈L(Ft),

E g
s,t[X + X] ≤ (≥)E g

s,t[X] + E g
s,t[X] a.s.

Lemma . Suppose that the functions g and g satisfy (B.) and (B.). Then the following
three conditions are equivalent:

(i) g(t, y, z) ≥ g(t, y, z), dP × dt-a.s., ∀(y, z) ∈R×Rd .
(ii) The corresponding dynamically consistent nonlinear evaluations E g[·] and E g[·]

satisfy, for each  ≤ s ≤ t ≤ T and Ft measurable simple function X ,

E g
s,t[X] ≥ E g

s,t[X] a.s.

(iii) The corresponding dynamically consistent nonlinear evaluations E g[·] and E g[·]
satisfy, for each  ≤ s ≤ t ≤ T and X ∈L(Ft),

E g
s,t[X] ≥ E g

s,t[X] a.s.

In particular, E g[·] ≡ E g[·] if and only if g ≡ g .

Proof of Theorem . From Theorem ., we only need to prove (ii) ⇔ (iii). (iii) ⇒ (ii) is
obvious.

In the following, we prove (ii) ⇒ (iii). First, we prove that g is independent of y. Suppose
(ii) holds, then we have, for any (ξ , y) ∈L(Ft) ×R,

E g
s,t[ξ + y] = E g

s,t[ξ ] + y a.s. (.)

By Lemma ., we can deduce that g is independent of y.
Next we prove that g is super-homogeneous with respect to z. By (ii), we have, for any

(ξ ,λ) ∈L(Ft) × R,

λE g
s,t[ξ ] ≤ E g

s,t[λξ ] a.s. (.)

For each (s, z) ∈ [, t] ×Rd , let Y s,z· be the solution of the following stochastic differential
equation (SDE for short) defined on [s, t]:

Y s,z
t = –

∫ t

s
g(r, z) dr + z · (Bt – Bs). (.)

From (.), we have

E g
r,t

[
λY s,z

t
] ≥ λE g

r,t
[
Y s,z

t
]

= λY s,z
r ,  ≤ s ≤ r ≤ t ≤ T .

Thus, (λY s,z
r )r∈[s,t] is an Eg -submartingale. From the decomposition theorem of an Eg -

supermartingale (see Zong and Hu []), it follows that there exists an increasing process
(Ar)r∈[s,t] such that

λY s,z
t = –

∫ t

s
g(r, Zr) dr + At – As +

∫ t

s
Zr · dBr , t ∈ [s, T].
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This with λY s,z
t = –

∫ t
s λg(r, z) dr +

∫ t
s λz · dBr yields Zr ≡ λz and

λg(t, z) ≤ g(t,λz), dP × dt-a.s. (.)

The proof of Theorem . is complete. �

Remark . The condition that g is super-homogeneous with respect to z implies that g
is positively homogeneous with respect to z. Indeed, for each fixed λ > , by (.), we have

λ

g(t,λz) ≤ g(t, z), dP × dt-a.s., i.e.,

g(t,λz) ≤ λg(t, z), dP × dt-a.s. (.)

Thus by (.) and (.), for any λ > ,

g(t,λz) = λg(t, z), dP × dt-a.s. (.)

In particular, choosing λ = , we have g(t, ) = g(t, ), dP × dt-a.s. Hence g(t, ) = , dP ×
dt-a.s. Thus, for λ =  (.) still holds.

Proof of Theorem . From Theorem ., we only need to prove (ii) ⇔ (iii). (iii) ⇒ (ii) is
obvious.

In the following, we prove (ii) ⇒ (iii). From the proof of Theorem ., we can obtain, for
any λ ∈ R and (y, z) ∈ R×Rd , g(t, y,λz) = g(t,λz) ≥ λg(t, z), dP × dt-a.s. Using the same
method, we have g(t, y,λz) = g(t,λz) ≤ λg(t, z), dP × dt-a.s., ∀λ ∈ R, (y, z) ∈ R×Rd . The
above arguments imply that, for any λ ∈R and (y, z) ∈R×Rd ,

g(t, y,λz) = g(t,λz) = λg(t, z), dP × dt-a.s. (.)

