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Abstract

We study the nonlinear matrix equations X + Y ', A*X™A; =/ and

X — ZQ AFXMA; = I, where n; are positive integers fori=1,2,...,m. The iterative
algorithms for obtaining positive definite solutions for these equations are proposed.
The necessary and sufficient conditions for the existence of positive definite solutions
of these equations are derived. Moreover, the rate of convergence of the sequences
generated from the algorithms is studied. The efficiency of proposed algorithms is
illustrated by numerical examples.
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1 Introduction
Consider the nonlinear matrix equations:

m
X+ Y AXTMA; =1 (1.1)
i=1
and
m
X-) AXTA =1, (1.2)
i=1

where X is an unknown square matrix, / is the identity matrix, A; are square complex
matrices and #; are positive integers for i =1,2,...,m.

Nonlinear matrix equations of type (1.1) and (1.2) have many applications in engineer-
ing, control theory, dynamic programming, stochastic filtering, ladder networks, statis-
tics, etc.; see [1-4] and the references therein. When m =1 and #; = 1, (1.2) arises in the
analysis of stationary Gaussian reciprocal processes over a finite interval [3]. When m > 1
and n; =1fori=1,2,...,m, (1.1) arises in solving a large-scale system of linear equations
in many physical calculations [5] and (1.2) is recognized as playing an important role in
modeling certain optimal interpolation problems [6, 7].

In the last few years, many authors have been greatly interested in developing the theory
and numerical approaches for positive definite solutions to the nonlinear matrix equations
of the form (1.1) and (1.2). Similar types of (1.1) and (1.2) have been investigated [8—12]. The
matrix equations X + A*X 1A = Q have been studied by several authors [1-4, 13, 14] and
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different iterative algorithms for computing the positive definite solutions with linear and
quadratic rate of convergence are proposed. Ivanov et al. [15] derived sufficient conditions
for the existence of positive definite solutions for the matrix equations X + A*X 24 = I and
they proposed iterative algorithms for obtaining positive definite solutions of these equa-
tions. El-Sayed [16] presented two iterative methods for calculating the positive definite
solutions of the matrix equation X — A*X ™A = Q, for the integer n > 1, the first method is
derived for a normal matrix A and for the second method a sufficient condition for con-
vergence is given for n = 2X. El-Sayed and Ran [17] studied the general matrix equation
X + A*F(X)A = Q where F maps positive definite matrices either into positive definite ma-
trices or into negative definite matrices and satisfies some monotonicity property. Hasanov
and Ivanov [18] considered the matrix equations X + A*X"A = Q, they studied the solu-
tions and perturbation analysis of these solutions. They also derived a sufficient condition
for the existence of a unique positive definite solution of the equation X — A*X ™A = Q.
Hasanov [19] established and proved theorems for the necessary and sufficient conditions
of the existence of positive definite solutions for the matrix equations X £ A*X 74 = Q
with 0 < g <1, he showed that the equation X — A*X~7A = Q has a unique positive definite
solution by using the properties of matrix sequence in Banach space. Also, in [5] some con-
ditions for the existence of positive definite solution of the equation X + Y ") A*X'A; =1
have been obtained and two iterative algorithms to find the maximal positive definite solu-
tion of this equation have been presented. Duan et al. [20] gave two perturbation estimates
for the positive definite solution of the equation X — ZZIAj‘X‘SiAi =Qwith 0 < |§;] < 1.
Duan et al. [6] studied the equation X — )" N*X'N; = I, they used the Thompson met-
ric to prove that the matrix equation always has a unique positive definite solution and
they derived a precise perturbation bound for the unique positive definite solution. In ad-
dition, other nonlinear matrix equations such as X* +ATX A =1, [21], AX>+BX+C=0
[22],and X = Q + A" (I ® X — C)°A* [23] have been investigated.

