
Emam Journal of Inequalities and Applications  (2015) 2015:160 
DOI 10.1186/s13660-015-0675-7

R E S E A R C H Open Access

Optimality for E-[, ] convex
multi-objective programming problems
Tarek Emam*

*Correspondence:
drtemam@yahoo.com
Department of Mathematics,
Faculty of Science, University of Hail,
Hail, Kingdom of Saudi Arabia
Department of Mathematics,
Faculty of Science, Suez University,
Suez, Egypt

Abstract
In this paper, we are interested in deriving the sufficient and necessary conditions for
an optimal solution of special classes of programming problems. These classes
involve generalized E-[0, 1] convex functions. The characterization of efficient
solutions for E-[0, 1] convex multi-objective programming problems is obtained.
Finally, sufficient and necessary conditions for a feasible solution to be an efficient or
properly efficient solution are derived.
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1 Introduction
The study of multi-objective programming problems was very active in recent years. The
weak minimum (weakly efficient, weak Pareto) solution is an important concept in math-
ematical models, economics, decision theory, optimal control, and game theory (see, for
example, [–]). In most works, the assumption of convexity was made for the objective
functions. The extension of convexity is an area of active current research in the field
of optimization theory. Various relaxations of convexity were possible, and were called
generalized convex functions. The definition of generalized convex functions has occu-
pied the attention of a number of mathematicians; for an overview of generalized con-
vex functions we refer to [–]. A significant generalization of convexity is the concept
of E-[, ] convexity []. E-[, ] convexity depends on the effect of an operator E on the
range of the function and the closed unit interval [, ]. Inspired and motivated by above
reasons, the purpose of this paper is to formulate the problems which involve general-
ized E-[, ] convex functions. The paper is organized as follows. In Section , we define
generalized E-[, ] convex functions, which are called pseudo E-[, ] convex functions,
and obtain sufficient and necessary conditions for an optimal solution of E-[, ] convex
programming problems. In Section , we consider the Mond-Weir type dual and gener-
alize its results under the E-[, ] convexity assumptions. In Section , we formulate the
multi-objective programming problem which involves E-[, ] convex functions. An effi-
cient solution for the problem considered is characterized by weighting, and ε-constraint
approaches. At the end of this paper, we obtain sufficient and necessary conditions for
a feasible solution to be an efficient or properly efficient solution for problems involving
generalized E-[, ] convex functions. Let us survey, briefly, the definitions and some re-
sults as regards E-[, ] convexity.
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Definition  [] A real valued function f : M ⊆ Rn → R is said to be a E-[, ] convex
function on M with respect to E : R × [, ] → R, if M is a convex set and, for each x, y ∈ M
and λ,λ ∈ [, ], λ + λ = ,

f (λx + λy) ≤ E
(
f (x),λ

)
+ E

(
f (y),λ

)
.

If f (λx +λy) ≥ E(f (x),λ) + E(f (y),λ), then f is called a E-[, ] concave function on M.
If the inequality signs in the previous two inequalities are strict, then f is called strictly
E-[, ] convex and strictly E-[, ] concave, respectively.

Every E-[, ] convex function with respect to E : R × [, ] → R is a convex function if
E(f (x),λ) = λf (x). Let E : R × [, ] → R be a mapping such that E(t,λ) = ( + λ)t, t ∈ R, λ ∈
[, ], then the function h(x) =

∑k
i= aifi(x) is E-[, ] convex on M for ai ≥ , i = , , . . . , k, if

the functions fi : Rn → R are all E-[, ] convex on a convex set M ⊆ Rn. Let E : R× [, ] →
R be a mapping such that E(t,λ) = min{λt, t}, t ∈ R, λ ∈ [, ], then a numerical function
f : M ⊂ Rn → R+ defined on a convex set M ⊆ Rn is E-[, ] convex if and only if its epi(f ) is
convex. Let B be an open convex subset of Rn and let E : R × [, ] → R be a mapping such
that E(t,λ) = min{λ, t}, t ∈ R, λ ∈ [, ], then f is continuous on B if f is E-[, ] convex
on B. If f : Rn → R is a differentiable E-[, ] convex function at y ∈ M with respect to
E : R × [, ] → R such that E(t,λ) = min{λt, t}, t ∈ R, λ ∈ [, ], then, for each x ∈ M, we
have (x–y)∇f (y) ≤ f (x)– f (y). For more details as regards E-[, ] convex functions, see [].

Definition  [] A real valued function f : M ⊆ Rn → R is said to be a quasi E-[, ] convex
function on M with respect to E : R × [, ] → R, if M is a convex set and, for each x, y ∈ M
and λ,λ ∈ [, ], λ + λ = ,

f (λx + λy) ≤ max
{

E
(
f (x),λ

)
, E

(
f (y),λ

)}
.

If f (λx+λy) ≥ min{E(f (x),λ), E(f (y),λ)}, then f is called a quasi E-[, ] concave func-
tion on M. If the inequality signs in the previous two inequalities are strict, then f is called
strictly quasi E-[, ] convex and strictly quasi E-[, ] concave, respectively.

