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Abstract

By applying the method of weight functions and the technique of real analysis,

a multidimensional Hilbert-type integral inequality with multi-parameters and the
best possible constant factor related to the gamma function is given. The equivalent
forms and the reverses are obtained. We also consider the operator expressions and a
few particular results related to the kernels of non-homogeneous and homogeneous.
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1 Introduction

Suppose that p > 1, i + % =1 f(x),g() = 0,f e P(R,), g € LAR,), ||fllp = (fooof"(x) dx)l% >
0, liglly > 0. We have the following well-known Hardy-Hilbert integral inequality (cf [1]):

OOf T
/ / x+y xdy < Sin(ﬂ/p)llfllpllgllq, 1)

where the constant factor is best possible. If a,,,b, > 0, a = {a}5, € ¥, b =

sm(” Ip)
{b)2, €14, llall, = (3. 1ozm)P >0, [|b]l; > 0, then we still have the discrete variant of

the above inequality with the same best constant - as follows:

( Ip)

ZZ —) lall, 1 b1l- @)

m=1 n=1

Inequalities (1) and (2) are important in the analysis and its applications (cf. [1-6]).

In 1998, by introducing an independent parameter A € (0,1], Yang [7] gave an extension
of (1) at p = g = 2 with the kernel . In 2009 and 2011, Yang [3, 4] gave some best
extensions of (1) and (2) as follows.

If 1,2, 2 € R, A1 + A = A, ki (%, y) is a non-negative homogeneous function of degree
-\, with

k()\l):/ k. (t, )t dt e R,,
0
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¢(x) = xp(l_)‘l)_lr 1//()’) = yq(l_h)_l’f(x)’g(y) > 0»

SeLpyRy) = {ﬁ fllpg := (/oooqﬁ(x)[f(x)‘pdx)p < oo},

2€LyyR), Ifllpgs lIgllgy > O, then we have the following inequality:

fo fo Ko () (2)g () dx dly < k() [ s gl 3)

where the constant factor k(%;) is best possible. Moreover, if k; (x,y) stays finite and

Ky (%, )17 (K (%, ¥)y*?71) is decreasing with respect to x > 0 (y > 0), then for a,,, b, > 0,

a€lyy= {61; llallp := (Zd)(n)ltznlp) < oo},

n=1

b=A{b,}2, €lyy, llallpg, 1bll4y >0, we have

DN ki, m)amby < k(a)llallpg 15l g )

n=1

un

m=

where the constant factor k(1) is still best possible.

Clearly, for & =1, ky(x,y) = ﬁ, A= %1, Ay = 1%, (3) reduces to (1), while (4) reduces to (2).

In 2006, Hong [8] first published a multidimensional Hilbert integral inequality by using
the transfer formula, which is an extension of (3). Some other related results are given by
[9-22], which provided some new methods to study these kinds of inequalities.

In this paper, by using the transfer formula and applying the method of weight func-
tions and the technique of real analysis, we give a multidimensional Hilbert-type inte-
gral inequality with multi-parameters and the best possible constant factor related to the
gamma function. The equivalent forms and the reverses are obtained. Furthermore, we
also consider the operator expressions and a few particular results related to the kernels
of non-homogeneous and homogeneous.

2 Some lemmas
If m,n € N (N is the set of positive integers), o, 8 > 0, we set

R

llxllq = (Z |xk|°‘) (¥ = (x,...,%m) €R™),
k=1
n 5

llyllg = (Z kalﬁ) (y=01-...yn) €R").
k-1

Lemmal IfseN, y,M >0, V(u) is a non-negative measurable function in (0,1], and

s . V4
Dy = {xeRi;O<u=Z<:—/l[) 51},
i=1
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then we have the following transfer formula (cf. [6]):

[f

M)
- VSF(%) 0

B oo

\IJ(u)u%_1 du,

i=

where () is the gamma function defined by

() := /OO e"Vtdv  (t>0).
0

In view of (5), since R, = limy;_, o Dy, we have

[ (S5 )

