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Abstract
We consider the well-posedness for lexicographic vector equilibrium problems and
optimization problems with lexicographic equilibrium constraints in metric spaces.
Sufficient conditions for a family of such problems to be (uniquely) well-posed at the
reference point are established. Numerous examples are provided to explain that all
the assumptions we impose are very relaxed and cannot be dropped.
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1 Introduction
Equilibrium problems first considered by Blum and Oettli [] have been playing an
important role in optimization theory with many striking applications, particularly in
transportation, mechanics, economics, etc. Equilibrium models incorporate many other
important problems, such as optimization problems, variational inequalities, complemen-
tarity problems, saddle point/minimax problems, and fixed points. Equilibrium problems
with scalar and vector objective functions have been widely studied. The crucial issue of
solvability (the existence of solutions) has attracted the most considerable attention of
researchers; see, e.g., [, ]. A relatively new but rapidly growing topic is the stability of
solutions, including semicontinuity properties in the sense of Berge and Hausdorff; see,
e.g., [, ] and the Hölder/Lipschitz continuity of solution mappings; see, e.g., [–].

On the other hand, well-posedness of optimization-related problems can be defined in
two ways. The first and oldest is Hadamard well-posedness [], which means existence,
uniqueness, and continuous dependence of the optimal solution and optimal value from
perturbed data. The second is Tikhonov well-posedness [], which means the existence
and uniqueness of the solution and convergence of each minimizing sequence to the solu-
tion. Well-posedness properties have been intensively studied and the two classical well-
posedness notions have been extended and blended. Recently, the Tikhonov notion has
been more interested. The major reason is its vital role in numerical methods. Any algo-
rithm can generate only an approximating sequence of solutions. Hence, this sequence
is applicable only if the problem under consideration is well-posed. For parametric prob-
lems, well-posedness is closely related to stability. Up to now, there have been many works
dealing with well-posedness of optimization-related problems as mathematical program-
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ming [, ], constrained minimization [, ] variational inequalities [–], Nash
equilibria [], and equilibrium problems [].

On the other hand, many papers appeared dealing with bilevel problems such as math-
ematical programming with equilibrium constraints [], optimization problems with
variational inequality constraints [], optimization problems with Nash equilibrium
constraints [], optimization problems with equilibrium constraints [, ], etc. The
increasing importance of these bilevel problems in mathematical applications in engi-
neering and economics is recognized. For instance, the multileader-follower game in eco-
nomics is a bilevel problem, since each leader has to solve a Stackelberg game formu-
lated as a mathematical program with equilibrium constraints. Recently, Anh et al. in
[] considered the bilevel equilibrium and optimization problems with equilibrium con-
straints. They proposed a relaxed level closedness and use it together with pseudocon-
tinuity assumptions to establish sufficient conditions for the well-posedness and unique
well-posedness.

With regard to vector equilibrium problems, most of the existing results correspond to
the case when the order is induced by a closed convex cone in a vector space. Thus, they
cannot be applied to lexicographic cones, which are neither closed nor open. These cones
have been extensively investigated in the framework of vector optimization; see, e.g., [–
]. For instance, Chadli et al. in [] obtained conditions for the existence of solutions of
a sequential equilibrium problem via a viscosity argument under quite strong conditions.
Bianchi et al. in [] analyzed lexicographic equilibrium problems on a topological Haus-
dorff vector space, and their relationship with some other vector equilibrium problems.
They obtained the existence results for the tangled lexicographic problem via the study of
a related sequential problem. However, for equilibrium problems, the main emphasis has
been on the issue of solvability/existence. To the best of our knowledge, very recently, Anh
et al. in [] studied the well-posedness for lexicographic vector equilibrium problems in
metric spaces and gave the sufficient conditions for a family of such problems to be well-
posed and uniquely well-posed at the considered point. Furthermore, they derived several
results on well-posedness for a class of variational inequalities.

Motivated by the work reported above, this paper aims to consider the lexicographic
vector equilibrium problems and optimization problems with lexicographic equilibrium
constraints in metric spaces and establishes necessary and/or sufficient conditions for
such problems to be well-posed and uniquely well-posed at the considered point assumed
always that the mentioned solutions exist.

The layout of the paper is as follows. In Section , we propose the lexicographic vec-
tor equilibrium problems and optimization problems with lexicographic equilibrium con-
straints in metric spaces under our consideration and recall notions and preliminaries
needed in the sequel. In Section , we study the well-posedness of the lexicographic vector
equilibrium problems with lexicographic equilibrium constraints in metric spaces. Sec-
tion  is devoted to the well-posedness of optimization problems with lexicographic equi-
librium constraints.

2 Preliminaries
We first recall the concept of lexicographic cone in finite dimensional spaces and models
of equilibrium problems with the order induced by such a cone. The lexicographic cone
of Rn, denoted Cl , is the collection of zero and all vectors in R

n with the first nonzero



Wangkeeree et al. Journal of Inequalities and Applications  (2015) 2015:163 Page 3 of 24

coordinate being positive, i.e.,

Cl := {} ∪ {
x ∈R

n|∃i ∈ {, , . . . , n} : xi >  and xj = ,∀j < i
}

.

This cone is convex and pointed, and it induces the total order as follows:

x ≥l y ⇔ x – y ∈ Cl.

We also observe that it is neither closed nor open. Indeed, when comparing with the cone
C := {x ∈R

n|x ≥ }, we see that int C � Cl � C, while

int Cl = int C and cl Cl = C.

Throughout this paper, if not otherwise specified, X and � denote the metric spaces. Let
f := (f, f, . . . , fn) : X × X × � →R

n and Ki : X × � → X , i = , . The lexicographic vector
quasiequilibrium problem consists of, for each λ ∈ �,

(LQEPλ) finding x̄ ∈ K(x̄,λ) such that

f (x̄, y,λ) ≥l , ∀y ∈ K(x̄,λ).

Remark .
(i) When f := f : X × X × � →R, the (LQEPλ) collapses to the parametric

quasiequilibrium problem (QEP) considered by Anh et al. [].
(ii) When Ki(x̄,λ) = K(λ), for all i = , , that is, Ki does not depend on x̄, the (LQEPλ)

reduces to the lexicographic vector equilibrium problem (LEPλ) considered by Anh
et al. [].

Instead of writing {(LQEPλ)|λ ∈ �} for the family of lexicographic vector quasiequilib-
rium problem, i.e., the lexicographic parametric problem, we will simply write (LQEP) in
the sequel. Let Sf : � → X be the solution map of (LQEP).

Following the line of investigating ε-solutions to vector optimization problems initiated
by Loridan [], we consider the following approximate problem: for each ε ∈ [,∞),

(LQEPλ,ε) find x̄ ∈ K(x̄,λ) such that

f (x̄, y,λ) + εe ≥l , ∀y ∈ K(x̄,λ),

where e = (, , . . . , , ) ∈R
n. The solution set of (LQEPλ,ε) is denoted by S̃f (λ, ε).

Let Y = X × � and F =: (F, F, . . . , Fn) : Y × Y → R
n be given. The lexicographic vector

equilibrium problem with lexicographic equilibrium constraints under question is

(LVQEPLEC) finding ȳ ∈ gr Sf such that

F(ȳ, y) ≥l , ∀y ∈ gr Sf ,

where gr Sf denotes the graph of Sf , i.e., gr Sf := {(x,λ)|x ∈ Sf (λ)}. We denote the solution
set of (LVQEPLEC) by SF . Next we consider for each ξ ∈ [,∞), the following approximate
problem of (LVQEPLEC):
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(LVQEPLECξ ) find ȳ ∈ gr Sf such that

F(ȳ, y) + ξe ≥l , ∀y ∈ gr Sf .

For the function g : X × � → R̄, where R̄ = (–∞,∞], the optimization problem with lexi-
cographic equilibrium constraints is the problem of, for each λ ∈ �,

(OPLEC) finding x̄ := (x̄,λ) ∈ gr Sf such that

g(x̄) = min
{

g(x)|x := (x,λ) ∈ gr Sf
}

.