Every quasi E-[, ] convex function with respect to E : R × [, ] → R is a convex func-
tion if E(f (x),λ) = λf (x). Let E : R × [, ] → R be a mapping such that E(f (x),λ) = f (λx)
for each x ∈ M, λ ∈ [, ], then f (

∑n
i= λixi) ≤ max≤i≤nE(f (xi),λi) for each xi ∈ M, λi ≥ ,

∑n
i= λi = , if f : Rn → R is E-[, ] convex on a convex set M ⊆ Rn. Let E : R × [, ] → R

be a mapping such that E(t,λ) = min{λ, t}, t ∈ R, λ ∈ [, ], then the level set LE-[,]
α is a

convex set for each α ∈ R if f : Rn → R is quasi E-[, ] convex on a convex set M ⊆ Rn.
Let E : R × [, ] → R be a mapping such that E(t,λ) = max{λ, t}, t ∈ R, λ ∈ [, ], and let
α = minx minλ E(f (x),λ), then the level set LE-[,]

α is a convex set if and only if f is quasi
E-[, ] convex. If f : Rn → R is a differentiable quasi E-[, ] convex function at y ∈ M
with respect to E : R × [, ] → R such that E(t,λ) = min{λ, t}, t ∈ R, λ ∈ [, ], then, for
each x ∈ M, we have (x – y)∇f (y) ≤ . For more details as regards quasi E-[, ] convex
functions, see [].

2 Generalized E-[0, 1] convex programming problems
In this section, we define generalized E-[, ] convex functions, which are called pseudo
strongly E-convex functions, and obtain sufficient and necessary conditions for an optimal
solution for problems involving generalized E-[, ] convex functions.
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Definition  A real valued function f : M ⊆ Rn → R is said to be a pseudo E-[, ] convex
function on a convex set M ⊆ Rn if there exists a strictly positive function b : Rn × Rn → R
such that

E
(
f (x),λ

)
< E

(
f (y),λ

) ⇒ f (λx + λy) ≤ E
(
f (y),λ

)
– λλb(x, y)

for all x, y ∈ M and λ,λ ∈ [, ], λ + λ = .

Remark  Every pseudo E-[, ] convex function with respect to E : R × [, ] → R is con-
vex function if E(t,λ) = min{t,λ}, t ∈ R, λ ∈ [, ].

Proposition  Let E : R× [, ] → R be a map such that E(t,λ) = max{t,λ}, t ∈ R, λ ∈ [, ].
A convex function f : Rn → R on a convex set M ⊆ Rn is a pseudo E-[, ] convex function
on M.

Proof Let E(f (x),λ) < E(f (y),λ). Since f is a convex function on a convex set M ⊆ Rn, for
all x, y ∈ M and λ,λ ∈ [, ], λ + λ = , we have

f (λx + λy) ≤ λf (x) + λf (y) ≤ λE
(
f (x),λ

)
+ λE

(
f (y),λ

)
.

That is,

f (λx + λy) ≤ E
(
f (y),λ

)
+ λ

[
E
(
f (x),λ

)
– E

(
f (y),λ

)]

≤ E
(
f (y),λ

)
+ λλ

[
E
(
f (x),λ

)
– E

(
f (y),λ

)]

= E
(
f (y),λ

)
– λλ

[
E
(
f (y),λ

)
– E

(
f (x),λ

)]

= E
(
f (y),λ

)
– λλb(x, y),

since b(x, y) = E(f (y),λ) – E(f (x),λ) > . This is the required result. �

Theorem  Let E : R × [, ] → R be a map such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈ [, ]
and M ⊆ Rn be a convex set. If f : Rn → R is a differentiable pseudo E-[, ] convex function
at y ∈ M, then (x – y)∇f (y) < , for each x ∈ M.

Proof Since f : Rn → R is a differentiable pseudo E-[, ] convex function at y ∈ M,

E
(
f (x),λ

)
< E

(
f (y),λ

)

⇒ f (λx + λy) ≤ E
(
f (y),λ

)
– λλb(x, y) ≤ f (y) – λλb(x, y)

for each x ∈ M and λ,λ ∈ [, ], λ + λ = . That is,

E
(
f (x),λ

)
< E

(
f (y),λ

)

⇒ f
(
y + λ(x – y)

) ≤ f (y) – λλb(x, y)

⇒ f (y) + λ(x – y)∇f (y) + O
(
λ


) ≤ f (y) – λλb(x, y).
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Dividing the above inequality by λ >  and letting λ → , we get

(x – y)∇f (y) ≤ –b(x, y) < 

for each x ∈ M. �

Remark  Let E : R× [, ] → R be a map such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈ [, ], and
M ⊆ Rn be a convex set. If f : Rn → R is a differentiable pseudo E-[, ] convex function at
y ∈ M, then (x – y)∇f (y) ≥  ⇒ E(f (x),λ) ≥ E(f (y),λ), for each x ∈ M and λ,λ ∈ [, ],
λ + λ = .

Lemma  Let E : R × [, ] → R be a mapping such that E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈
[, ]. If gi : Rn → R is an E-[, ] convex function on Rn, i = , , . . . , m, then the set M = {x ∈
Rn : gi(x) ≤ , i = , , . . . , m} is convex set.

Proof Since gi(x), i = , , . . . , m, are E-[, ] convex functions with respect to E(t,λ) =
λmin{t,λ}, for each x, y ∈ M and λ,λ ∈ [, ], λ + λ = ,

gi(λx + λy) ≤ E
(
gi(x),λ

)
+ E

(
gi(y),λ

)

= λ min
{

gi(x),λ
}

+ λ min
{

gi(y),λ
}

≤ λgi(x) + λgi(y) ≤ , i = , , . . . , m,

hence λx + λy ∈ M for all λ,λ ∈ [, ], λ + λ = . This means that M is convex set.
�

Lemma  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈ [, ].
If gi : Rn → R is a quasi E-[, ] convex function on Rn, i = , , . . . , m, then the set M = {x ∈
Rn : gi(x) ≤ , i = , , . . . , m} is convex set.