4

) .
= lim —s/ \IJ(u)uV du.
M=o y°I'(2) Jo

By (6), (i) for

{x e RS |lxll, > 1}
. Xi
:N}gnoo:xeR <u= Z( )

setting W(x) =0 (u € (0, A%)), it follows that

s X 14
. v (—l> dx -
f /{xeRi;xyZ” (Zl M )

i=

ML) .
= lim —/ V(w)u” ™ du;
“ M=o pT(2) S

MY

(ii) for

{xeR}; |« <1}

S Y
_ s, _ i 1
‘A}L“lo:xe&’ow_z 1 (M) SMy]’

setting W(u) = 0 (u € (55,00)), we have

S
Xi
() e
/ /{xeni;xysl} (; M )
Msl_'s(l) i s
- lim —f W()ur " du.
M—oo YPST(E) o

i

dx

dx
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(5)

(6)
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Remark 1 For § € {-1,1}, s € N, y,M > 0, setting Ej := {u > 0;u° > -1}, in view of (7)

M
and (8), it follows that
s X Y
/ /{xem;xf;>1} (; M
M) L
= lim —— | W@ur " du. )
M—c0 ySF(;) Es
Lemma2 Foré$ € {-1,1},s€N, y,& >0, we have
/ el d ) (10)
x x= ——F—.
(reRD=1) ey ()
Proof By (9), for § € {-1,1}, it follows that
/ Il 755 dix
{reR%; 113, >1)
/ / i(xiy/ % —s—d¢
- /... M hda dx, - - dx,
(xeRS 2l 21) o \M
. ML) Unosbe 51
= lim —— = | (Mu"")" " ur " du
M—o0 ySF(;) Es
M)
= lim 751/ u?v du
M— 00 )/SF(;) Es
vy MTETE(L) =se
M v (M7v)7 M dv
VSF(;) {v>0;09>1}
sl s(L
= F(V) v%_ldv=7r(y) .
ysl"(%) {v>0;¥9>1} EVS_IF(%)
Hence, we have (10). a

Definition1 Form,n e N, o, B, A1, A0 >0, A+ Ay = A, n>-1,8 € {-1,1}, x = (x1,..., %) €
R”,y=(n,...,¥s) € R}, we define two weight functions w(A;,y) and @ (A,, %) as follows:

[n(lyllg/ )" 1
mww:mw/ f __ax, (1)
! B Jeon (max(|[x[1%, [yl 1) [
In(|lyllg/l=l)" 1
oG = g [ /1) )

we (max{ll13, 118} [y
By (6), we find

Iyl
1 e ——— n
| n(M‘S[Z,’-Zl(ﬁ)“]S/“)l

o) = 17 [ DS i
e (max (ML ()17, 1))

1
st

X
MR Gl

1 dxXy
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ML)
Ayoqs o
= lim —

”y”ﬂ Ml mF(Z’)

[yl m_
Xfl | In(557)1” uetdu
o (max{Msude, ||yl gh* ppm-sa "

lylig

S
ML) /1 | In(5 7o) -1
amT(%)  Jo (max{MPul, ||)’||ﬂ})’\

= 71’2 lim
71 s

=1 m(1l S1n.,8r-1
v=Mily| 3 e T (a) | Inv° "M
am10(2) Jo  (max{vd,1})*

(13)

Setting ¢ = 1! in (13), for § = £1, by simplification, it follows that

(h1,) = M) [ Ingre
oA,y _a”’lr(%)/o (max({t,1})*

rm( ) 1 ol % (Ing)"ghr1

(5 )
am 11"( )

/ (=Ing)" (¢~ + 27 dt
_ i 0
u=—Int am_ll(_‘o&)m) u [e—u(kl—l) + e—u(kz—l)](_e—u) du
o
1
_ () *©
o 10(%) Jo

iy /1 1\ [
= —m_1(ra3ﬂ <_n * _n> / eV dy
o (E) )\.1 )\2 0

rHro+1 /1 1
(L L) "

1T (%) ]

(ef)‘”‘ + ef)‘zu)u" du

Lemma 3 For m,n € N, a,ﬁ,xl,)\z,%,iz >0, M+ Ay = Il + Xg =An>-1,86 € {-1,1}, we

have

"Hro+1
0(9) = Kalha) 1= %ﬂ:)(% + %) (er?), (15)
o 1 2
"+ 1 1 ”
@ (Ao, x) = Kp(hy) = ﬁl—r(g)(ﬁ + Tg) (x€RY), (16)

~ T IIn(llyll/llI3)]7 1
w(k1,) = Iyll? / ﬂa x Y
wer? gl =1y (Max{Ixllg, 1y IlgD* -4

= Ko(R2) (1= 6, 00), (17)
A (VI et n .,
O TG L e 4O <R o

Proof By (14), we have (15). By the same way, we can obtain (16).
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In view of (9) and (13), we find