On the other hand, by Lemma ., we have, for any (y, z), (y, z) ∈R×Rd ,

g(t, y + y, z + z) = g(t, y, z) + g(t, y, z), dP × dt-a.s. (.)

It follows from (.) and (.) that (iii) holds true. The proof of Theorem . is complete.
�

From Theorem .(iii), we know that, for any y ∈ R, g(t, y, ) = g(t, ) = , dP × dt-a.s.
Hence, E g

s,t[·] = Eg[·|Fs]. Thus, Theorem . can be rewritten as follows.

Corollary . Suppose that E g
s,t[·],  ≤ s ≤ t ≤ T is a g-evaluation, then the following four

statements are equivalent:
(i) Jensen’s inequality for the g-evaluation E g

s,t[·] holds in general, i.e., for each convex
function ϕ(x) : R �→R and each ξ ∈L(Ft), if ϕ(ξ ) ∈L(Ft), then we have

E g
s,t

[
ϕ(ξ )

] ≥ ϕ
(
E g

s,t[ξ ]
)

a.s.;

(ii) ∀(ξ , a, b) ∈ L(FT ) ×R×R, E g
,T [aξ + b] ≥ aE g

,T [ξ ] + b, and, for any y ∈R,
g(t, y, ) = , dP × dt-a.s.;
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(iii) ∀(ξ , a, b) ∈ L(Ft) ×R×R, E g
s,t[aξ + b] ≥ aE g

s,t[ξ ] + b a.s.;
(iv) g is independent of y and super-homogeneous with respect to z.

Similarly, Theorem . can be rewritten as follows.

Corollary . Suppose that E g
s,t[·],  ≤ s ≤ t ≤ T is a g-evaluation, then the following four

statements are equivalent:
(i) the n-dimensional (n > ) Jensen inequality for g-evaluation E g

s,t[·] holds in general,
i.e., for each convex function ϕ : Rn �→R and ξi ∈L(Ft) (i = , , . . . , n), if
ϕ(ξ, ξ, . . . , ξn) ∈L(Ft), then we have

E g
s,t

[
ϕ(ξ, ξ, . . . , ξn)

] ≥ ϕ
(
E g

s,t[ξ],E g
s,t[ξ], . . . ,E g

s,t[ξn]
)

a.s.;

(ii) E g
,T is linear in L(FT ) and, for any y ∈R, g(t, y, ) = , dP × dt-a.s.;

(iii) E g
s,t is linear in L(Ft);

(iv) for each (y, z) ∈R×Rd , g(t, y, z) = g(t, z) = αt · z, dP × dt-a.s., where α is a
Rd-valued progressively measurable process.

Proof of Corollary . From Proposition . and Theorem ., we only need to prove
(ii) ⇔ (iii). It is obvious that (iii) implies (ii).

In the following, we prove that (ii) implies (iii). Suppose (ii) holds. For each (X, t, k) ∈
L(FT ) × [, T] ×R, by (ii), we know that for each A ∈Ft ,

E g
,T

[
A(X + k)

]
= E g

,T [AX + Ak – k] + k

= E g
,T

[
AX + AC (–k)

]
+ k

= E g
,t

[
E g

t,T
[
AX + AC (–k)

]]
+ k

= E g
,t

[
AE g

t,T [X] + AC (–k)
]

+ k

= E g
,t

[
AE g

t,T [X] + AC (–k) + k
]

= E g
,t

[
A

(
E g

t,T [X] + k
)]

.

Thus

E g
t,T [X + k] = E g

t,T [X] + k a.s. (.)

For each λ �= , define Eλ
t,T [·] := Eg

t,T [λ·]
λ

, ∀t ∈ [, T]. It is easy to check that E g
t,T [·] and Eλ

t,T [·]
are two F -expectations in L(FT ) (the notion of F -expectation can be seen in Coquet et
al. []). If λ > , for each ξ ∈ L(FT ), Eλ

,T [ξ ] ≥ E g
,T [ξ ]. In a similar manner to Lemma .

in Coquet et al. [], we can obtain

Eλ
t,T [ξ ] ≥ E g

t,T [ξ ] a.s.,∀t ∈ [, T]. (.)