Proof Since gi(x), i = , , . . . , m, are quasi E-[, ] convex functions with respect to E(t,λ) =
min{t,λ}, for each x, y ∈ M and λ,λ ∈ [, ], λ + λ = ,

gi(λx + λy) ≤ max
[
E
(
gi(x),λ

)
, E

(
gi(y),λ

)]

≤ max
[
gi(x), gi(y)

]

≤ , i = , , . . . , m,

hence λx + λy ∈ M for all λ,λ ∈ [, ], λ + λ = . This means that M is convex set.
�

Now, we discuss the necessary and sufficient conditions for a feasible solution to be
an optimal solution for E-[, ] convex programming problems. Consider the following
E-[, ] convex programming problem:

min f (x)

(P̄) subject to

x ∈ M =
{

x ∈ Rn : gi(x) ≤ , i = , , . . . , m
}

.
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Here f : Rn → R and gi : Rn → R, i = , , . . . , m, are E-[, ] convex functions with respect
to E : R × [, ] → R.

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exists a feasible solution x∗ for (P̄), and f , g are differentiable
E-[, ] convex functions with respect to the same E at x∗. If there is u ∈ Rm and u ≥  such
that (x∗, u) satisfies the following conditions:

∇f
(
x∗) + ∇uT g

(
x∗) = ,

uT g
(
x∗) = , g

(
x∗) ≤ ,

()

then x∗ is an optimal solution for problem (P̄).

Proof For each x ∈ M, we have

f (x) – f
(
x∗) ≥ (

x – x∗)∇f
(
x∗) = –

(
x – x∗)∇uT g

(
x∗)

≥ –uT(
g(x) – g

(
x∗)) = –uT g(x) ≥ ,

where the above inequalities hold because f , g are E-[, ] convex at x∗ with respect to the
same E (see Theorem . in []). Thus, x∗ is the minimizer of f (x) under the constraint
g(x) ≤ , which implies that x∗ is an optimal solution for problem (P̄). �

Remark  [] In Theorem  above, since u ≥ , g(x∗) ≤ , and uT∇g(x∗) = , we have

uigi
(
x∗) = , i = , , . . . , m. ()

If I(x∗) = {i : gi(x∗) = } and J = {i : gi(x∗) < }, then I ∪ J = {, , . . . , m}, and () gives ui = 
for i ∈ J . It is obvious then, from the proof of Theorem , that E-[, ] convexity of gI at
x∗ is all that is needed instead of the E-[, ] convexity of g at x∗ as was assumed in the
theorem above.

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P̄) and scalars, ui ≥ , i ∈ I(x∗),
such that () of Theorem  holds. If f is pseudo E-[, ] convex, and gI are quasi E-[, ]
convex at x∗ ∈ M, then E(f (x∗),λ), λ ∈ [, ] is an optimal solution in the objective space
of problem (P̄).

Proof Since E(gI(x),λ) ≤ E(gI(x∗),λ) = , ui ≥ , λ,λ ∈ [, ], λ + λ = , and gI are
quasi E-[, ] convex at x∗, we have

(
x – x∗) ∑

i∈I(x∗)

ui
[∇gi

(
x∗)]T ≤ , ∀x ∈ M, ()

by using the above inequality in (), and pseudo E-[, ] convexity of f at x∗, we obtain

(
x – x∗)[∇f

(
x∗)]T ≥  ⇒ E

(
f (x),λ

) ≥ E
(
f
(
x∗),λ

) ⇒ f (x) ≥ E
(
f
(
x∗),λ

)
.

Hence, E(f (x∗),λ) is an optimal solution in the objective space of problem (P̄). �
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The next two theorems use the idea proposed by Mahajan and Vartak [].

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P̄) and scalars, ui ≥ , i ∈ I(x∗),
such that () of Theorem  holds. If f is pseudo E-[, ] convex, and uT

I gI is quasi E-[, ]
convex at x∗ ∈ M, then E(f (x∗),λ), λ ∈ [, ] is an optimal solution in the objective space
of problem (P̄).

Proof The proof of this theorem is similar to the proof of Theorem  except that the
argument to get the inequality () is as follows: Since E(gI(x),λ) ≤ E(gI(x∗),λ), uI ≥ ,
λ,λ ∈ [, ], λ + λ = , we obtain

uT
I E

(
gI(x),λ

) ≤  = uT
I E

(
gI

(
x∗),λ

)

for all x ∈ M. Quasi E-[, ] convexity of uT
I gI at x∗ yields

(
x – x∗)∇(

uT
I gI

(
x∗)) ≤ , ∀x ∈ M.

We can proceed as in the above theorem to prove that E(f (x∗),λ) is an optimal solution
in the objective space of problem (P̄). �

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exists a feasible point x∗ for (P̄) and the numerical function f +
uT

I gI is pseudo E-[, ] convex at x∗. If there is a scalar u ∈ Rm such that (x∗, u) satisfies
the conditions () of Theorem , then E(f (x∗),λ), λ ∈ [, ], is an optimal solution in the
objective space of problem (P̄).

Proof The proof of this theorem is similar to the proof of Theorem  except that the ar-
guments are as follows: () can be written as

∇f
(
x∗) + ∇(

uT
I gI

(
x∗)) = .

This can be rewritten in the form

(
x – x∗)∇((

f + uT
I gI

)(
x∗)) ≤ , ∀x ∈ M,

which gives

E
((

f + uT
I gI

)(
x∗),λ

) ≤ E
((

f + uT
I gI

)
(x),λ

)
, ∀x ∈ M,

because f + uT
I gI is pseudo E-[, ] convex at x∗, i.e.,

E
((

f + uT
I gI

)(
x∗),λ

) ≤ f (x) +
(
uT

I gI
)
(x), ∀x ∈ M.