A S
(a9 = Iyl Jim M) | (i) =
w ’ = im ———— %
1LY g 00 amr(%) {(u>05ul > (max{Mdus/a, Iyl

My 3w T7(G) |1nv5|'7V“1
= m-1 m ﬁdv
@ AT (Z) Jusows =ity (max{v?,1})

o T /w [n ¢]7£-1
|

am1T(Z) iz (max{t, 1})*

) °° | Inel¢1-1 dt /“y"/? | n g6 dt
kG lr(%) (max{t, 1D*  Jo  (max{z1})*
Ox

= Ko (1)(1- 65, ).

Setting F(u) := fou U;‘:}'(Zil} dt (u € (0,00)), it follows that F(u) is continuous in (0, 00).

Since

C 1 (" |Ingren!
lim — dt
u—0* yh1/2 Jo  (max{z, 1})*
2 | Tn |11 . 2(=In )12 ~

’

im ~——= = ~
u—0* A y*1/2-1 (max{u,1})* u—0* M
1 [ |Ingnt
lim — f [In] dt=0,
u=oo /2 Jo  (max{t, 1})*

there exists a constant L > 0 such that

| In |- 1
0 - dt<Lu> 0, .
| gyt (e0.0)

Then we have

R -4
0<6;,0) < =—2Llyll, 2,
<On0) = Ty Ll

R
namely, 05 (y) = O(Ilyllﬁ *) (y € R"). Hence, we have (17) and (18). O

Lemma4 Asthe assumptions of Definition1, ifp € R\{0,1}, }7 + é =1,f(x) =f(x1, ..., %) >
0,2(0) =gW,...,yu) = 0, then (i) for p > 1, we have the following inequality:

Iyl [ IIn(llyl /1112 7F () ]P }
= <« dx| d
U {/R (@0, )P /Rm (max([=[2, Iyl D ]

P
5[ ZU(/\z,x)Ilel’Z,(m‘“l)"”f”(x)dx} ; (19)
Ry

(ii) for 0 < p <1, or p < 0, we have the reverse of (19).
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Proof (i) For p > 1, by Holder’s inequality with weight (cf. [23]), it follows that

| In(lyll/l1113)1"
ry (max{|lx[l3, |yl s})*

(m— (n—x2)
_ / | In(llyllg/I%1)1” [n xfg f(x)][ lyllg " ] i
ry (max{llxl, yllsD* L ply) 2" flac]| =020

1 " (m—811)(p-1) 1
E [/ [nllyls ) st fp(x)dx]”
Ry (max{llxll%, 1716D*  fy)2

In(lyllp/ i) Iyl ™2 13
X 3 Py —5h1 dx
re (max{[lxll3, Iyllg > |1x||%

1 n_
= (G 9) Iyl

[In(llyll g/ Il013)17 ]| 20D , ]p
dx| - 20
) [/Rm (max{|lx[lS, lyll g )* Il o/ Wdx (20)

f (%) dx

Q=

1

Then by Fubini’s theorem (cf. [24]), we have

;e { / [ O fp(x)dx}dy}‘l’
= Vg Lwo (maxliell, s> iy

(= 1
- {/ [ Iyl Nl el }fp(x)dx}p
wy ey (max {1203, Iyl 572

= [ / @ (hg, &) ||| L3R LD () dx}p. (21)
R}

Hence, (19) follows.

(ii) For 0 < p <1, or p < 0, by the reverse Holder inequality with weight (¢f. [23]), we
obtain the reverse of (20). Then by Fubini’s theorem, we still can obtain the reverse of
(19). O

Lemma5 As the assumptions of Lemma 4, then (i) for p > 1, we have the following inequal-

ity equivalent to (19):

[In(llyll g/ l1x112)
= dxd
//m (max{||x||5,||y||,s})kf( gl duvdy

P
< [ / @ (hg, ) || |2 5REP () dx}
Ry

x [ fR K @G, ) 14" g1(y) dy] ; (22)

(ii) for 0 < p <1, or p < 0, we have the reverse of (22) equivalent to the reverse of (19).
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Proof (i) For p > 1, by Holder’s inequality (cf [23]), it follows that

2—(n-12)
IIyIIE |:/ |ln(||y||ﬂ/||x||g)|n :|
' d
/R? (w(kl,y))é R (max{||x||g,||y”ﬁ}),\f(x) x

_n
2)-g

x [0, )T I9lly > g(0)] dy

q(n=r2)-n g 1
ffl[fRn oA )Iyllg g (y)dy} : (23)

Then by (19) we have (22).
On the other hand, assuming that (22) is valid, we set

Iyl [ / [ In([ylp/11112)17f (x) T"l
= & d s R”.
0= a7 e Gmaxt I, Iyl YER

Then it follows that

K= / ) @G, ) 15" g () dy.