In this paper, we study the positive definite solutions of (1.1) and (1.2). We derive the nec-
essary and sufficient conditions for the existence of positive definite solutions. We suggest
iterative algorithms for obtaining positive definite solutions of these equations. Moreover,
under some conditions we obtain the rates of convergence of the iterative sequences of ap-
proximate solutions and the stopping criterions. Finally, we give some numerical examples
to ensure the performance and the effectiveness of the suggested iterative algorithms.

The following notations will be used in this paper. A* denotes the complex conjugate
transpose of A. We write A > 0 (A > 0), if matrix A is positive definite (positive semidef-
inite). If A — B is positive definite (positive semidefinite), then we write A > B (A > B).
Moreover, we denote p(A) by the spectral radius of A. We use Apax(A) and Ayin(A4) to de-
note the maximal and minimal eigenvalues of A. || - || and || - || denote the spectral and

infinity norm, respectively.
Lemma 1.1 [24] IfA>B>0,then A <B™.

Lemma 1.2 [24] IfA and B are positive definite matrices for which A — B > 0 and AB = BA
are satisfied, then A" — B" > 0.

Lemma 1.3 [25] IfA>B>0 (or A> B> 0), then A* >B* >0 (or A* > B* > 0), for all
a €(0,1], and 0 < A% < B* (or 0 < A < B*), for all « € [-1,0).
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2 The matrix equation X + Y ;" A*X™"A; =1
In this section, we give some necessary and sufficient conditions for the existence of posi-
tive definite solutions of (1.1). We present the following iterative algorithm to compute the

positive definite solution of (1.1).

Algorithm 2.1

XO = I;
Xe =1-Y" ArX;"A;, fors=0,1,2,....

Remark 2.1 Letting m =1 in Algorithm 2.1, we get Algorithm (2.2) in [10] which is pro-
posed for obtaining the positive definite solutions of the matrix equation X + A*X™"A =1I.
Also, letting n; =1, Vi = 1,2,...,m, in Algorithm 2.1, we get Algorithm 2.7 in [5], which
is proposed for obtaining the positive definite solutions of the matrix equation X +
S ASXA; =1

The following theorem provides the necessary condition for the existence of positive
definite solutions of (1.1).

Theorem 2.1 If (1.1) has a positive definite solution X, then

m
(A,»A;f)n% <X<I-) AfA;, i=12,..,m (2.1)

i=1

Proof Since X is a positive definite solution of (1.1), then X <7 and )", A7 X "iA; < I.
Using the inequality X <7 and Lemmas 1.1, 1.2, we have

m m
X=I-) AIXT"A; <I-) AfA,.
i=1 i=1

Also, from the inequality Y ") A*X " A; < I, we have A¥X™"A; < 1. Then
AXXRXAL

which implies that
XTMPAATX T < L

Using Lemma 1.3, we obtain
(Aan)"™ < X.

This completes the proof. O

Remark 2.2 Letting n; =1, Vi = 1,2,...,m, in (2.1) we get the condition A;A} <X <1 -
Yo" A¥A;, which is necessary for the existence of positive definite solutions of the matrix
equation X + Y ) A7 X'A; = I ([5], Theorem 2.1).
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Lemma 2.1 If A;, i = 1,2,...,m, are hermitian matrices and A;A; = AjA;, for all i,j =
1,2,...,m, then

AXs=XA;, j=1,23,...,m, (2.2)
where the sequence {X;},s=0,1,2,..., is determined by Algorithm 2.1.

Proof Since Xy =1, AjXo = XoA;. By using the condition A;A; = A;A;, we have

AiXy = A (1 - iAf) =A; - iA,Af =Aj - XM:AfAj = (1 - iAf)A, = Xi4;.
i=1 i=1 i=1

i=1

We suppose that A;X; = X;A;. Then for X,,;, we have

m
AXo = A (1 - ZA,X;’”A,)
i=1

m
=Aj- Y AAXTA;

i=1

=Aj- iAiA,»X;”L‘Ai

i=1

m
=Aj- Y AXAA,

i=1

=Aj- iAiXs‘”fAiAj

i=1
m
- <1 - ZAiXS"”A,)A,-
i=1
= s+1Aj-
Hence, the equalities (2.2) are true, for alls=0,1,2,.... O

Lemma 2.2 If A;, i = 1,2,...,m, are hermitian matrices and A;A; = AjA;, for all i,j =
1,2,...,m, then

XX, = X, X;. (2.3)
Here the sequences {Xs}, {X;}, s,r =0,1,2,..., are determined by Algorithm 2.1.