It follows, by using the definition of I , that

E
(
f
(
x∗),λ

) ≤ f (x), ∀x ∈ M.

Hence, E(f (x∗),λ) is an optimal solution in the objective space of problem (P̄). �
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Theorem  (Necessary optimality criteria) Let E : R × [, ] → R be a mapping such that
E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈ [, ]. Assume that x∗ is an optimal solution for problem (P̄)
and there exists a feasible point x for (P̄) such that gi(x) < , i = , , . . . , m. If gi, i ∈ I(x∗), is
E-[, ] convex at x∗ ∈ M, then there exist scalars ui ≥ , i ∈ I(x∗), such that (x∗, ui) satisfies

∇f
(
x∗) +

∑

i∈I(x∗)

ui∇gi
(
x∗) = . ()

Proof We desire to show that

(
x – x∗)∇gI

(
x∗) ≤  ⇒ (

x – x∗)∇f
(
x∗) ≥ . ()

The result will follow as in [] by applying Farkas’ lemma. Assume () does not hold, i.e.,
there exists x ∈ Rn such that

(
x – x∗)∇gI

(
x∗) ≤  ⇒ (

x – x∗)∇f
(
x∗) < . ()

Since by the assumed Slater-type condition,

gi(x̃) – gi
(
x∗) < , i ∈ I

(
x∗),

and from E-[, ] convexity of gi at x∗, we get

(
x̃ – x∗)T∇gi

(
x∗) < , i ∈ I

(
x∗). ()

Therefore from () and ()

[(
x – x∗) + ρ

(
x̃ – x∗)]T∇gi

(
x∗) < , i ∈ I

(
x∗),∀ρ > .

Hence for some positive β small enough

gi
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) < gi

(
x∗) = , i ∈ I

(
x∗).

Similarly, for i /∈ I(x∗), gi(x∗) < , and for β >  small enough,

gi
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) ≤ , i /∈ I

(
x∗).

Thus, for β sufficiently small and all ρ > , x∗ +β[(x – x∗) +ρ(x̃ – x∗)] is feasible for problem
(P̄). For sufficiently small ρ >  () gives

f
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) < f

(
x∗), ()

which contradicts the optimality of x∗ for (P̄). Hence, the system () has no solution. The
result then follows from an application of Farkas’ lemma, namely

∇f
(
x∗) +

∑

i∈I(x∗)

ui∇gi
(
x∗) = , u ≥ .

�
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3 Duality in E-[0, 1] convexity
We consider the Wolfe type dual and generalized its results under the E-[, ] convexity
assumptions. Consider the following Wolfe type dual of problem (P̄):

max ψ(y, u) = f (y) + uT g(y)

(D̄) subject to

∇f (y) + uT∇g(y) = , u ≥ ,

where f , g are differentiable functions defined on Rn. We now prove the following duality
theorems, relating problem (P̄) and (D̄).

Theorem  (Weak duality) Let E : R × [, ] → R be a map such that E(t,λ) = λmin{t,λ},
t ∈ R, λ ∈ [, ], and let there exist a feasible solution x for (P̄) and (y, u), a feasible solution
for (D̄). If f , g are E-[, ] convex functions at y, then f (x) ≮ f (y) + uT g(y).

Proof Let x be a feasible solution for (P̄) and (y, u) be a feasible solution for (D̄). Suppose
contrary to the result f (x) < f (y) + uT g(y), then

f (x) + uT g(x) < f (y) + uT g(y) or

f (x) + uT g(x) – f (y) – uT g(y) < . ()

E-[, ] convexity of f , g at y, implies that

f (x) – f (y) ≥ (x – y)T∇f (y) and

uT[
g(x) – g(y)

] ≥ uT (x – y)T∇g(y),

and combining the above two inequalities gives

f (x) – f (y) + uT g(x) – uT g(y) ≥ (x – y)T[∇f (y) + uT∇g(y)
]
,

and by using inequality (), we get

(x – y)T[∇f (y) + uT∇g(y)
]

< ,

which contradicts the constraint ∇f (y) + uT∇g(y) =  of (D̄). �

Theorem  (Strong duality) Let x∗ be an optimal solution for (P̄) and g satisfy the Kuhn-
Tucker constraint qualification at x∗. Then, there exists u∗ ∈ Rm, such that (x∗, u∗) is a
feasible solution for (D̄) and the (P̄)-objective at x∗ equals the (D̄)-objective at (x∗, u∗). If f ,
g are E-[, ] convex functions at x∗ with respect to E : R × [, ] → R such that E(t,λ) =
λmin{t,λ}, t ∈ R, λ ∈ [, ], then (x∗, u∗) is an optimal solution for problem (D̄).

Proof Since g satisfies the Kuhn-Tucker constraint qualification at x∗, there exists u∗ ∈ Rm,
such that the following Kuhn-Tucker conditions are satisfied:

∇f
(
x∗) + u∗T∇g

(
x∗) = , ()
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u∗T g
(
x∗) = , ()

g
(
x∗) ≤ , ()

u∗ ≥ . ()

() and () show that (x∗, u∗) a feasible solution for (D̄). Also, () shows that the
(P̄)-objective at x∗ equal to the (D̄)-objective at (x∗, u∗). Now, from E-[, ] convexity of
f and g , we have

ψ
(
x∗, u∗) – ψ(x, u) = f

(
x∗) + u∗T g

(
x∗) – f (x) – uT g(x)

= f
(
x∗) – f (x) – uT g(x), by ()

≥ (
x∗ – x

)T∇f (x) – uT g(x)

= –
(
x∗ – x

)T uT∇g(x) – uT g(x), by ()

≥ –uT(
g
(
x∗) – g(x)

)
– uT g(x)

= –uT g
(
x∗) ≥ 

for each feasible point (x, u) of (D̄). Hence, (x∗, u∗) is an optimal solution for problem (D̄).
�

Example  Let E-[, ] : R × [, ] → R be defined as E(t,λ) = λ √t, where t ∈ R, and λ ∈
[, ]. Consider the problem (P̄)

min f (x, y) = (y – x)

s.t. (x, y) ∈ M =
{

(x, y) ∈ R : x + y ≤ ,  ≤ y ≤ , x ≥ 
}

,

where f is E-[, ] convex function on convex set M. Formulate the dual problem (D̄) as
follows:

max
[
f (y) + uT g(y)

]

s.t. ∇f (y) + uT∇g(y) = , u ≥ .