Let Sg : � → X×� be the solution map for (OPLEC); that is,

Sg(λ) =
{

x̄ := (x̄,λ) ∈ gr Sf
∣∣g(x̄) = min

x:=(x,λ)∈gr Sf
g(x)

}
.

Remark . When f := f : X × X × � → R, the (OPLEC) collapses to the optimization
problem with equilibrium constraints (OPEC) considered by Anh et al. [].

We next give the concept of an approximating sequence, well-posedness, and unique
well-posedness for (LQEP), (LVQEPLEC), and (OPLEC).

Definition . A sequence {xn} is an approximating sequence of (LQEP) corresponding
to a sequence {λn} ⊂ � converging to λ̄ if there is a sequence {εn} ⊂ (,∞) converging to
 such that xn ∈ S̃f (λn, εn) for all n.

Definition . A sequence {xn} := {(xn,λn)} ⊆ Y := X × � is termed an approximating
sequence for (LVQEPLEC) iff there exists εn ↓  such that

(i) F(xn, y) + εne ≥l , for all y := (y,λ) ∈ Sf (λ) × �;
(ii) {xn} is an approximating sequence for (LQEP) corresponding to {λn}.

Definition . A sequence {xn} := {(xn,λn)} ⊆ Y := X × � is called an approximating (or
minimizing) sequence for (OPLEC) iff there exists εn ↓  such that

(i) g(xn) ≤ g(y) + εn, for all y := (y,λ) ∈ Sf (λ) × �;
(ii) {xn} is an approximating sequence for (LQEP) corresponding to {λn}.

Definition . Problem (LVQEPLEC) or (OPLEC) is called well-posed at λ̄ iff
(i) it has solutions;

(ii) for any approximating sequence {xn} := {(xn,λn)} for (LVQEPLEC), where λn → λ̄,
has a subsequence converging to a solution.

Definition . Problem (LVQEPLEC) or (OPLEC) is called uniquely well-posed at λ̄ iff
(i) it has a unique solution x̄ := (x̄, λ̄);

(ii) every approximating sequence {xn} := {(xn,λn)} for (LVQEPLEC) or (OPLEC),
where λn → λ̄, converges to x̄.

Now we recall the continuity-like properties which will be used for our analysis.

Definition . [] Let Q : X ⇒ Y be a set-valued mapping between two metric spaces.
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(i) Q is upper semicontinuous (usc) at x̄ if, for any open set U ⊇ Q(x̄), there is a
neighborhood N of x̄ such that Q(N) ⊆ U .

(ii) Q is lower semicontinuous (lsc) at x̄ if, for any open subset U of Y with
Q(x̄) ∩ U �= ∅, there is a neighborhood N of x̄ such that Q(x) ∩ U �= ∅ for all x ∈ N .

(iii) Q is closed at x̄ if, for any sequences {xk} and {yk} with xk → x̄ and yk → ȳ and
yk ∈ Q(xk), we have ȳ ∈ Q(x̄).

Lemma . [, ]
(i) If Q is usc at x̄ and Q(x̄) is compact, then for any sequence {xn} converging to x̄, every

sequence {yn} with yn ∈ Q(xn) has a subsequence converging to some point in Q(x̄). If,
in addition, Q(x̄) = {ȳ} is a singleton, then such a sequence {yn} must converge to ȳ.

(ii) Q is lsc at x̄ if and only if, for any sequence {xn} with xn → x̄ and any point y ∈ Q(x̄),
there is a sequence {yn} with yn ∈ Q(xn) converging to y.

Definition . [, ] Let g be an extended real-valued function on a metric space X
and ε be a real number.

(i) g is upper ε-level closed at x̄ ∈ X if, for any sequence {xn} satisfying

xn → x̄ and g(xn) ≥ ε for all n,

g(x̄) ≥ ε.
(ii) g is strongly upper ε-level closed at x̄ ∈ X if, for any sequences {xn} in X and

{rn} ⊂ [,∞) satisfying

xn → x̄, rn →  and g(xn) + rn ≥ ε for all n,

g(x̄) ≥ ε.

Definition . [, ] Let X be a topological space and f : X → R̄.
(i) f is called upper pseudocontinuous at x ∈ X iff for any point x and sequence {xn} in

X such that

f (x) < f (x) and xn → x,

lim supn→∞ f (xn) < f (x).
(ii) f is called lower pseudocontinuous at x ∈ X iff for any point x and sequence {xn} in

X such that

f (x) < f (x) and xn → x,

f (x) < lim infn→∞ f (xn).
(iii) f is termed pseudocontinuous at x ∈ X iff it is both lower and upper

pseudocontinuous at this point.

Remark . The class of the upper pseudocontinuous functions strictly contains that of
the usc functions; see [].
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Let A, B be two subsets of a metric space X. The Hausdorff distance between A and B is
defined as follows:

H(A, B) = max
{

H∗(A, B), H∗(B, A)
}

,

where H∗(A, B) = supa∈A d(a, B), and d(x, A) = infy∈A d(x, y).

3 Lexicographic vector equilibrium problems with lexicographic equilibrium
constraints (LVQEPLEC)

In this section, we shall establish necessary and/or sufficient conditions for (LVQEPLEC)
to be (uniquely) well-posed at the reference point λ̄ ∈ �. To simplify the presentation, in
the sequel, the results will be formulated for the case n = .

For any positive numbers ε and ξ , as above, S̃f (λ, ε) and S̃F (ξ ) are defined by the solution
sets of (LQEPλ,ε ) and (LVQEPLECξ ), respectively; that is,

S̃f (λ, ε) =
{

x ∈ K(x,λ)|f (x, y,λ) + εe ≥l ,∀y ∈ K(x,λ)
}

and

S̃F (ξ ) =
{

ȳ ∈ gr Sf |F(ȳ, y) + ξe ≥l ,∀y ∈ gr Sf
}

.

For positive ξ and ε, the corresponding approximate solution set of (LVQEPLEC) is
defined by

�(ξ , ε) =

⎧
⎪⎨

⎪⎩

x := (x,λ) ∈ K(x,λ) × � s.t.
F(x, y) + εe ≥l ,∀y ∈ gr Sf ,
f (x, y,λ) + ξe ≥l ,∀y ∈ K(x,λ)

⎫
⎪⎬

⎪⎭
.

The set-valued mapping Zf : X × � → X next defined will play an important role our
analysis

Zf (x,λ) =

{
{z ∈ K(x,λ)|f(x, z,λ) = } if (x,λ) ∈ gr Z,f ;
X otherwise,

where Z,f : � → X denotes the solution mapping of the scalar equilibrium problem de-
termined by the real-valued function f; that is,

Z,f (λ) =
{

x ∈ K(x,λ)|f(x, y,λ) ≥ ,∀y ∈ K(x,λ)
}

.

Then the problem (LQEPλ,ε) can be equivalently stated as follows:

(LQEPλ,ε) find x̄ ∈ K(x̄,λ) such that

{
f(x̄, y,λ) ≥ , ∀y ∈ K(x̄,λ);
f(x̄, z,λ) + ε ≥ , ∀z ∈ Zf (x̄,λ).
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Next, let the set-valued map ZF : X × � → X be defined by

ZF (ȳ) =

{
{y ∈ gr Sf |F(ȳ, y) = } if ȳ ∈ gr Z,F ;
X otherwise,

where Z,F (λ) := {ȳ = (ȳ, λ̄) ∈ gr Sf |F(ȳ, y′) ≥ ,∀y′ ∈ gr Sf }. Then the problem
(LVQEPLECξ ) can be equivalently stated as follows:

(LVQEPLECξ ) find ȳ ∈ gr Sf such that

{
F(ȳ, y) ≥ , ∀y ∈ gr Sf ;
F(ȳ, y′) + ε ≥ , ∀y′ ∈ ZF (ȳ).