Proof Since Xy =1, XoX; = X, X0, Vr=0,1,2,.... According to Lemma 2.1, we have
m m
XX, = (1 - ZA?) (1 - ZAiX;_”{A,)
i=1 i=1
m m m m
=I-Y AT CAXTA+ Y Y ATAXA,
i=1 i=1

j=1 =1
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=1- ZA2 ZAX,”;A +ZZAX,‘”;AA2

j=1 i=1
=1- ZA2 ZAX,”;A +ZZAX,”1’AA2
i=1 j=1
m
( ZAX”‘A)([—ZA?)
i=1

=X.X.

That is, X1 X, = X, X1, Vr =0,1,2,.... We suppose that X, X, = X, X;, Vr=0,1,2,.... Then

for X;,1, we have
m
Xen X, = ( ZA XA, ) (1 - ZA,.X,_”{A,.)
i=1
- Z AXTA; - ZA XA+ ZA X; " A; ZA XA,
=I- ZAX‘"A —ZAX "A, +ZZAX TAAXTIA,;

j=1 i=1

=1- ZAX'”A-ZAX,";A +ZZAX TAAXTTA;
j=1 i=1

=1- ZAX ‘A —ZAX,”I’A +ZZAAX_”’X;”1’AA
j=1 i=1

=1- ZAX A—ZAX,”;A +ZZAAX;”{X"’AA
j=1 i=1

=I- ZAX‘”A —ZAX,";A +ZZA)(;’“1AAX 'A;

j=1 i=1

m m m m
=I-Y AXA =Y AXTIA Y AXTADY AXA
i=1 i=1 i=1 j=1

m m
- (1 - ZA,«X,_’?AZ) (1 - ZA,X;”"A,)
i=1 i=

= X X501
Therefore, the equality (2.3) is true, for all s,7 = 0,1,2,.... O
Remark 2.3 When we compare Lemmas 2.1 and 2.2 by Lemmas 4 and 5 in [10], we note
that the sequence {X;}, s =0,1,2,... (which is defined by Algorithm 2.1) satisfies the same

properties of the sequence {X;},s=0,1,2,... (which is defined by Algorithm (2.2) in [10]).

The following theorem provides the sufficient condition for the existence of positive
definite solutions of (1.1).
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Theorem 2.2 Let A,, i=1,2,...,m, be hermitian matrices and A;A; = AjA;, for all i,j =

L,2,...,m. If A? < (2n o1, where a > 1 and n = max,<;<,{n;}, then (1.1) has a positive
deﬁmte solution.

Proof We consider the sequence {X;} generated from Algorithm 2.1. For X,, we have X, =
1> él. For X;, we have

m

XI_I ZA2>I ana2n+l Z (a_l)I:lI’

m
Xi=1-) A} <I=X,.

i=1

That is,
1
X() > X1 > —1.
o
We suppose that
1
Xoq1>X> —1. (2.4)
o

Using the inequalities (2.4) and Lemmas 1.1, 1.2, and 2.2, we obtain

m
Xen = 1= AX"A;

i=1
<I- ZA XA,

= X;.

Also

m
Xen = 1= AX;"A;
i=1

m
>1- E oA
i=1

m
> ] ani ﬂ
- nma(ZVli+1)
i=1
1 -1
_ yLle-b
m I’lO((n’+1)
i=1
oa-1
CE
o
= —1I
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Therefore the inequalities (2.4) are true, for all s = 1,2,.... That is, the sequence {X,} is
monotonically decreasing and bounded below by é] . Hence, the sequence {X;} converges

to a positive definite solution X of (1.1). O

Theorem 2.3 Let A;, i = 1,2,...,m, be hermitian matrices and A;A; = AjA;, for all i,j =
L2,...,mIfA? < Wl then (1.1) has a positive definite solution X which satisfies

o —
”Xs+1_X”<( " )IIX - X, (25)

where a > 1, n = maxy<j<,, {n;}, and {X;}, s = 0,1,2,..., is the sequence determined by Algo-
rithm 2.1.