From the system ()-(), we have


(
y∗ – x∗) + u∗

 + u∗
 – u∗

 = ,

–
(
y∗ – x∗) + u∗

 – u∗ = ,

u∗

(
x∗ + y∗ – 

)
= ,

u∗

(
y∗ – 

)
= ,

u∗

(
 – y∗) = ,

–u∗
x∗ = ,

x∗ + y∗ –  ≤ ,

y∗ –  ≤ ,
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 – y∗ ≤ ,

–x∗ ≤ ,

where u∗
i ≥ , i = , , , . By solving this system, we conclude that (x∗, u∗) is the optimal

solution of the dual problem (D̄) such that x∗ = (, ) and u∗ = (, , , ). Hence, x∗ = (, )
is the optimal solution of (P̄).

4 Generalized E-[0, 1] convex multi-objective programming problems
In this section, we formulate a multi-objective programming problem which involves
E-[, ] convex functions. An efficient solution for the considered problem is characterized
by weighting and ε-constraint approaches. At the end of this section, we obtain sufficient
and necessary conditions for a feasible solution to be an efficient or properly efficient solu-
tion for this kind of problems. An E-[, ] convex multi-objective programming problem
is formulated as follows:

min
(
f(x), f(x), . . . , fk(x)

)

(P) subject to

x ∈ M =
{

x ∈ Rn : gi(x) ≤ , i = , , . . . , m
}

,

where fj : Rn → R, j = , , . . . , k, and gi : Rn → R, i = , , . . . , m, are E-[, ] convex functions
with respect to E : R × [, ] → R.

Definition  [] A feasible solution x∗ for (P) is said to be an efficient solution for (P) if
and only if there is no other feasible x for (P) such that, for some i ∈ {, , . . . , k},

fi(x) < fi
(
x∗), fj(x) ≤ fj

(
x∗) for all j �= i.

Definition  [] An efficient solution x∗ ∈ M for (P) is a properly efficient solu-
tion for (P) if there exists a scalar μ >  such that for each i, i = , , . . . , k, and each
x ∈ M satisfying fi(x) < fi(x∗), there exists at least one j �= i with fj(x) > fj(x∗), and
[fi(x) – fi(x∗)]/[fj(x∗) – fj(x)] ≤ μ.

Lemma  Let E : R × [, ] → R be a mapping such that E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈
[, ]. If f : Rn → Rk is an E-[, ] convex function on a convex set M ⊆ Rn, then the set
A =

⋃
x∈M A(x) is convex set such that

A(x) =
{

z : z ∈ Rk , z > f (x) – f
(
x∗)}, x ∈ M.

Proof Let z, z ∈ A, then for all x, x ∈ M and λ,λ ∈ [, ], λ + λ = , we have

λz + λz > λ
[
f
(
x) – f

(
x∗)] + λ

[
f
(
x) – f

(
x∗)]

= λf
(
x) + λf

(
x) – f

(
x∗)

≥ λ min
(
f
(
x),λ

)
+ λ min

(
f
(
x),λ

)
– f

(
x∗)

= E
(
f
(
x),λ

)
+ E

(
f
(
x),λ

)
– f

(
x∗)

≥ f
(
λx + λx) – f

(
x∗),
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since f is E-[, ] convex function on convex set M. Then λz + λz ∈ A, and hence A is
convex set. �

4.1 Characterizing efficient solutions by weighting approach
To characterize an efficient solution for problem (P) by weighting approach [] let us
scalarize problem (P) to get the form

(Pw) min
k∑

j=

wjfj(x) subject to x ∈ M,

where wj ≥ , j = , , . . . , k,
∑k

j= wj = , and fj, j = , , . . . , k, are E-[, ] convex functions
with respect to E : R × [, ] → R such that E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈ [, ], on convex
set M.

Theorem  If x̄ ∈ M is an efficient solution for problem (P), then there exists wj ≥ , j =
, , . . . , k,

∑k
j= wj = , such that x̄ is an optimal solution for problem (Pw).

Proof Let x̄ ∈ M be an efficient solution for problem (P), then the system fj(x) – fj(x̄) < ,
j = , , . . . , k, has no solution x ∈ M. Upon Lemma  and applying the generalized Gordan
theorem [], there exists pj ≥ , j = , , . . . , k, such that pj[fj(x) – fj(x̄)] ≥ , j = , , . . . , k,
and pj

∑k
j= pj

fj(x) ≥ pj
∑k

j= pj
fj(x̄).

Denote wj = pj
∑k

j= pj
, then wj ≥ , j = , , . . . , k,

∑k
j= wj = , and

∑k
j= wjfj(x̄) ≤ ∑k

j= wjfj(x).