If λ < , for each ξ ∈ L(FT ), Eλ
,T [ξ ] ≤ E g

,T [ξ ]. In a similar manner to Lemma . in Coquet
et al. [] again, we have

Eλ
t,T [ξ ] ≤ E g

t,T [ξ ] a.s.,∀t ∈ [, T]. (.)
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From (.) and (.), we have, for any (ξ ,λ) ∈ L(FT ) ×R,

E g
t,T [λξ ] ≥ λE g

t,T [ξ ] a.s.,∀t ∈ [, T]. (.)

From (.) and (.), we have, for any (ξ , a, b) ∈ L(FT ) ×R×R,

E g
t,T [aξ + b] ≥ aE g

t,T [ξ ] + b a.s.,∀t ∈ [, T].

Since, for any y ∈R, g(t, y, ) = , dP × dt-a.s., we have

E g
s,t[aξ +b] = E g

s,T [aξ +b] ≥ aE g
s,T [ξ ]+b = aE g

s,t[ξ ]+b a.s.,∀(ξ , a, b) ∈ L(Ft)×R×R.

Therefore, (iii) holds true. The proof of Corollary . is complete. �

Proof of Corollary . From Proposition . and Theorem ., we only need to prove
(ii) ⇔ (iii). It is obvious that (iii) implies (ii).

In the following, we prove that (ii) implies (iii). Suppose (ii) holds. By Proposition ., we
know that for each sequence {Xn}∞n= ⊂ L(FT ) such that Xn(ω) ↓  for all ω, E g

,T [Xn] ↓ .
By the well-known Daniell-Stone theorem (cf., e.g., Yan [], Theorem .., p.), there
exists a unique probability measure Pα defined on (�,FT ) such that

E g
,T [ξ ] = EPα [ξ ], ∀ξ ∈ L(FT ) (.)

holds. Indeed, from (iv), we know that dPα

dP = exp(
∫ T

 αt · dBt – 

∫ T

 |αt| dt).
On the other hand, since, for any y ∈R, g(t, y, ) = , dP × dt-a.s., we can obtain

E g
s,t[ξ ] = E g

s,T [ξ ] a.s.,∀ξ ∈ L(Ft). (.)

It follows from (.) and (.) that

E g
s,t[ξ ] = EPα [ξ |Fs] a.s.,∀ξ ∈ L(Ft).

Therefore, E g
s,t is linear in L(Ft). The proof of Corollary . is complete. �

From Corollary ., we can immediately obtain the following.

Theorem . Suppose that E g
s,t[·],  ≤ s ≤ t ≤ T is a g-evaluation, then the following two

statements are equivalent:
(i) E g

s,t is linear in L(Ft);
(ii) there exists a unique probability measure Pα defined on (�,FT ) such that, for any

ξ ∈L(Ft),

E g
s,t[ξ ] = EPα [ξ |Fs] a.s.

The following result can be seen as an extension of Theorem ..

Theorem . Suppose that E g
s,t[·],  ≤ s ≤ t ≤ T is a g-evaluation, then the following two

statements are equivalent:
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(i) E g
s,t is sublinear in L(Ft), i.e.,

(f ) E g
s,t[λX] = λE g

s,t[X] a.s., for any X ∈L(Ft) and λ ≥ ;
(g) Es,t[X + Y ] ≤ E g

s,t[X] + E g
s,t[Y ] a.s., for any (X, Y ) ∈L(Ft) ×L(Ft);

(h) E g
s,t[μ] = μ a.s., for any μ ∈R;

(ii) for any ξ ∈L(Ft),

E g
s,t[ξ ] = sup

Qθ ∈�

EQθ
[ξ |Fs] a.s.,

where � is a set of probability measures on (�,FT ) and defined by

� :=
{

Qθ : EQθ
[ξ ] ≤ E g

,T [ξ ],∀ξ ∈L(FT )
}

.

Proof It is obvious that (ii) implies (i).
In the following, we prove that (i) implies (ii). Suppose (i) holds. Since E,T [·] is a sublin-

ear expectation in L(FT ), by Lemma . in Peng [], we know that there exists a family
of linear expectations {Eθ : θ ∈ } on (�,FT ) such that, for any ξ ∈L(FT ),

E g
,T [ξ ] = sup

θ∈

Eθ [ξ ]. (.)