Thus, for any positive numbers ξ and ε, �(ξ , ε) is equivalent to

�(ξ , ε) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x := (x,λ) ∈ K(x,λ) × � s.t.
F(x, y) ≥ ,∀y ∈ gr Sf ,
F(x, y′) + ξ ≥ ,∀y′ ∈ ZF (x),
f(x, y,λ) ≥ ,∀y ∈ K(x,λ),
f(x, z,λ) + ε ≥ ,∀z ∈ Zf (x,λ)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Lemma . Let {xn} converging to x̄ ∈ Z,f (λ̄) be an approximating sequence of (LQEPλ̄)
corresponding to a sequence λn → λ̄ and assume that Zf is lsc at (x̄, λ̄) and f is strongly
upper -level closed on {x̄} × Zf (x̄, λ̄) × {λ̄}. Then x̄ ∈ Sf (λ̄).

Proof Suppose to the contrary that x̄ /∈ Sf (λ̄). Then there exists z̄ ∈ Zf (x̄, λ̄) such that
f(x̄, z̄, λ̄) < . For each n, we conclude with the lower semicontinuity of Zf at (x̄, λ̄) and
Lemma .(ii) there exists zn ∈ Zf (xn,λn) such that zn → z̄. Since {xn} is an approximating
sequence of (LQEPλ̄) corresponding to a sequence λn, there is a sequence {εn} ⊂ (,∞)
converging to  such that xn ∈ S̃f (λn, εn) for all n. This implies that

f(xn, zn,λn) + εn ≥  for all n. (.)

This together with the strongly upper -level closedness of f at (x̄, z̄, λ̄) implies that

f(x̄, z̄, λ̄) ≥ .

This yields a contradiction; we have x̄ ∈ Sf (λ̄) = S̃f (λ̄, ). �

Theorem . Assume that X be compact and
(i) in X × �, K is closed and K is lsc;

(ii) Zf is lsc on Z,f (λ̄) × {λ̄};
(iii) f is upper -level closed on K(x̄, λ̄) × K(x̄, λ̄) × {λ̄};
(iv) f is strongly upper -level closed on K(x̄, λ̄) × K(x̄, λ̄) × {λ̄};
(v) F(·, y) is upper -level closed at (x̄, λ̄), for all y ∈ X × �;

(vi) F(·, y) is strongly upper -level closed at (x̄, λ̄), for all y ∈ X × �.
Then (LVQEPLEC) is well-posed at λ̄. Furthermore, if Sf : � → X is single-valued and
(LVQEPLEC) admits a unique solution x̄, then (LVQEPLEC) is uniquely well-posed.
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Proof Step I: We first prove that Z,f is closed at λ̄. Suppose to the contrary that there
are two sequences {λn} and {xn} satisfying λn → λ̄ and xn → x̄ with xn ∈ Z,f (λn) and x̄ /∈
Z,f (λ̄). Since K is closed in X × � and xn ∈ K(xn,λn) for all n, we conclude that x̄ ∈
K(x̄, λ̄). Then there exists ȳ ∈ K(x̄, λ̄) satisfying f(x̄, ȳ, λ̄) < . The lower semicontinuity
of K at (x̄, λ̄) ensures that, for each n, there is yn ∈ K(xn,λn) such that yn → ȳ as n → ∞.
Since xn ∈ Z,f (λn), it follows that

f(xn, yn,λn) ≥ , ∀n.

This together with the upper -level closedness of f implies that

f(x̄, ȳ, λ̄) ≥ ,

which yields a contradiction and, hence, Z,f is closed at λ̄.
Step II: Next, we show that S̃f (·, ·) is usc at (λ̄, ). Indeed, if it were otherwise, then there

is an open set U ⊇ S̃f (λ̄, ) such that for all neighborhood N(λ̄, ) of (λ̄, ),

S̃f
(
N(λ̄, )

)
� U .

In particular, for each {λn} and {εn} satisfying λn → λ̄ and εn → , there exists xn ∈
S̃f (λn, εn) such that xn /∈ U for all n. Since X is compact, we can assume that {xn} converges
to some x̄ /∈ U . By the closedness of Z,f at λ̄, one has x̄ ∈ Z,f (λ̄). Applying Lemma ., we
conclude that

x̄ ∈ Sf (λ̄) = S̃f (λ̄, ),

which gives x̄ ∈ U . This yields a contradiction. Therefore the map S̃f is usc at (λ̄, ).
Step III: We have to prove that S̃f (λ̄, ) is compact by checking its closedness. Take an

arbitrary sequence {xn} in S(λ̄) = S̃f (λ̄, ) converging to x̄. Setting λn := λ̄ for all n, we have
λn → λ̄ and xn ∈ Z,f (λn) for all n. This together with the closedness of Z,f at λ̄ implies
that x̄ ∈ Z,f (λ̄). Note that {xn} is, of course, an approximating sequence of (LQEPλ̄) corre-
sponding to {λn}. Then Lemma . again implies that x̄ ∈ Sf (λ̄) = S̃f (λ̄, ), and hence Sf (λ̄)
is compact; that is, S̃f (λ̄, ) is compact.

Step IV: Finally, we prove that (LVQEPLEC) is well-posed at λ̄. To this end, let {xn} :=
{(xn,λn)}, where λn → λ̄, be any approximating sequence for (LVQEPLEC). Hence, by Def-
inition ., {xn} is an approximating sequence for (LQEP) corresponding to {λn}. Then
there exists a real sequence {εn} ↓  such that

xn ∈ S̃f (λn, εn) for all n ∈N.

Applying Lemma .(i), there exists a subsequence {xnk } of {xn} converging to some x̄ ∈
S̃f (λ̄, ), and hence

xnk := (xnk ,λnk ) → (x̄, λ̄) as k → ∞.

Now we check that x̄ := (x̄, λ̄) is a solution of (LVQEPLEC). Since {xn} is an approximating
sequence, there exists {εn} ↓  such that F(xn, y) ≥  and F(xn, y) +εn ≥  for all y ∈ gr Sf .
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The upper -level closedness of F and the strongly upper -level closedness of F implies
that F(x̄, y) ≥  and F(x̄, y) ≥  for all y ∈ gr Sf , i.e., x̄ is a solution. Thus, (LVQEPLEC) is
well-posed at λ̄.

Furthermore, suppose that Sf : � → X is single-valued and (LVQEPLEC) admits a
unique solution x̄. We have to show that (LVQEPLEC) is uniquely well-posed. Let {xn}
be an approximating sequence for (LVQEPLEC). By the same argument as in the preced-
ing part, there is a subsequence converging to x̄. If {xn} did not converge to x̄, there would
be an open set U containing x̄ such that some subsequence was outside U . By the above
argument, this subsequence has a subsequence convergent to x̄, an impossibility. �

The following examples show that none of the assumptions in Theorem . can be
dropped.

Example . (The compactness of X cannot be dropped) Let X = R, � = [, ], K(x,λ) =
K(x,λ) = [λ, +∞),

f (x, y,λ) =
(
(λx – )xy, 

)

and

F
(
(x,λ), (y,λ)

)
=

(
x+y, 

) ≥l .

It is clear that in X × �, K is closed and K is lsc. One can check that Z,f (λ) = [ 
λ

, +∞).
Thus Zf is lsc. Furthermore, (iii)-(vi) hold as f and F are continuous in X ×X ×� and (X ×
�) × (X × �), respectively. The solution set of (LVQEPLEC) is gr Sf . But Sf () = {} and
Sf (λ) = [ 

λ
,∞) for all λ ∈ (, ], gr Sf = {(, )}∪{([ 

λ
,∞),λ)|λ ∈ (, ]}. Hence, (LVQEPLEC)

is not well-posed. Indeed, let xn = n, λn = 
n for all n ∈ N. We see that xn := (xn,λn) is a

solution of (LVQEPLEC). It is clear that {xn} has no convergent subsequence. The reason
is that X is not compact. We note further that Sf (·) is neither usc nor lsc at , even under
the continuity assumptions of K, K, and f .