Proof By Theorem 2.2, we know that the sequence {X;}, s =0,1,2,..., is convergent to a

positive definite solution X of (1.1). We consider the spectral norm of the matrix X;,; — X.
We have

”Xs+1 _X” =

m m

=D AXTA -1+ AXTA,
i=1 i=1

m

D A(XT - XA

i=1

m
SZ A(XT = XA

IA

||Ai||2 | X7 (g = X)X

IA

A X el = x|

>

m
= Z 14> | X

m
<> AP x
i=1

n;
b3
1

r=

i
”X;Hi ” IXs — X1| (Z ||XS||”ir||X”r1) )

r=1

From the proof of Theorem 2.2, we obtain X" <], X7 < o], and X < X, <I. Then

we have

m n;
1Xeer = X1 < Y AN X7 | |67 11X = X (Z ||Xs||"f-’||X||’-1)

i=1 r=1

Z o | Ail* 1 X - X|

m
<3 na @D X, - xi
nma(2n+l s
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m
(@-1)
<D X - X|
i=1
a-1)
- 1%, - X1 O

=
Theorem 2.4 Let A;, i =1,2,...,m, be hermitian matrices and A;A; = AjA;, for all i,j =
L2,....m. IfA? < %1, where a > 1, n = maxy<;<,{n;}, and after s iterative steps of

nmao

Algorithm 2.1, we have |1 - X" X"} || < ¢, then

(@-1)

X+ Y AXA -1 6. (2.6)

i=1

<

o

Proof From Algorithm 2.1, we have

m m m
Xo+ Y AXHA—T1=X+ Y AXA -Xs- Y AXA;
s s s—-1

i=1 i=1 i=1
m
= ZAi(XS‘”" - XA
i=1

By taking the norm on both sides of the above equation, we have

m

D AX - XA

i=1

m
Xo+ Y AXA -1

i=1

Al 5 - X |

1A X,

1= X

m
=)
i=1
m
=2
i=1

From the proof of Theorem 2.2, we have X; " < a1, then

m

m
s (@-1) , _—
X+ S AXTA I <Y %a |1 xmx|
i=1 i=1
m
(a - 1) i1
< 12:1: ma ”I_Xsans—nl ||
< (o 1)8. g
o

3 The matrix equation X - >"I"  A*X™"A; =1
In this section, we give some necessary and sufficient conditions for the existence of pos-
itive definite solutions of (1.2). We present the following iterative algorithm to compute

the positive definite solution of (1.2).
Algorithm 3.1

XO :L
Xesp =1+ " AX;"A;, fors=0,1,2,....
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Remark 3.1 Letting m =1 in Algorithm 3.1, we get Algorithm (2.1) in [16] which is pro-
posed for obtaining the positive definite solutions of the matrix equation X — A*X ™A = I.
Also, letting n; = 1, Vi = 1,2,...,m, in Algorithm 3.1, we get Algorithm (2.1) in [6]
which is proposed for obtaining the positive definite solutions of the matrix equation
X-Y"AXTA; =1

The following theorem provides the necessary condition for the existence of positive
definite solutions of (1.2).

Theorem 3.1 If (1.2) has a positive definite solution X, then

m
I<X<I+) AjA:. 3.1)
i=1
Proof Since X is a positive definite solution of (1.2), then ) 1"} A*X " A; > 0. Thus we get
m
X=I+) AIXTA;>1.
i=1
Also, from the inequality X > I and Lemmas 1.1 and 1.2, we have
m m
X=I+) AIX"A;<I+) AJA;.
i=1 i=1

This completes the proof. d

Remark 3.2 The condition (3.1) is the same necessary condition for the existence of pos-
itive definite solutions of the matrix equation X — Y 7", A*X7'A; = I ([6], Remark 2.1).
Also, if A is an invertible matrix and m =1 in condition (3.1), then we get the condition
I <X <1+ A*A, which is necessary for the existence of positive definite solutions of the
matrix equation X — A*X A =I ([16], Corollary 2.1).