On the other hand, by Proposition ., we know that for each sequence {Xn}∞n= ⊂L(FT )
such that Xn(ω) ↓  for all ω, E g

,T [Xn] ↓ . By the well-known Daniell-Stone theorem, we
can deduce that for each θ ∈  and ξ ∈ L(FT ), there exists a unique probability measure
Qθ defined on (�,FT ) such that

Eθ [ξ ] = EQθ
[ξ ]. (.)

It follows from (.) and (.) that, for any ξ ∈L(FT ),

E g
,T [ξ ] = sup

Qθ ∈�

EQθ
[ξ ]. (.)

Let � be a set of probability measures on (�,FT ) defined by

� :=
{

Pα : α ∈ g ,
dPα

dP
= exp

(∫ T


αt · dBt –




∫ T


|αt| dt

)}
,

where g := {(αt)t∈[,T] : α is Rd-valued, progressively measurable and, for any (y, z) ∈
R×Rd , αt · z ≤ g(t, y, z), dP × dt-a.s.}. In order to prove (ii), now we prove that � = �.

For any α ∈ g , we define gα(t, y, z) := αt · z, ∀t ∈ [, T], (y, z) ∈ R × Rd . Then, for any
ξ ∈L(FT ), by the well-known Girsanov theorem, we can deduce that

E gα

,T [ξ ] = EPα [ξ ].

Since, for any (y, z) ∈R×Rd , αt · z = gα(t, y, z) ≤ g(t, y, z), dP × dt-a.s., it follows from the
well-known comparison theorem for BSDEs that EPα [ξ ] = E gα

,T [ξ ] ≤ E g
,T [ξ ]. Hence � ⊆ �.

Next let us prove that � ⊆ �. For each Qθ ∈ �, since EQθ
[·] ≤ E g

,T [·], ∀ξ ,η ∈ L(FT ), we
have

EQθ
[ξ + η] – EQθ

[η] = EQθ
[ξ ] ≤ E g

,T [ξ ]. (.)
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Denote gβ (t, y, z) := β(t)|z|, ∀t ∈ [, T], (y, z) ∈ R × Rd . From Lemmas . and . and
applying the well-known comparison theorem for BSDEs again, we have

E g
,T [ξ ] = Eg[ξ ] ≤ Egβ [ξ ]. (.)

From (.) and (.), we can deduce that EQθ
[ξ + η] – EQθ

[η] ≤ Egβ [ξ ]. Then, in a similar
manner to Theorem . in Coquet et al. [], we know that there exists a unique function
gθ defined on � × [, T] ×R×Rd satisfying the following three conditions:

(H.) gθ (t, y, ) = , dP × dt-a.s., ∀y ∈R;
(H.) |gθ (t, y, z) – gθ (t, y, z)| ≤ β(t)|z – z|, ∀(y, z), (y, z) ∈R×Rd , where β(t) is

a non-negative deterministic function satisfying that
∫ T

 β(t) dt < ∞;
(H.) Egθ [ξ |Ft] = EQθ

[ξ |Ft] a.s., ∀ξ ∈ L(FT ).
It follows from the linearity of (Egθ [·|Ft])t∈[,T] and Theorem . that gθ is linear with re-
spect to z. Therefore, there exists a Rd-valued progressively measurable process (θt)t∈[,T]

such that gθ (t, y, z) = θt · z, dP × dt-a.s., ∀(y, z) ∈ R × Rd . In view of Qθ ∈ � and (H.),
we have for each ξ ∈ L(FT ), Egθ [ξ ] = EQθ

[ξ ] ≤ E g
,T [ξ ]. Then in a similar manner to

Lemma . in Coquet et al. [] and by Lemma ., we can obtain gθ (t, y, z) = θt · z ≤
g(t, y, z), dP × dt-a.s., ∀(y, z) ∈ R × Rd . For θ , we define the probability measure Pθ sat-
isfying dPθ

dP = exp(
∫ T

 θt · dBt – 

∫ T

 |θt| dt), then Pθ ∈ � and EPθ
[ξ ] = Egθ [ξ ] = EQθ

[ξ ],
∀ξ ∈ L(FT ). Hence, Qθ = Pθ ∈ �. Thus, � ⊆ �. Therefore, we have � = �.