Example . (The closedness of K is essential) Let X = [–, ], � = [, ], K(x,λ) =
K(x,λ) = (, ],

f (x, y,λ) = (,λ)

and

F
(
(x,λ), (y,λ)

)
= (, ).

It is not hard to see that X is compact, K is lsc in X ×�. One can check that Z,f (λ) = (, ]
and

Zf (x,λ) =
{

z ∈ (, ]|f(x, z,λ) = 
}

, ∀(x,λ) ∈ gr Z,f

= (, ].
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Thus Zf is lsc, (ii)-(vi) are satisfied (by the continuity of f and F). We see also that the
solution set of (LVQEPLEC) is gr Sf . But Sf (λ) = (, ] for all λ ∈ [, ], i.e., gr Sf = {(x,λ)|x ∈
(, ],λ ∈ [, ]}.

Therefore, (LVQEPLEC) is not well-posed. Indeed, let xn = 
n , λn = 

n for all n ∈N. Then
xn := (xn,λn) is a solution of (LVQEPLEC) and {xn} converges to x := (, ). But x does not
belong to the solution set of (LVQEPLEC).

Example . (The lower semicontinuity of K cannot be dispensed) Let X = � = [, ],

K(x,λ) = K(x,λ) =

{
[, ] if λ �= ;
[, ] if λ = ,

f (x, y,λ) = (x – y,λ)

and

F
(
(x,λ), (y,λ)

)
=

(
λ+λ , 

)
.

One can check that K is closed but K is not lsc at λ̄ =  and

Z,f (λ) =

{
{} if λ �= ;
{} if λ = .

Thus (ii)-(vi) hold. One can check that

Zf (x,λ) = {x}, ∀(x,λ) ∈ gr Z,f .

Moreover, the solution set of (LVQEPLEC) coincides with gr Sf . But

Sf (λ) =

{
{} if λ �= ;
{} if λ = ,

i.e., gr Sf := (, ) ∪ {(,λ)|λ ∈ (, ]}. Hence, (LVQEPLEC) is not well-posed. Indeed, let
xn = , λn = 

n for all n ∈N. We see that xn := (xn,λn) is a solution of (LVQEPLEC) and {xn}
converges to x := (, ). But x does not belong to the solution set of (LVQEPLEC).

Example . (The lower semicontinuity of Zf cannot be dropped) Let X = � = [, ]
(compact), K(x,λ) = [, ] closed, K = [, ] lsc,

f (x, y,λ) =
(
λx(x – y), y – x

)

and

F
(
(x,λ), (x,λ)

)
= (, ).

One can check that

Z,f (λ) =

{
[, ] if λ = ;
{, } if λ �= ,
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and, for each (x,λ) ∈ gr S,f ,

Zf (x,λ) =

{
[, ] if λ =  or x = ;
{} if λ �=  and x �= .

Zf is not lsc at (, ) because by taking {(λn = 
n , xn = )} → (, ), we have Zf (xn,λn) = {}

for all n, while Zf (, ) = [, ]. Assumptions (i), (iii)-(vi) are obviously satisfied. Finally, we
observe that (LVQEPLEC) is not well-posed at λ̄ by calculating the solution mapping S
explicitly as follows:

Sf (λ) =

{
{} if λ = ;
{, } if λ �= ,

i.e., gr Sf := (, )∪{(x,λ)|x = , ,λ ∈ (, ]}. Therefore, (LVQEPLEC) is not well-posed. In-
deed, let xn = , λn = 

n for all n ∈N. We see that xn := (xn,λn) is a solution of (LVQEPLEC)
and {xn} converges to x := (, ). But x does not belong to the solution set of (LVQEPLEC).

Example . (Upper -level closedness of f) Let X = � = [, ] (compact), K(x,λ) =
K(x,λ) = [, ] (continuous and closed), λ̄ = ,

f (x, y,λ) =

{
(x – y,λ) if λ = ;
(y – x,λ) if λ �= 

and

F
(
(x,λ), (x,λ)

)
=

(



, 
)

.

One can check that

S(λ) = Z,f (λ) =

{
{} if λ = ;
{} if λ �= ,

Zf (x,λ) = {x}, ∀(x,λ) ∈ gr S,

i.e., gr Sf := (, )∪{(,λ)|λ ∈ (, ]}. Hence, all the assumptions except (iii) hold true. How-
ever, (LVQEPLEC) is not well-posed at λ̄. Therefore, (LVQEPLEC) is not well-posed. In-
deed, let xn = , λn = 

n for all n ∈N. We see that xn := (xn,λn) is a solution of (LVQEPLEC)
and {xn} converges to x := (, ). But x does not belong to the solution set of (LVQEPLEC).
Finally, we show that assumption (iii) is not satisfied. Indeed, take {xn} and {λn} as
above and {yn = }, we have (xn, yn,λn) → (, , ) and f(xn, yn,λn) =  >  for all n, while
f(, , ) = – < .

Example . (Strong upper -level closedness of f) Let X, �, K, K, λ̄, and F be as in
Example .,

f (x, y,λ) =

{
(, x – y) if λ = ;
(, x(x – y)) if λ �= .
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One can check that

Z,f (λ) = Z(λ, x) = [, ], ∀x,λ ∈ [, ],

Sf (λ) =

{
{} if λ = ;
{, } if λ �= ,

i.e., gr Sf := (, ) ∪ {(x,λ)|x = , ,λ ∈ (, ]}. We can conclude that all the assumptions of
Theorem . except (iv) are satisfied. Therefore, (LVQEPLEC) is not well-posed. Indeed,
let xn = , λn = 

n for all n ∈ N. We see that xn := (xn,λn) is a solution of (LVQEPLEC) and
xn converges to x := (, ). But x does not belong to the solution set of (LVQEPLEC).
Finally, we show that assumption (iv) is not satisfied. Indeed, take sequences xn = ,
yn = , λn = 

n and εn = 
n , we have {(xn, yn,λn, εn)} and f(xn, yn,λn) + εn >  for all n, while

f(, , ) = – < .

Example . (Upper -level closedness of F) Let X = � = [, ], K(x,λ) = [, ] closed,
K(x,λ) = [, ] lsc,

f (x, y,λ) = (,λ)

and

F
(
(x,λ), (y,λ)

)
=

{
(x – y, ) if λ = ;
(y – x, ) otherwise.

Then assumptions (i)-(vi) and (vi) are satisfied. We have gr Sf := [, ], λ ∈ [, ]. The solu-
tion set of (LVQEPLEC) is (, ) ∪ {(x,λ)|x = , ,λ ∈ (, ]}. We can conclude that all the
assumptions of Theorem . except (v) are satisfied. Therefore, (LVQEPLEC) is not well-
posed. Indeed, let xn = , λn = 

n for all n ∈ N. We see that xn := (xn,λn) is a solution of
(LVQEPLEC) and xn converges to x := (, ). But x does not belong to the solution set of
(LVQEPLEC).

Example . (Strong upper -level closedness of F) Let X, �, K, K, λ̄, and f be as in
Example . and

F
(
(x,λ), (y,λ)

)
=

{
(, x – y) if λ = ;
(, x(x – y)) otherwise.

One can check that

Z,f (λ) = Zf (x,λ) = Sf (λ) = [, ], ∀x,λ ∈ [, ]

i.e., gr Sf := {(x,λ)|x ∈ [, ],λ ∈ [, ]}. The solution set of (LVQEPLEC) is (, )∪{(x,λ)|x =
, ,λ ∈ (, ]}. We can conclude that all the assumptions of Theorem . except (vi) are
satisfied. Therefore, (LVQEPLEC) is not well-posed. Indeed, let xn = , λn = 

n for all n ∈N.
We see that xn := (xn,λn) is a solution of (LVQEPLEC) and xn converges to x := (, ). But
x does not belong to the solution set of (LVQEPLEC).