Hence x̄ is an optimal solution for problem (Pw). �

Theorem  If x̄ ∈ M is an optimal solution for (Pw̄) corresponding to w̄j, then x̄ is an
efficient solution for problem (P) if one of the following two conditions holds:

(i) w̄j > , ∀j = , , . . . , k;
(ii) x̄ is the unique solution of (Pw̄).

Proof For the proof see Chankong and Haimes []. �

4.2 Characterizing efficient solutions by ε-constraint approach
The ε-constraint approach is one of the common approaches for characterizing efficient
solutions of multi-objective programming problems []. In the following we shall charac-
terize an efficient solution for the multi-objective E-[, ] convex programming problem
(P) in terms of an optimal solution of the following scalar problem:

min fq(x)

Pq(ε, E) subject to x ∈ M,

fj(x) ≤ E(εj,λj), j = , , . . . , k, j �= q.

Here fj, j = , , . . . , k, are E-[, ] convex functions with respect to E : R × [, ] → R such
that E(t,λ) = min{t,λ}, t ∈ R, λ ∈ [, ], on the convex set M.

Theorem  If x̄ ∈ M is an efficient solution for problem (P), then x̄ is an optimal solution
for problem Pq(ε̄, Ē) and ε̄j = fj(x̄).
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Proof Let x̄ be not optimal solution for Pq(ε̄, Ē) where ε̄j = fj(x̄), j = , , . . . , k. So there
exists x ∈ M such that

fq(x) < fq(x̄),

fj(x) ≤ Ē(ε̄j, λ̄j) ≤ ε̄j = fj(x̄), j = , , . . . , k, j �= q,

since Ē(ε̄j, λ̄j) = min(ε̄j, λ̄j) and convexity of M. This implies that the system fj(x) – fj(x̄) < ,
j = , , . . . , k, has a solution x ∈ M. Thus, x̄ is an inefficient solution for problem (P), which
is a contradiction. Hence x̄ is an optimal solution for problem Pq(ε̄, Ē). �

Theorem  Let x̄ ∈ M be an optimal solution, for all q of Pq(ε̄, Ē), where ε̄j = fj(x̄), j =
, , . . . , k. Then x̄ is an efficient solution for problem (P).

Proof Since x̄ ∈ M is an optimal solution for Pq(ε̄, Ē), where ε̄j = fj(x̄), j = , , . . . , k, for each
x ∈ M, we get

fq(x̄) < fq(x),

fj(x) ≤ Ē(ε̄j, λ̄j) ≤ ε̄j = fj(x̄), j = , , . . . , k, j �= q,

where Ē(ε̄j, λ̄j) = min(ε̄j, λ̄j). This implies the system fj(x) – fj(x̄) < , j = , , . . . , k, has no
solution x ∈ M, i.e., x̄ is an efficient solution for problem (P). �

4.3 Sufficient and necessary conditions for efficiency
In this section, we discuss the sufficient and necessary conditions for a feasible solution x∗

to be efficient or properly efficient for problem (P) in the form of the following theorems.

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P) and scalars γi > , i = , , . . . , k,
ui ≥ , i ∈ I(x∗), such that

k∑

i=

γi∇fi
(
x∗) +

∑

i∈I(x∗)

ui∇gi
(
x∗) = . ()

If fi, i = , , . . . , k, and gi, i ∈ I(x∗), are differentiable E-[, ] convex functions at x∗ ∈ M,
then x∗ is a properly efficient solution for problem (P).

Proof Since fi, i = , , . . . , k, and gi, i ∈ I(x∗), are differentiable E-[, ] convex functions at
x∗ ∈ M, for any x ∈ M, we have

k∑

i=

γifi(x) –
k∑

i=

γifi
(
x∗) ≥ (

x – x∗)
k∑

i=

γi
[∇fi

(
x∗)]T

= –
(
x – x∗) ∑

i∈I(x∗)

ui
[∇gi

(
x∗)]T

≥
k∑

i∈I(x∗)

uigi
(
x∗) –

k∑

i∈I(x∗)

uigi(x)

= –
∑

i∈I(x∗)

uigi(x) ≥ .
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Thus,
∑k

i= γifi(x) ≥ ∑k
i= γifi(x∗), for all x ∈ M, which implies that x∗ is the minimizer

of
∑k

i= γifi(x) under the constraint g(x) ≤ . Hence, from Theorem . of [], x∗ is a
properly efficient solution for problem (P). �

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P) and scalars γi ≥ , i = , , . . . , k,
∑k

i= γi = , ui ≥ , i ∈ I(x∗), such that the triplet (x∗,γi, ui) satisfies () of Theorem . If
∑k

i= γifi is strictly E-[, ] convex, and gI is E-[, ] convex at x∗ ∈ M, then x∗ is an efficient
solution for problem (P).

Proof Suppose that x∗ is not an efficient solution for (P), then there exist a feasible x ∈ M
and an index r such that

fr(x) < fr
(
x∗),

fi(x) ≤ fi
(
x∗) for all i �= r.

Since
∑k

i= γifi is strictly E-[, ] convex at x∗, the previous two inequalities lead to

 ≥
k∑

i=

γifi(x) –
k∑

i=

γifi
(
x∗) ⇒  >

(
x – x∗)

k∑

i=

γi
[∇fi

(
x∗)]T . ()

Also, E-[, ] convexity of gi, i ∈ I(x∗), at x∗ implies

(
x – x∗)∇gi

(
x∗) ≤ gi(x) – gi

(
x∗) ⇒ (

x – x∗)∇gi
(
x∗) ≤ , i ∈ I

(
x∗),

and, for ui ≥ , i ∈ I(x∗), we get

(
x – x∗) ∑

i∈I(x∗)

ui
[∇gi

(
x∗)]T ≤ . ()

Adding () and () contradicts (). Hence, x∗ is an efficient solution for problem (P).
�

Remark  Similarly to Theorem , it can easily be seen that x∗ becomes a properly effi-
cient solution for (P), in the above theorem, if γi > , for all i = , , . . . , k.