R’

If /1 = 0, then (19) is trivially valid; if /; = oo, then by (21), (19) keeps the form of equality
(= 00). Suppose that 0 < J; < 0co. By (22), we have

0 < / 0O, YISt () dy = 0 = 1
R}
1

< [ / @ (b, ) ||| |32 () dx]p
Ry

1
q(n—h2)-n K
XU o)yl gq(y)dy] < 00.
R

Dividing out ]f L in the above inequality, it follows that

1
p
Ji - [ /R (I ) dy]

1
< [ / @ (Ao, &) ||| L3R pP () dx}p,
R}

and then (19) follows. Hence, (19) and (22) are equivalent.
(ii) For 0 < p <1, or p < 0, by the same way, we have the reverse of (22) equivalent to the
reverse of (19). O

3 Main results and operator expressions
Setting functions

D)= 20, W)= Iyl (e RYy €RY),

we have the following.
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Theorem 1 Suppose that m,n € N, o, B, A1,h2 >0, My + Ay = A, n>-1,8 € {-1,1}, p €
R\{0,1}, ; + ¢ =1, f() =f(x1,., %) = 0, 8(9) =g(01,--,90) = O,

SA 4
0<|fllpe = / [lac|[Em =R 0=m P () dix | < o0,
RWI

+

e q
0<||g||qw-[ / lyll g2 gq(y)dy} < 00.

(i) For p > 1, we have the following equivalent inequalities with the best possible constant
factor K(Ap):

In( / n

) ol [ 1yl 112 dT . }
/ {fm”y"ﬁ [/ o Gmax{ [, s 4| P

<K@DIf llp,os (25)

where we define the constant factor as follows:

-

K() = (Kp())? (Ka(m)

(5) )y Na/1oo1
(ﬁ” 11“(%)) <am—1r(§)> (A” M)F(””)

(ii) For 0 < p <1, or p < 0, we still have the equivalent reverses of (24) and (25) with the

same best constant factor K(A1).

Proof (i) For p > 1, by the conditions, we can prove that (20) takes the form of strict in-
equality. Otherwise, if (20) takes the form of equality for y € R”, then there exist constants

A and B, which are not all zero, satisfying

” ”ma)q(pl ” ””)‘Z)ql

Mle ey ; m
by ”n o (%) = i 5 a.e.inx € RY. (26)

If A = 0, then B = 0, which is impossible; if A # 0, then (26) reduces to

q(n-22)

Blly|l? »
||x||pm B () W a.e.inx € RY,

which contradicts the fact that 0 < ||f]|,,» < 00.In fact, by (9), it follows that fRi” |l dx =
00. Hence, (20) takes the form of strict inequality. So does (19). By (15) and (16), we have
(25).

In view of (23) (putting w(A1,y) = 1), we still have

I 5][ / Iy 52" g(y) dy] " (27)
RY
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Then by (27) and (25), we have (24). It is evident that by Lemma 5 and the assumptions,

(24) and (25) are also equivalent
ForO<e< p’“ , we setf ,8(y) as follows:

~ 0, 0< x| <1,
(%) :=

S(A1—35)-m
[l]] o Z =

0<yllg <1,
g = { n
IIyII,g » Ayl = 1.

Then, for Ay = A, — £ £ € (53,2 (C(0,4)), by (10) we find

1
~ ~ o p o q
FlpoZlgw = ( / e dx) ( / Iyl de)
(xR ||x]18 =1} {yeR%llyllp=1)

1

1/ Ty \r/ T 4
Ce\amIT(E)) \prr(p))
5y
0< / Iyl 0yl ? ) dy
(yeRllylg=1)
LiT"(3)

§L1/ i Pay.  ATE
eRYlylp=1) . (e + 3BT (5)

Llrn( )
(a+ DB )