Theorem . Let X and � be two metric spaces. Then:
(i) If (LVQEPLEC) is uniquely well-posed at λ̄, then diam�(ξ , ε) ↓  as (ξ , ε) ↓ (, ).
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(ii) Conversely, suppose that X and � are complete, assumptions (i)-(vi) in Theorem .
hold and diam�(ξ , ε) ↓  as ξ ↓  and ε ↓ . Then (LVQEPLEC) is uniquely
well-posed at λ̄.

Proof () Suppose that (LVQEPLEC) be uniquely well-posed at λ̄. Then (LVQEPLEC) has
a unique solution x̄ := (x̄, λ̄) for some x̄ ∈ X. Assume to the contrary that diam�(ξn, εn)
does not converge to  as n → ∞. This lead to the existence of a number r >  such that
for any k ∈N, there exists nk ≥ k with

diam�(ξnk , εnk ) > r.

This implies that, for each k, there exist (x
nk

,λ
nk

), (x
nk

,λ
nk

) ∈ �(ξnk , εnk ) such that

d
((

x
nk

,λ
nk

)
,
(
x

nk
,λ

nk

))
>

r


. (.)

Since {(x
nk

,λ
nk

)} and {(x
nk

,λ
nk

)} are approximating sequences for (LVQEPLEC), it follows
from (.) that  = d(x̄, x̄) > r/. Then we arrive at a contradiction.

() Let {xn} := {(xn,λn)} be an approximating sequence of (LVQEPLEC) with λn → λ̄ as
n → ∞. Then there exists ξn ↓  such that

F(xn, y) + ξne ≥l  for all y := (y,λ) ∈ S(λ) × �. (.)

Furthermore, there is a sequence εn ↓  such that

xn ∈ S̃f (λn, εn) for all n ∈N.

Hence we have xn ∈ �(ξn, εn) for all n. By choosing subsequences if necessary, we can
assume that both sequences {ξn} and {εn} are nonincreasing. Thus,

�(ξn, εn) ⊇ �(ξm, εm) whenever n ≤ m.

From this observation and diam�(ξn, εn) ↓  as n → ∞, one can directly check that {xn}
is a Cauchy sequence in X × �. The completeness of X × � implies that xn → x̄ := (x̄, λ̄)
as n → ∞. By (.), we have

F(xn, y) ≥  and F(xn, y) + εn ≥ 

for all y := (y,λ) ∈ gr Sf . This together with the upper -level closedness of F and the
strongly upper -level closedness of F implies that

F(x̄, y) ≥  and F(x̄, y) ≥  for all y ∈ gr Sf ,

i.e., x̄ is a solution of (LVQEPLEC). Finally, we show that x̄ := (x̄, λ̄) is the only solution
to (LVQEPLEC). Suppose to the contrary that x′ is another solution to (LVQEPLEC), i.e.,
x′ �= x̄. It is clear that they both belong to �(ξ , ε) for any ξ , ε > . Then it follows that

 < d
(
x̄, x̄′) ≤ diam�(ξ , ε) ↓  as ξ ↓  and ε ↓ ,

which gives a contradiction. Thus, (LVQEPLEC) is uniquely well-posed at λ̄. �
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To weaken the assumption of unique well-posedness in Theorem ., we are going to
use the notions of measures of noncompactness in a metric space X. We recall that a subset
A of a metric space X is ε-discrete iff d(x, y) ≥ ε for all x, y ∈ A with x �= y.

Definition . Let M be a nonempty subset of a metric space X.
(i) The Kuratowski measure of M is

μ(M) = inf

{

ε > 
∣∣∣M ⊆

n⋃

k=

Mk and diam Mk ≤ ε, k = , . . . , n,∃n ∈ N

}

.

(ii) The Hausdorff measure of M is

η(M) = inf

{

ε > 
∣∣∣M ⊆

n⋃

k=

B(xk , ε), xk ∈ X for some n ∈N

}

.

(iii) The Istrǎtescu measure of M is

ι(M) = inf{ε > |M have no infinite ε-discrete subset}.

Daneš [] obtained the following inequalities:

η(M) ≤ ι(M) ≤ μ(M) ≤ η(M). (.)

The measures μ, η, and ι share many properties and we will use γ in the sequel to de-
note either one of them. γ is a regular measure (see [, ]), i.e., it enjoys the following
properties:

(i) γ (M) = +∞ if and only if the set M is unbounded;
(ii) γ (M) = γ (cl M);

(iii) from γ (M) =  it follows that M is a totally bounded set;
(iv) if X is a complete space and if {An} is a sequence of closed subsets of X such that

An+ ⊆ An for each n ∈N and limn→+∞ γ (An) = , then K :=
⋂

n∈N An is a nonempty
compact set and

lim
n→+∞ H(An, K) = ,

where H is the Hausdorff metric;
(v) from M ⊆ N it follows that γ (M) ≤ γ (N).

In terms of a measure γ ∈ {μ,η, ι} of noncompactness we have the following result.

Theorem . Let X and � be metric spaces.
(i) If (LVQEPLEC) is well-posed at λ̄, then γ (�(ξ , ε)) ↓  as ξ ↓  and ε ↓ .

(ii) Conversely, suppose that γ (�(ξ , ε)) ↓  as ξ ↓  and ε ↓ , and the following
conditions hold:
(a) X and � are complete;
(b) K is closed and K is lsc at (x̄, λ̄);
(c) Zf is lsc on (X × �) ∩ gr Z,f ;
(d) f is upper -level closed on K(x̄, λ̄) × K(x̄, λ̄) × {λ̄};
(e) f is upper a-level closed on K(x̄, λ̄) × K(x̄, λ̄) × {λ̄} and a < ;
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(f ) F(·, y) is upper -level closed at (x̄, λ̄), for all y ∈ X × �;
(g) F(·, y) is upper b-level closed at (x̄, λ̄), for all y ∈ X × � and b < .

Then (LVQEPLEC) is well-posed at λ̄.

Proof By (.) the proof is similar for the three mentioned measures of noncompactness.
We discuss only the case γ = μ, the Kuratowski measure.

() Suppose that (LVQEPLEC) be well-posed. For each ξ >  and ε > , the solution set
S of (LVQEPLEC) clearly satisfies the relation S ⊆ �(ξ , ε). Hence,

H
(
�(ξ , ε), S

)
= H∗(�(ξ , ε), S

)
.

Let {xn} := {(xn,λn)} be arbitrary sequence in S. Then, of course, {xn} is an approximating
sequence of (LVQEPLEC). Thus, it has a subsequence converging to a point in S. There-
fore, S is compact, and hence μ(S) = . Now for any δ > , there are Mδ

 , Mδ
, . . . , Mδ

n for
some n ∈N such that

S ⊆
n⋃

k=

Mδ
k and diam Mδ

k ≤ δ for all k = , . . . , n.

Next, for each k = , . . . , n, define the set

N δ
k =

{
y ∈ Y := X × �|d(

y, Mδ
k
) ≤ H

(
�(ξ , ε), S

)}
.

Now, we show that �(ξ , ε) ⊆ ⋃n
k= N δ

k . Let x ∈ �(ξ , ε). Due to S ⊆ ⋃n
k= Mδ

k , one has

d

(

x,
n⋃

k=

Mδ
k

)

≤ d(y, S) ≤ H
(
�(ξ , ε), S

)
.

Then there is k̄ ∈ {, , . . . , n} such that

d
(
x, Mδ

k̄

) ≤ H
(
�(ξ , ε), S

)
,

which gives x ∈ N δ

k̄ . Therefore, we obtain the claim

�(ξ , ε) ⊆
n⋃

k=

N δ
k .