Lemma 3.1 If A;, i = 1,2,...,m, are hermitian matrices and A;A; = AjA;, for all i,j =
1,2,...,m, then

AX;=XA;, j=12,3,...,m, (3.2)
where the sequence {X;},s=0,1,2,..., is determined by Algorithm 3.1.
Proof The proof is similar to the proof of Lemma 2.1. g

Lemma 3.2 If A;, i = 1,2,...,m, are hermitian matrices and A;A; = AjA;, for all i,j =
1,2,...,m, then

XX, = X, X;. (3.3)

Here the sequences {Xs}, {X;}, s,r =0,1,2,..., are determined by Algorithm 3.1.
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Proof The proof is similar to the proof of Lemma 2.2. O

Remark 3.3 When we compare Lemmas 3.1 and 3.2 by Lemmas 2.3 and 2.4 in [16], we
note that the sequence {X;}, s =0,1,2,... (which is defined by Algorithm 3.1) satisfies the
same properties of the sequence {X;}, s = 0,1,2,... (which is defined by Algorithm (2.1) in
[16]).

Theorem 3.2 Let A;, i =1,2,...,m, be hermitian matrices and A;A; = AjA;, for all i,j =
L2,...,mIfq =31 mll AP+ X7 I1Ail1*) 7 < 1, then (1.2) has a positive definite solu-

tion X which satisfies
XZS <X=< X2s+1 (34‘)
and
m
1Xaen = Xaoll <4 1A%, (3.5)

i=1
where the sequence {X;}, s =0,1,2,..., is determined by Algorithm 3.1.

Proof We consider the matrix sequence {X;} generated from Algorithm 3.1 and using
Lemmas 1.1, 1.2 and 3.2. Since A? > 0, then

m
Xi=1+) A}>1=X
i=1
and
m m
Xo=I+Y AX"A; <I+) Al=X.
i=1 i=1

Consequently
Xo=Xo =Xi.

We find the relation between X5, X3, X4, X5. Using Xy < X, < Xj, we obtain

m m
Xs=I+) AX;"A;<I+) Al=X
i=1 i=1
and
m m
Xs=I+Y AX;"Ai=1+) AX;"A;i=X,.
i=1 i=1

Hence X, < X3 < Xj. In the same way we can prove that

Xo<Xo =Xy <X5<X3 <X
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We suppose that
Xo < Xos < Xosi2 < Xosiz < Xosi1 < X1 (3.6)

Using the inequalities (3.6), we have

Xogea =1 + ZA Xl Ay < I+ ZA Xty Ay = Xogy3,
i=1 i=1

m m
Xosea =1+ ZAiX;;ngi >1+ ZAth_s’flAi = Xos42-

i=1 i=1
Similarly

m m
Xogs =1+ ZAiXis’f4At =I+ ZAiXQSTzAi = Xog:35
i1 i-1

m m
Xoses =1 + ZAin_;fz;Ai >+ ZAiX;:ingi = Xosra.
i-1 i-1

Therefore, the inequalities (3.6) are true, for all s = 0,1,2,.... Consequently the subse-
quences {Xy} and {Xy,,1} are convergent to positive definite matrices. To prove that these

sequences have a common limit, we consider
m

Z Ai (ng”i - X;sn—il )Al

i=1

m
Z AN X0 = Xou

”X23+1 _XZS” =

m
ZnA P17 (X5ay = X)Xt

G 165 = X

m
Z 1A% X5,
Z A x5

126G || (Xasa —Xzs)Zng’ X

r=1

m
< S IAP 20 X 1 Xt — X
i=1
i
x (Z lezs_1||"f-’||X2s||’-l>.
r=1

From the inequalities (3.6), we have Xy, Xo5 1 > I, and Xp,, Xp5 1 <1 + Z:ZIAf, forall s =
1,2,3,.... Then we have

m m ni—1
1Xag1 = Xasll <Y mill Aill | Xag1 = Xag| (1 £y ||A,»||2> :

i=1 i=1
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Hence
m
1Xag1 = Xoll < qliXas = Xoea | <+ < g D A7,

that is,
I Xose1 — Xosll = 0, ass— oo.