Finally, we prove that, for any s, t ∈ [, T] satisfying s ≤ t and ξ ∈ L(Ft), E g
s,t[ξ ] =

supQθ ∈� EQθ
[ξ |Fs] a.s. It follows from (H.), the well-known comparison theorem for

BSDEs, and Proposition . that

E g
s,t[ξ ] ≥ Egθ [ξ |Fs] = EQθ

[ξ |Fs] a.s.,∀ξ ∈L(Ft).

Hence, for any s, t ∈ [, T] satisfying s ≤ t and ξ ∈L(Ft),

E g
s,t[ξ ] ≥ sup

Qθ ∈�

EQθ
[ξ |Fs] a.s. (.)

On the other hand, by Lemmas ., ., and ., we can deduce that g is independent
of y and positively homogeneous, sub-additive with respect to z. For any ξ ∈ L(FT ), let
(Y ξ

t , Zξ
t )t∈[,T] denote the solution of the following BSDE:

yt = ξ +
∫ T

t
g(s, zs) ds –

∫ T

t
zs · dBs, ∀t ∈ [, T].

By a measurable selection theorem (cf., e.g., El Karoui and Quenez [], p.), we can
deduce that there exists a progressively measurable process αξ ∈ g such that

g
(
t, Zξ

t
)

= α
ξ
t · Zξ

t , dP × dt-a.s. (.)

From (.) and applying the well-known Girsanov theorem, we have E g
s,t[ξ ] = E g

s,T [ξ ] =
EP

αξ
[ξ |Fs] a.s. Hence, for any ξ ∈L(Ft),

E g
s,t[ξ ] ≤ sup

Pα∈�

EPα [ξ |Fs] = sup
Qθ ∈�

EQθ
[ξ |Fs] a.s. (.)
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It follows from (.) and (.) that

E g
s,t[ξ ] = sup

Qθ ∈�

EQθ
[ξ |Fs] a.s.,∀ξ ∈L(Ft).

The proof of Theorem . is complete. �

4 Hölder’s inequality and Minkowski’s inequality for g-evaluations
In this section, we give a sufficient condition on g under which Hölder’s inequality and
Minkowski’s inequality for g-evaluations hold true.

First, we give the following lemma.

Lemma . Suppose that the function g satisfies (B.) and (B.). Let g satisfy the following
conditions:

(i) for any y ≥ , y ≥ , and (z, z) ∈Rd ×Rd ,

g(t, y + y, z + z) ≤ g(t, y, z) + g(t, y, z), dP × dt-a.s.;

(ii) for any λ ≥ , y ≥ , and z ∈Rd ,

g(t,λy,λz) ≤ λg(t, y, z), dP × dt-a.s.,

then E g
s,t[·] satisfies the following conditions:

(j) E g
s,t[ξ + η] ≤ E g

s,t[ξ ] + E g
s,t[η] a.s., for any (ξ ,η) ∈L+(Ft) ×L+(Ft);

(k) E g
s,t[λξ ] = λE g

s,t[ξ ] a.s., for any ξ ∈L+(Ft) and λ ≥ .

The key idea of the proof of Lemma . is the well-known comparison theorem for
BSDEs. The proof is very similar to that of Proposition . in Jia []. So we omit it.

Applying Lemma . and Theorems . and ., we immediately have the following
Hölder inequality and Minkowski inequality for g-evaluations.

Theorem . Let g satisfy the conditions of Lemma ., then, for any X, Y ∈ L(Ft) and
|X|p, |Y |q ∈L(Ft) (p, q >  and /p + /q = ), we have

E g
s,t

[|XY |] ≤ (
E g

s,t
[|X|p]) 

p
(
E g

s,t
[|Y |q]) 

q a.s.

Theorem . Let g satisfy the conditions of Lemma ., then, for any X, Y ∈ L(Ft), and
|X|p, |Y |p ∈L(Ft) (p > ), we have

(
E g

s,t
[|X + Y |p]) 

p ≤ (
E g

s,t
[|X|p]) 

p +
(
E g

s,t
[|Y |p]) 

p a.s.
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