Furthermore, we see that diam N δ
k ≤ δ + H(�(ξ , ε), S). Indeed, for any y, y′ ∈ N δ

k , m, m′ ∈
Mδ

k ,

d
(
y, y′) ≤ d(y, m) + d

(
m, m′) + d

(
m′, y′),

which gives

d
(
y, y′) ≤ inf

m∈Mδ
k

d(y, m) + inf
m,m′∈Mδ

k

d
(
m, m′) + inf

m′∈Mδ
k

d
(
m′, y′)

= d
(
y, Mδ

k
)

+ inf
m,m′∈Mδ

k

d
(
m, m′) + d

(
y′, Mδ

k
) ≤ δ + H

(
�(ξ , ε), S

)
,
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and we arrive at diam N δ
k ≤ δ + H(�(ξ , ε), S). The definition of μ implies that

μ
(
�(ξ , ε)

) ≤ H
(
�(ξ , ε), S

)
+ δ for all δ > .

Therefore, we can conclude that

μ
(
�(ξ , ε)

) ≤ H
(
�(ξ , ε), S

)
.

To check that H(�(ξ , ε), S) ↓  as (ξ , ε) ↓ (, ) by contradiction, assume the existence of
ρ > , (ξn, εn) ↓ (, ), and xn ∈ �(ξn, εn) such that d(xn, S) ≥ ρ for all n ∈ N. Since {xn} is
an approximating sequence, one has a subsequence convergent to some point of S, which
is impossible. Hence μ(�(ξ , ε)) ↓  as ξ ↓  and ε ↓ .

() Assume that μ(�(ξ , ε)) ↓  as ξ ↓  and ε ↓ . We claim that �(ξ , ε) is closed for
all ξ , ε > . Let the sequence {xn} := {(xn,λn)} in �(ξ , ε) with xn → x := (x,λ). Then, for all
y ∈ gr Sf , y′ ∈ ZF (xn), yn ∈ K(xn,λn), and all zn ∈ Zf (xn,λn), we have

F(xn, y) ≥  and F
(
xn, y′) + ξ ≥ 

and

f(xn, yn,λn) ≥ , f(xn, zn,λn) + ε ≥  for all n ∈N.

As K is closed at (x,λ), one has x ∈ K(x,λ). By the upper -level closedness of F and
upper-ξ -level closedness of F, one obtains

F(x, y) ≥  and F
(
x, y′) + ξ ≥ , ∀y ∈ gr Sf , y′ ∈ ZF (x).

Next, we show by a contrapositive argument that

f(x, y,λ) ≥  and f(x, z,λ) + ε ≥ , ∀y ∈ K(x,λ), z ∈ Zf (x,λ).

Suppose that there exist y ∈ K(x,λ) and z ∈ Zf (x,λ) such that

f(x, y,λ) <  or f(x, z,λ) + ε < .

Since K is lsc at (x,λ) and Zf is lsc at (x,λ), there are two sequences {yn} and {zn} such
that yn ∈ K(xn,λn) and zn ∈ Zf (xn,λn) and

yn → y and zn → z as n → ∞.

By (d) and (e), there is n ∈N such that

f(xn, yn,λn) <  or f(xn, zn,λn) < –ε for all n ≥ n,

which leads to a contradiction. As a result, x ∈ �(ξ , ε) and this set is closed. Next, we
observe further that

S =
⋂

ξ>,ε>

�(ξ , ε) and μ
(
�(ξ , ε)

) ↓  as (ξ , ε) ↓ (, ).
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The properties of μ implies that S is compact and H(�(ξ , ε), S) ↓  as (ξ , ε) ↓ (, ). Let
{xn} := {(xn,λn)} be an approximating sequence. There is (ξn, εn) ↓ (, ) such that, for all
y ∈ gr Sf , y′ ∈ ZF (xn), yn ∈ K(xn,λn), and all zn ∈ Zf (xnλn),

F(xn, y) ≥ , F
(
xn, y′) + ξn ≥ ,

f(xn, yn,λn) ≥ , f(xn, zn,λn) + εn ≥ .

Therefore (xn,λn) ∈ �(ξn, εn). Consequently,

d(xn, S) ≤ H
(
�(ξn, εn), S

) ↓ .

By the compactness of S, there is a subsequence of {xn} converging to a point of S. Hence
(LVQEPLEC) is well-posed. This completes the proof. �

The following examples show that all assumptions of Theorem .(ii) are essential.

Example . (The closedness of K is essential) Let X, �, K, K, f , and F be as in Ex-
ample .. It is easy to check that Zf is lsc and X is complete and K is lsc in X × �.
Assumptions (ii)(c)-(ii)(f ) are fulfilled since f and F are continuous in X × X × � and
(X × �) × (X,�), respectively. Moreover, �(ξ , ε) ⊆ [–, ] × [, ], and hence γ (�(ξ , ε)) ≤
γ ([–, ] × [, ]) = . It is easy to see that the solution set of (LVQEPLEC) coincides with
gr Sf . But Sf (λ) = (, ] for all λ ∈ [, ], i.e., gr Sf = {(x,λ)|x ∈ (, ],λ ∈ [, ]}. With the
same arguments as in Example ., (LVQEPLEC) is not well-posed. The reason is that K

is not closed at (, ).

Example . Let X, �, K, K, f , and F be as in Example .. Then X is complete,
K is closed in X × �, and (ii)(b) and (ii)(f ) hold. �(ξ , ε) ⊆ [, ] × [, ], and hence
γ (�(ξ , ε)) = . Furthermore, the solution set of (LVQEPLEC) is gr Sf . But

Sf (λ) =

{
{} if λ �= ;
{} if λ = ,

i.e., gr Sf := (, ) ∪ {(,λ)|λ ∈ (, ]}. Thus, (LVQEPLEC) is not well-posed. The reason is
that K is not lsc in X × �.

Example . (The lower semicontinuity of Zf cannot be dropped) Let X, �, K, K, f ,
and F be as in Example .. One can check that

Z,f (λ) =

{
[, ] if λ = ;
{, } if λ �= ,

and, for each (x,λ) ∈ gr S,f ,

Zf (x,λ) =

{
[, ] if λ =  or x = ;
{} if λ �=  and x �= .
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Zf is not lsc at (, ) because by taking (λn = 
n , xn = ) → (, ), we have Zf (xn,λn) = {} for

all n, while Zf (, ) = [, ]. Assumptions (i), (iii)-(iv) are obviously satisfied. Furthermore,
�(ξ , ε) ⊆ [, ] × [, ], and hence γ (�(ξ , ε)) = . Finally, we observe that (LVQEPLEC) is
not well-posed at λ̄ by calculating the solution mapping Sf explicitly as follows:

Sf (λ) =

{
{} if λ = ;
{, } if λ �= ,

i.e., gr Sf := (, ) ∪ {(x,λ)|x = , ,λ ∈ (, ]}. Therefore, (LVQEPLEC) is not well-posed.
Indeed, let xn = , λn = 

n . We see that xn = (xn,λn) is a solution of (LVQEPLEC) and {xn}
converges to x = (, ). But x does not belong to the solution set of (LVQEPLEC).

Example . (Upper -level closedness of f) Let X, �, K, K, f , and F be as in Exam-
ple .. One can check that

Sf (λ) = Z,f (λ) =

{
{} if λ = ;
{} if λ �= ,

Zf (x,λ) = {x}, ∀(λ, x) ∈ gr S,f ,

i.e., gr Sf := (, )∪{(,λ)|λ ∈ (, ]} Hence, all the assumptions except (iii) hold true. More-
over, �(ξ , ε) ⊆ [, ] × [, ], and hence γ (�(ξ , ε)) = . However, (LVQEPLEC) is not well-
posed at λ̄. Therefore, (LVQEPLEC) is not well-posed. Indeed, let xn = , λn = 

n . We see
that xn = (xn,λn) is a solution of (LVQEPLEC) and {xn} converges to x = (, ). But x does
not belong to the solution set of (LVQEPLEC).