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P) and scalars γi > , i = , , . . . , k,
ui ≥ , i ∈ I(x∗), such that () of Theorem  holds. If

∑k
i= γifi is pseudo E-[, ] convex,

and gI are quasi E-[, ] convex at x∗ ∈ M, then E(f (x∗),λ), λ ∈ [, ] is a properly non-
dominated solution in the objective space of problem (P).

Proof Since E(gI(x),λ) ≤ E(gI(x∗),λ) = , λ,λ ∈ [, ], λ +λ = , and from quasi E-[, ]
convexity of gI at x∗, uI ≥ , we get

(
x – x∗) ∑

i∈I(x∗)

ui
[∇gi

(
x∗)]T ≤ , ∀x ∈ M,
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by using the above inequality in (), and from pseudo E-[, ] convexity of
∑k

i= γifi at x∗,
we get

(
x – x∗)

k∑

i=

γi
[∇fi

(
x∗)]T ≥  ⇒

k∑

i=

γiE
(
fi(x),λ

) ≥
k∑

i=

γiE
(
fi
(
x∗),λ

)

⇒
k∑

i=

γifi(x) ≥
k∑

i=

γiE
(
fi
(
x∗),λ

)
.

Hence, E(f (x∗),λ) is a properly nondominated solution in the objective space of problem
(P). �

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P) and scalars γi ≥ , i = , , . . . , k,
∑k

i= γi = , ui ≥ , i ∈ I(x∗), such that () of Theorem  holds. If
∑k

i= γifi is strictly pseudo
E-[, ] convex and gI is quasi E-[, ] convex at x∗ ∈ M, then E(f (x∗),λ), λ ∈ [, ] is a
nondominated solution in the objective space of problem (P).

Proof Suppose that E(f (x∗),λ) is dominated solution for (P), then there exist a feasible x
for (P) and an index r such that

fr(x) < E
(
fr
(
x∗),λ

)
, fi(x) ≤ E

(
fi
(
x∗),λ

)
for all i �= r.

Since E(t,λ) = min{t,λ}, t ∈ R, λ ∈ [, ], we have

E
(
fr(x),λ

)
< E

(
fr
(
x∗),λ

)
, E

(
fi(x),λ

) ≤ E
(
fi
(
x∗),λ

)
, ∀i �= r.

The strictly pseudo E-[, ] convexity of
∑k

i= γifi at x∗ implies that

k∑

i=

γiE
(
fi(x),λ

) ≤
k∑

i=

γiE
(
fi
(
x∗),λ

) ⇒ (
x – x∗)

k∑

i=

γi
[∇fi

(
x∗)]T < .

Also, quasi E-[, ] convexity of gI at x∗ implies that

E
(
gI(x),λ

) ≤ E
(
gI

(
x∗),λ

)
=  ⇒ (

x – x∗)∇gI
(
x∗) ≤ .

The proof now follows along lines similar to Theorem . �

Remark  Similarly to Theorem , it can easily be seen that E(f (x∗),λ), λ ∈ [, ], be-
comes a properly nondominated solution for (P), in the above theorem, if γi > , for all
i = , , . . . , k.

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P) and scalars γi > , i = , , . . . , k,
ui ≥ , i ∈ I(x∗), such that () of Theorem  holds. If

∑k
i= γifi is pseudo E-[, ] convex

and uIgI is quasi E-[, ] convex at x∗ ∈ M, then E(f (x∗),λ), λ ∈ [, ] is a properly non-
dominated solution in the objective space of problem (P).
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Proof The proof is similar to the proof of Theorem . �

Theorem  Let E : R × [, ] → R be a mapping such that E(t,λ) = min{t,λ}, t ∈ R, λ ∈
[, ]. Suppose that there exist a feasible solution x∗ for (P) and scalars γi ≥ , i = , , . . . , k,
∑k

i= γi = , ui ≥ , i ∈ I(x∗), such that () of Theorem  holds. If I(x∗) �= φ,
∑k

i= γifi is
quasi E-[, ] convex and uIgI is strictly pseudo E-[, ] convex at x∗ ∈ M, then E(f (x∗),λ),
λ ∈ [, ], is a nondominated solution in the objective space of problem (P).

Proof The proof is similar to the proof of Theorem . �

Remark  Similarly to Theorem , it can easily be seen that E(f (x∗),λ), λ ∈ [, ], be-
comes a properly nondominated solution for (P), in the above theorem, if γi > , for all
i = , , . . . , k.

Theorem  (Necessary efficiency criteria) Let E : R × [, ] → R be a mapping such that
E(t,λ) = λmin{t,λ}, t ∈ R, λ ∈ [, ], and x∗ be a properly efficient solution for problem (P).
Assume that there exists a feasible point x for (P) such that gi(x) < , i = , , . . . , m, and each
gi, i ∈ I(x∗), is E-[, ] convex at x∗ ∈ M. Then there exist scalars γi > , i = , , . . . , k and
ui ≥ , i ∈ I(x∗), such that the triplet (x∗,γi, ui) satisfies

k∑

i=

γi∇fi
(
x∗) +

∑

i∈I(x∗)

ui∇gi
(
x∗) = . ()

Proof Let the system

(
x – x∗)T∇fq

(
x∗) < ,

(
x – x∗)T∇fi

(
x∗) ≤  for all i �= q, ()

(
x – x∗)T∇gi

(
x∗) ≤ , i ∈ I

(
x∗),

have a solution for every q = , , . . . , k. Since, by the assumed Slater-type condition,

gi(x̃) – gi
(
x∗) < , i ∈ I

(
x∗),

and from E-[, ] convexity of gi at x∗, we get

(
x̃ – x∗)T∇gi

(
x∗) < , i ∈ I

(
x∗). ()

Therefore from () and ()

[(
x – x∗) + ρ

(
x̃ – x∗)]T∇gi

(
x∗) < , ∀i ∈ I

(
x∗),ρ > .