Hence, the two subsequences {Xs} and {Xy,,1} have the same limit X, which is a positive
definite solution of (1.2). O

From Theorem 3.2, we can deduce the following corollary.

Corollary 3.1 From inequality (3.5), we have the following upper bound.:

m
max (|| Xae = X1, X = Xasll) <™ Y A% (3.7)
i=1

Remark 3.4 Theorem 3.2 provides the sufficient condition g = > 7 m|A;*(1 +
> A %)™t < 1 for the existence of positive definite solutions of (1.2), we note that when
m =1 we have the condition [JA||?(1 + || A||*)"~! < 1, which is sufficient for the existence of
positive definite solutions of the matrix equation X — A*X ™A =1 ([16], Theorem 2.1).

Theorem 3.3 Let A;, i =1,2,...,m, be hermitian matrices and A;A; = AjA;, for all i,j =
L2,...,m If g =Y " mlAPQ + Y7 APt < 1, and after s iterative steps of Algo-
rithm 3.1, we have ||I - X", X; " || < &, then

m
— Y CAXA -1
i=1

m
<e )l (38)
i=1

Proof From Algorithm 3.1, we have

X, - ZAX‘”IA —I=X,— ZAx-"zA X+ZAX”’A

m

Y A XA

i=1

By taking the norm on both sides of the above equation, we have

m
=D AXTA -
i=1

m
D A(X - XA
i=1

m
ZMA 17X - X

m
= 2 AP = X
i=1
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From the proof of Theorem 3.2, we have X,/ < I, then

m
<) AP XX
i=1

12
<g;||,4,||. -

m
Xo= Y AXMA -1
i=1

4 Numerical examples

In this section, we use the iterative Algorithms 2.1 and 3.1 to compute the positive def-
inite solutions of (1.1) and (1.2), respectively. The solutions are computed for different
matrices A;, i = 1,2,...,m, with different orders. We denote X, the solution obtained
by Algorithms 2.1 and 3.1 and €(X;) = |X = X;lloo» Ri(Xs) = IX; + Yy AFX " A; = lloos
Y, =I-Y" AA— X5, Zis = X —AAF (i=1,2,...,m), Ry(Xs) = | Xs= 21 AT XS Ai =1 -

Example 4.1 Consider the matrix equation
X+ ATXT* A + ASX TP Ay + ASX A3 = 1, (4.1)

where A;, A;, and A3 are given by

0.091 0.015 0.004 0.098 0.014 0.05
Ar=1] 0.014 0.029 0.045 |, Ay =10.034 0.025 0.07 |,
-0.043 0.071 0.015 0.051 0.04 -0.001

0.09 -0.008 0.025
Az =1]0.034 -0.087 0.015
0.02 -0.02 0.044

We use Algorithm 2.1 to solve (4.1). After 22 iterations, we get the positive definite solution

0.960979 0.0000874449 -0.0134898
X =~ Xy, = | 0.0000874449 0.982002 —-0.00301522
—0.0134898 —-0.00301522 0.986046

and R;(X») = 111022 x 107, Anin(Yas) = 0.000488382, Amin(Z122) = 0.825427,
Amin(Z2,22) = 0.778478, Amin(Z3,22) = 0.860326.
The other results are listed in Table 1.