Finally, we show that assumption (iii) is not satisfied. Indeed, take {xn} and {λn} as above
and yn = , we have (xn, yn,λn) → (, , ) and f(xn, yn,λn) =  >  for all n, while f(, , ) =
– < .

Example . (Strong upper -level closedness of f) Let X, �, K, K, f , and F be as in
Example .. One can check that

Z,f (λ) = Z(λ, x) = [, ], ∀x,λ ∈ [, ],

Sf (λ) =

{
{} if λ = ;
{, } if λ �= ,

i.e., gr Sf := (, ) ∪ {(x,λ)|x = , ,λ ∈ (, ]}. We can conclude that all the assumptions
of Theorem . except (iv) are satisfied. In addition, �(ξ , ε) ⊆ [, ] × [, ], and hence
γ (�(ξ , ε)) = . Therefore, (LVQEPLEC) is not well-posed. Indeed, let xn = , λn = 

n . We
see that xn = (xn,λn) is a solution of (LVQEPLEC) and xn converges to x = (, ). But x
does not belong to the solution set of (LVQEPLEC).

Finally, we show that assumption (iv) is not satisfied. Indeed, take sequences xn = ,
yn = , λn = 

n , and εn = 
n , we have {(xn, yn,λn, εn)} and f(xn, yn,λn) + εn >  for all n, while

f(, , ) = – < .

Example . (Upper -level closedness of F) Let X, �, K, K, f , and F be as in Exam-
ple .. Then assumptions (i)-(vi) and (vi) are satisfied. Moreover, �(ξ , ε) ⊆ [, ] × [, ],
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and hence γ (�(ξ , ε)) = . We have gr Sf := [, ], λ ∈ [, ]. The solution set of (LVQEPLEC)
is (, ) ∪ {(x,λ)|x = , ,λ ∈ (, ]}. We can conclude that all the assumptions of Theo-
rem . except (vii) are satisfied. Therefore, (LVQEPLEC) is not well-posed. Indeed, let
xn = , λn = 

n . We see that xn = (xn,λn) is a solution of (LVQEPLEC) and xn converges to
x = (, ). But x does not belong to the solution set of (LVQEPLEC).

Example . (Strong upper -level closedness of F) Let X, �, K, K, f , and F be as in
Example .. One can check that

Z,f (λ) = Zf (x,λ) = Sf (λ) = [, ], ∀x,λ ∈ [, ],

i.e., gr Sf := {(x,λ)|x ∈ [, ],λ ∈ [, ]}. The solution set of (LVQEPLEC) is (, )∪{(x,λ)|x =
, ,λ ∈ (, ]}. We can conclude that all the assumptions of Theorem . except (vii)
are satisfied. By the way, �(ξ , ε) ⊆ [, ] × [, ], and hence γ (�(ξ , ε)) = . Therefore,
(LVQEPLEC) is not well-posed. Indeed, let xn = , λn = 

n . We see that xn = (xn,λn) is a
solution of (LVQEPLEC) and xn converges to x = (, ). But x does not belong to the so-
lution set of (LVQEPLEC).

4 Optimization problem with lexicographic equilibrium constraints (OPLEC)
We prove first a sufficient condition for the well-posedness in topological settings.

Theorem . Assume that X is compact and
(i) in X × �, K is closed and K is lsc;

(ii) Zf is lsc on Z,f (λ̄) × {λ̄};
(iii) f is upper -level closed on K(x̄, λ̄) × K(x̄, λ̄) × {λ̄};
(iv) f is strongly upper -level closed at K(x̄, λ̄) × K(x̄, λ̄) × {λ};
(v) g is lower pseudocontinuous in (x, λ̄).

Then (OPLEC) is well-posed at λ̄. Furthermore, if Sf (λ) is a singleton, for all λ ∈ �, and
(OPLEC) possesses a unique solution, then this problem is uniquely well-posed at λ̄.

Proof Let the function F =: (F, F) : Y × Y →R
 be given by

F
(
(x,λ), (y,λ)

)
=

(
g(y,λ) – g(x,λ), 

)
;

that is, for all (x,λ), (y,λ) ∈ Y := X × �,

F
(
(x,λ), (y,λ)

)
= g(y,λ) – g(x,λ) and F

(
(x,λ), (y,λ)

)
= .

Hence, we have F(·, y) is strongly upper -level closed on X × �, for all y ∈ X × �. To
apply Theorem ., we need to check only that F(·, y) is upper -level closed on X ×� for
all y ∈ X ×�. For each fixed point y := (y,λ) ∈ X ×�, let {xn} := {(xn,λn)} be any sequence
in X × � converging to x := (x, λ̄) and F(xn, y) ≥ ; that is, we obtain

g(y,λ) – g(xn,λn) ≥  for all n ∈ N. (.)

We will show that F(x, y) ≥ ; that is, we have to prove that g(y,λ) ≥ g(x, λ̄). Suppose, on
the contrary, that g(y,λ) < g(x, λ̄). y ∈ X × �. The lower pseudocontinuity of g at (x, λ̄)
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implies that

g(y,λ) < lim inf
n→∞ g(xn,λn).

Thus there are t ∈R and n ∈N such that, for all n ≥ n,

g(y,λ) – g(xn,λn) ≤ g(y,λ) – t < ,

which gives a contradiction with (.). Applying Theorem ., we have (LVQEPLEC) gen-
erated by the function F is well-posed at λ̄. Consequently, (OPLEC) is well-posed at λ̄. The
assertion on unique well-posedness is easy to demonstrate. This completes the proof. �

For ξ , ε > , the approximate solution set of (OPLEC) is defined by

M(ξ , ε) =

⎧
⎪⎨

⎪⎩

(x,λ) ∈ K(x,λ) × � s.t.
g(x,λ) ≤ infλ̂∈�,y∈Sf (λ̂) g(y, λ̂) + ε,
f (x, y,λ) + ξe ≥l ,∀y ∈ K(x,λ)

⎫
⎪⎬

⎪⎭
,

where e = (, ) ∈R
.

Theorem . Let X and � be two metric spaces. Then the following assertions hold:
(i) If (OPLEC) is uniquely well-posed, then diam M(ξ , ε) ↓  as (ξ , ε) ↓ (, ).

(ii) Conversely, assume that diam M(ξ , ε) ↓  as (ξ , ε) ↓ (, ), and that the following
conditions hold:
(a) X and � are complete;
(b) K is closed and K is lsc at (x̄, λ̄);
(c) Zf is lsc on Z,f (λ̄) × λ̄;
(d) f is upper -level closed at K(x̄, λ̄) × K(x̄, λ̄) × {λ̄};
(e) f is strongly upper -level closed on K(x̄, λ̄) × K(x̄, λ̄) × {λ̄};
(f ) g be lower pseudocontinuous at (x̄, λ̄).

Then (OPLEC) is uniquely well-posed at λ̄.

Proof () Suppose that (OPLEC) is uniquely well-posed. Assume, on the contrary, that
there are a sequence (ξn, εn) ↓ , n ∈N, and r >  such that

diam M(ξn, εn) > r, ∀n ≥ n.

Then, for each n ≥ n, there exist (x
n,λ

n) and (x
n,λ

n) in M(ξn, εn) such that

d
((

x
n,λ

n
)
,
(
x

n,λ
n
))

>
r


.

Since {(x
n,λ

n)} and {(x
n,λ

n)} are approximating sequences for (OPLEC), they have to con-
verge to the same unique solution and hence we arrive at a contradiction.

() Let {xn} := {(xn,λn)} be any approximating sequence for (OPLEC). Then there is a
sequence (ξn, εn) ↓ (, ), as n → ∞, such that, for all n ∈N,

g(xn,λn) ≤ g(y, λ̂) + εn for all (y, λ̂) ∈ Sf (λ̂) × �,
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f(xn, y,λn) ≥ , ∀y ∈ K(xn,λn)

and

f(xn, z,λn) + ξn ≥ , ∀z ∈ Zf (xn,λn).