(Ll > 0),

and then by (17) and (18) it follows that

8
7::/ / | In(llylls/llxl1G)I" FW070) dxdy
R} JRT

7 (max{|lx]2, llylls})*

- f Iyl i, 9) dy
{yeR% |yl g =1}

~ SY
= Ku(h) Iyll5" (1= O(llyll; > )) dy
R lyllp=1}
1~ ( T
= “K,0n) —L2— - 1) ).
e (a( 1)<ﬂ”_lr(§) €OA1( ))

If there exists a constant K < K(11), such that (24) is valid when replacing K(};) by K,

then in particular we have

T (2) (1‘+ )(ﬁ“ru o )

1

<el <eK|f v =K M) Vo ( MG \e
<el <eK|fllpollglgw = (oﬂ”‘T(%)) <,3”‘11"(§)> ,

and then K(4;) < K(¢ — 0%). Hence K = K (1) is the best possible constant factor of (24).
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By the equivalency, we can prove that the constant factor K(1;) in (25) is best possible.
Otherwise, we would reach a contradiction by (27) that the constant factor K(A;) in (24)
is not best possible.

(ii) For 0 < p < 1, or p < 0, by the same way, we still can obtain the equivalent reverses of
(24) and (25) with the same best constant factor. a

As the assumptions of Theorem 1, for p > 1, in view of J < K(A1)||f || 5,0, we give the fol-

lowing definition.

Definition 2 We define a multidimensional Hilbert-type integral operator
T:Lyo (RT) — L, g1r (Rﬁ)

as follows:
For f € L, (R, there exists a unique representation If € L,, y1-»(R}), satisfying

| Indllyllg/lI%l2)1"
p (max{[lx]5, 1yl })*

o= [ f@dx (yeR). 28)

For g € L,y (R}), we define the following formal inner product of Tf and g as follows:

|Inllyllg/lll13)1”
(7f, )::/ / 2 (x)g(y) dx dy. (29)
P8 Jog S tmant g, Iyl ! P8P
Then by Theorem 1, for p > 1, 0 < ||f |5, Igllqw < 00, we have the following equivalent
inequalities:
(Tf,g) < KD llp.o gl gws (30)
1Zf Nl pa1-r < KADISf llp,0- (31)

It follows that T is bounded with

I Tf 11, w1-»

1T := —_—
fet,o®y)  Ifllpe

< K(A).

Since the constant factor K(A1) in (31) is best possible, we have

T| = K(Ap) = Fn(%) }7 FWI(é) % 1 1 r 1 32
17l = (1>-<ﬁn_1r(%)) (am_lr(%)) (A—?U—g) (1+1). (32)

4 Some corollaries

We also set functions
D(x) = LD, D) o= | BT (x € RY).

For § = -1 in Theorem 1, setting F(x) = ||x||%f (x), by simplification, we have the following.
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Corollary 1 Suppose that m,n € N, o, B, 1,13 >0, A1 + A5 = &, n > -1, p € R\{0,1},
St 2 =L F®) = Flxn,ooxm) 2 0, 80) = g0, 9m) = 0, 0 < [|Fll, 5, gllgw < 0o. (i) For
p > 1, we have the following equivalent inequalities with the non-homogeneous kernel and
the best possible constant factor K(11):

[l Iy 1)1"
F dxdy < K(M)|F|l,3 , 33
/Rz e maxtL, Il 8O Ay < KO, g lelw 33
praon ([ 1o 1yllp) 17 d)” drﬂ P 2
[/Rz i (/Rm max(L, el iy ) @ <KODIELg (34)

(ii) for 0 < p < 1, or p < 0, we still have the equivalent reverses of (33) and (34) with the same
best constant factor K(1;).

For § =1 in Theorem 1, we have the following.

Corollary 2 Suppose that m,n € N, o, 8,A1,A2 >0, A + A2 = &, n > -1, p € R\{0,1},
Lo, f(x) = Gty ) = 0, ) = g0 es3) = 0, 0 < [, gllgw < 00. () For
p > 1, we have the following equivalent inequalities with the homogeneous kernel of degree
—A and the best possible constant factor K(1;):

Iyl g/ %])1”
dxdy < K(A & , 35
/Rz ey (axlel, Iyl 80 x4 < KOOyl o 3%
a1/ %)) 7 (6) d]” y }; P 2
{/Rz”y Iy [/Rm max{llo Iyl ] @) <K@V l,e (36)

(ii) for 0 < p < 1, or p < 0, we still have the equivalent reverses of (35) and (36) with the same
best constant factor K(11).
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