Hence for some positive β small enough

gi
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) < gi

(
x∗) = , i ∈ I

(
x∗).

Similarly, for i /∈ I(x∗), gi(x∗) <  and for β >  small enough

gi
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) ≤ , i /∈ I

(
x∗).
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Thus, for β sufficiently small and all ρ > , x∗ +β[(x – x∗) +ρ(x̃ – x∗)] is feasible for problem
(P). For sufficiently small ρ >  () gives

fq
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) < fq

(
x∗). ()

Now, for all j �= q such that

fj
(
x∗ + β

[(
x – x∗) + ρ

(
x̃ – x∗)]) > fj

(
x∗), ()

consider the ratio

N(β ,ρ)
D(β ,ρ)

=
[fq(x∗) – fq(x∗ + β[(x – x∗) + ρ(x̃ – x∗)])]/β
[fj(x∗ + β[(x – x∗) + ρ(x̃ – x∗)]) – fj(x∗)]/β

. ()

From (), N(β ,ρ) → –(x – x∗)T∇fq(x∗) > . Similarly, D(β ,ρ) → (x – x∗)T∇fj(x∗) ≤ ; but,
by (), D(β ,ρ) > , so D(β ,ρ) → . Thus, the ratio in () becomes unbounded, contra-
dicting the proper efficiency of x∗ for (P). Hence, for each q = , , . . . , k, the system ()
has no solution. The result then follows from an application of Farkas’ lemma, namely

k∑

i=

γi∇fi
(
x∗) +

∑

i∈I(x∗)

ui∇gi
(
x∗) = , u ≥ .

�

Theorem  Assume that x∗ is an efficient solution for problem (P) at which the Kuhn-
Tucker constraint qualification is satisfied. Then, there exist scalars γi ≥ , i = , , . . . , k,
∑k

i= γi = , uj ≥ , j = , , . . . , m, such that

k∑

i=

γi∇fi
(
x∗) +

m∑

j=

uj∇gj
(
x∗) = ,

m∑

j=

ujgj
(
x∗) = .

Proof Since every efficient solution is a weak minimum, by applying Theorem . of Weir
and Mond [] for x∗, we see that there exist γ ∈ Rk , u ∈ Rm such that

γ T∇f
(
x∗) + uT∇g

(
x∗) = , uT g

(
x∗) = ,

u ≥ , γ ≥ , γ T e = ,

where e = (, , . . . , ) ∈ Rk . �

Example  Let E-[, ] : R × [, ] → R be defined as E(t,λ) = λ √t, where t ∈ R, and λ ∈
[, ]. Consider the problem:

min f(x, y) = x,

min f(x, y) = (y – x)

s.t. (x, y) ∈ M =
{

(x, y) ∈ R : x + y ≤ ,  ≤ y ≤ , x ≥ 
}

,

where f, and f are E-[, ] convex functions on convex set M. It is clear that f (M) is
R
�-nonconvex set (see Figure (a)), but the image of the objective space f (M) under the

map E-[, ] is R
�-convex set (see Figure (b)).
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Figure 1 Example 2 of bicriteria E-[0, 1] convex problem. (a) f (M) is R2�-nonconvex. (b) The image of f (M)

under E-[0, 1] map is R2�-convex.

(i) Formulate the weighting problem (Pw) as

min
{

wx + w(y – x)}

subject to x ∈ M,

where w, w ≥ , w + w = .
It is clear that a point (, y) ∈ M,  ≤ y ≤ , is an optimal solution for (Pw) corresponding

w = (w, ),  < w ≤ , and a point (x, ) ∈ M,  ≤ x ≤  is an optimal solution for (Pw)
corresponding to w = (, w),  < w ≤ . Hence the set of efficient solutions of problem
(P) can be described as

X =
{

(x, ) ∈ M :  ≤ x ≤  and (, y) ∈ M :  ≤ y ≤ 
}

.

(ii) Formulate the problem Pq(ε) as

min x

subject to

(x, y) ∈ M,

(y – x) ≤ E(ε, )

and

min (y – x)

subject to

(x, y) ∈ M,

x ≤ E(ε, ).

It is easy to see that the points {(x, ) ∈ M :  ≤ x ≤  and (, y) ∈ M :  ≤ y ≤ } are optimal
solutions corresponding to

(
E(ε, ), E(ε, )

)
=

(
y∗ – x∗, x∗).
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(iii) Applying the Kuhn-Tucker conditions yields

γ
(
x∗) – γ

(
y∗ – x∗) + u – u = ,

γ
(
y∗ – x∗) + u + u – u = ,

u
(
x∗ + y∗ – 

)
= ,

u
(
y∗ – 

)
= ,

u
(
 – y∗) = ,

–ux∗ = 

and

x∗ + y∗ ≤ , y∗ ≥ , y∗ ≤ , x∗ ≥ ,

where γi ≥ , i = , , γ + γ = , and ui ≥ , i = , , , . From this system we conclude
that the set of efficient solutions can be described as

X =
{

(x, ) ∈ M :  ≤ x ≤  and (, y) ∈ M :  ≤ y ≤ 
}

.
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