Consequently, we can obtain, for all n ∈N,

g(xn,λn) ≤ inf
λ̂∈�,y∈Sf (λ̂)

g(y, λ̂) + εn.

This means that xn := (xn,λn) ∈ M(ξn, εn), and hence {xn} is a Cauchy sequence X × �.
The completeness of X × � implies that {xn} converges to a point x̄ := (x̄, λ̄). Since K

is closed at (x̄, λ̄) and xn ∈ K(xn,λn), one has x̄ ∈ K(x̄, λ̄). Using the same argument as
for Theorem ., one sees that x̄ solves (OPLEC). Next, we will show that (OPLEC) has
a unique solution. If (OPLEC) has two distinct solutions (x̄, λ̄) and (x̄, λ̄), they must
belong to M(ξ , ε) for all ξ , ε > . This yields the contradiction that

 < d
(
(x̄, λ̄), (x̄, λ̄)

) ≤ diam M(ξ , ε).

This completes the proof. �

For the well-posedness of (OPLEC) in terms of measures of noncompactness we have
the following result. Let us consider only the case of the Hausdorff measure η; we get the
corresponding results for the case μ and ι.

Theorem .
(i) If (OPLEC) is well-posed at λ̄, then η(M(ξ , ε)) ↓  as (ξ , ε) ↓ (, ).

(ii) Conversely, suppose that η(M(ξ , ε)) ↓  as (ξ , ε) ↓ (, ), and the following conditions
hold:
(a) X and � are complete;
(b) K is closed and K is lsc on X × �;
(c) Zf is lsc on Z,f (λ̄) × λ̄;
(d) f is upper b-upper level closed in K(X,�) × K(X,�) × �, for all b < ;
(e) f is strongly upper b-upper level closed in K(X,�) × K(X,�) × �, for all b < ;
(f ) g is lsc in X × �.

Then (OPLEC) is well-posed at λ̄.

Proof () Suppose that (OPLEC) is well-posed at λ̄. For all ξ , ε > , the solution set Sg(λ̄)
of (OPLEC) satisfies obviously the containment Sg(λ̄) ⊆ M(ξ , ε). Consequently, we have

H
(
M(ξ , ε), Sg(λ̄)

)
= H∗(M(ξ , ε), Sg(λ̄)

)
.

Any sequence {xn} in Sg(λ̄) is an approximating sequence of (OPLEC) and has a sub-
sequence convergent to some point of Sg(λ̄). So, Sg(λ̄) is compact. Thus, there exist
y, y, . . . , yn ∈ Y := X × � such that

Sg(λ̄) ⊆
n⋃

k=

B(yk , ε). (.)
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Next, we claim that

M(ξ , ε) ⊆
n⋃

k=

B
(
yk , ε + H

(
M(ξ , ε), Sg(λ̄)

))
. (.)

Let y ∈ M(ξ , ε) and suppose that y /∈ ⋃n
k= B(yk , ε + H(M(ξ , ε), Sg(λ̄))). This implies that

y /∈ B
(
yk , ε + H

(
M(ξ , ε), Sg(λ̄)

))
, ∀k = , , . . . , n,

which gives

d(y, yk) ≥ ε + H
(
M(ξ , ε), Sg(λ̄)

) ≥ ε + inf
b∈Sg (λ̄)

d(y, b), ∀k = , , . . . , n.

Since Sg(λ̄) is compact, there is b ∈ Sg(λ̄) such that

d(b, yk) ≥ –d(y, b) + d(y, yk) ≥ ε, ∀k = , , . . . , n,

which leads to a contradiction with (.), and hence (.) holds. Consequently, we have

η
(
M(ξ , ε)

) ≤ H
(
M(ξ , ε), Sg(λ̄)

)
+ η

(
Sg(λ̄)

)
= H

(
M(ξ , ε), Sg(λ̄)

)
.

Hence, we obtain H(M(ξ , ε), Sg(λ̄)) ↓  as (ξ , ε) ↓ (, ). Indeed, suppose that there exist a
real number ρ > , a sequence (ξn, εn) ↓ (, ) and xn ∈ M(ξn, εn) such that

d
(
xn, Sg(λ̄)

) ≥ ρ for all n ∈N.

Being an approximating sequence for (OPLEC), {xn} has a subsequence convergent to
some point of Sg(λ̄), by which one arrives at a contradiction with ρ > . We conclude that
η(M(ξ , ε)) ↓  as (ξ , ε) ↓ (, ).

() Assume that η(M(ξ , ε)) ↓  as (ξ , ε) ↓ (, ). We first check that M(ξ , ε) is closed for
all ξ , ε > . Let mn := (mn,λ′

n) ∈ M(ξ , ε) with mn → m := (m,λ′). Hence,

g
(
mn,λ′

n
) ≤ inf

λ̂∈�,y∈Sf (λ̂)
g(y, λ̂) + ε,

f
(
mn, z,λ′

n
) ≥ , f

(
mn, y,λ′

n
)

+ ξ ≥ , ∀z ∈ K
(
mn,λ′

n
)
, y ∈ Zf

(
mn,λ′

n
)
.

(.)

Since K is closed at (m,λ′), m ∈ K(m,λ′). By the semicontinuity of g at (m,λ′), we have

g
(
m,λ′) ≤ lim inf

n→∞ g
(
mn,λ′

n
) ≤ inf

λ̂∈�,y∈Sf (λ̂)
g(m, λ̂) + ε.

Furthermore, we claim that

f
(
m, z,λ′) ≥ , f

(
m, y,λ′) + ξ ≥  for all z ∈ K

(
m,λ′), y ∈ Zf

(
m,λ′).

Indeed, if there exist z ∈ K(m,λ′) and y ∈ Zf (m,λ′) such that

f
(
m, z,λ′) < , f

(
m, y,λ′) + ξ < ,
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then there is zn ∈ K(mn,λ′
n), yn ∈ Zf (mn,λ′

n) such that

zn → z and yn → y

as K is lsc at (m,λ′). By (c) and (d), there is n ∈N such that

f
(
mn, zn,λ′

n
)

< , f
(
mn, yn,λ′

n
)

< –ξ

for all n ≥ n, which is a contradiction. Hence, M(ξ , ε) is closed. Note further that Sg(λ̄) =
⋂

ξ>,ε> M(ξ , ε) and η(M(ξ , ε)) ↓  as (ξ , ε) ↓ (, ). Therefore, by the earlier-mentioned
properties of η, Sg(λ̄) is compact and H(M(ξ , ε), Sg(λ̄)) ↓  as (ξ , ε) ↓ (, ).

Finally, we prove that (OPLEC) is well-posed at λ̄. Let {xn} := {(xn,λn)} be an approxi-
mating sequence, i.e., there exists (ξn, εn) ↓ (, ) such that

g(xn,λn) ≤ inf
λ̂∈�,y∈Sf (λ̂)

g(y, λ̂) + εn,

f(xn, z,λn) ≥ , f(xn, y,λn) + ξn ≥ , ∀y ∈ K(xn,λn).

Consequently, (xn,λn) ∈ M(ξn, εn). So,

d
(
xn, Sg(λ̄)

) ≤ H
(
M(ξn, εn), Sg(λ̄)

) ↓ .

By the compactness of Sg(λ̄), there is a subsequence of {xn} convergent to some point of
Sg(λ̄). Thus, (OPLEC) is well-posed. �

5 Conclusions
In this paper, we obtain the well-posedness for lexicographic vector equilibrium problems
and optimization problems with lexicographic equilibrium constraints in metric spaces.
Sufficient conditions for a family of such problems to be (uniquely) well-posed at the ref-
erence point are established. Numerous examples are provided to explain that all the as-
sumptions we impose are very relaxed and cannot be dropped. The results presented in
this paper extend and improve some known results.
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