Table 1 Error analysis for Example 4.1

6(Xs) R1 (Xs) }Vmin(ys) )vmin(z1,s) lmin (22,5) )vmin(z3,s)

390209 x 1072 333430 x 102 -3.82258 x 102 0.989301 0980411 0.985409
567787 x 107 4.70245 x 1073 111022 x 1070 0.849272 0.807341 0.879195
975412 x 107% 802922 x 107* 448982 x 107% 0829614 0783528  0.863646
172490 x 107* 141756 x 1074 4.83255 x 107 0.826170 0.779373 0.860915
307337 x 107 252483 x 107 487548 x 1074 0.825560  0.778638  0.860431
548539 x 10°® 450591 x 107° 488236 x 107 0.825451 0.778506 0.860345
979481 x 107 804563 x 107 4.88356 x 10*  0.825431 0.778483 0.860329
174918 x 1077 143680 x 107/ 4.88377 x 107 0.825428 0.778479 0.860327
312382 x 108 256594 x 108 4.88381 x 107% 0825427 0778478  0.860326

0Ny WN— O
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Example 4.2 Consider the matrix equation
X+A[X 7 A+ ASX Ay + ASX A3 + AfX Ay = 1, (4.2)
where A;, A;, A3, and A, are given by

0.023 0.015 0.014 0.001
0.014 0.011 0.029 0.045
0.01 -0.043 0.071 0.015
0.011 -0.043 0.071 0.015

0.019 0.014 0.085 -0.01
A = 0.034 0.062 0.035 0.07
7 l0.029 0051 004 —0.001|

0.026 0.01 -0.043 0.015

0.002 0.014 0.03 0.025
0.034 0.087 0.015 0.067

A3 = ’
-0.022 0.012 -0.02 0.044
-0.041 -0.034 0.071 0.015

0.017  0.045 -0.002 0.025
-0.003 0.034 0.087 0.012
Ay =

0.04 0.027  -0.02 0.044
0.051 -0.083 0.019 0.001

We use Algorithm 2.1 to solve (4.2). After 29 iterations, we get the positive definite solution

0.985316 -0.00602454 -0.00452105 -0.00717771
XA X = —-0.00602454 0.963749 0.00114964  -0.0154917
71 —0.00452105  0.00114964 0.951857 —-0.0113565

~0.00717771  -0.0154917  —0.0113565 0.97492
and R;(Xpo) = 111022 x 1071, Apin(Yas) = 0.00144519, Amin(Zise) = 0.649354,
Amin(Z2,29) = 0.878163, Amin(Z329) = 0.517277, Amin(Za20) = 0.785219.

The other results are listed in Table 2.

Table 2 Error analysis for Example 4.2

w

6(Xs) R1 (Xs) }Vmin(ys) Xmin(st) }Vmin (ZZ,S) Xmin(zﬁ],s) }Vmin (24,5)

481432 x 1072 379180 x 1072 -433175x 1072 0984520 0982228 0984476  0.987805
1.02252 x 1072 749107 x 10> -1.78032 x 1071 0719649 0902084 0604645  0.831201
273413 x 1073 208835 x 107 1.05313x 107 0664911 0883407  0.535912  0.795502
645772 x 1074 505650 x 1074 133072 x 10> 0652517 0879228 0521034  0.787317
140122 x 107% 108374 x 10°* 141687 x 103 0650050  0.878406 0518114  0.785684
317484 x 107 237848 x 107 143915x 10 0649533 0878227 0517495  0.785339
796360 x 10° 593391 x 10® 144386 x 107 0649401 0878180 0517334  0.785250
202969 x 107® 153853 x 10°° 144486 x 10 0649366 0878167 0517291  0.785226
491154 x 107 376520 x 107 144510 x 1073 0649357 0878164 0517280  0.785220
1
1

1.14634 x 107 875007 x 1078 144517 x 107> 0649355 0878164 0517278  0.785219
271333 x 108 205092 x 108 144518 x 10 0649354 0878164 0517277  0.785219

O OV OO~ WN = O

1
1
1
1
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Example 4.3 Consider the matrix equation
X+ AX2A + ASX2Ay =1, (4.3)
where A; and A are given as in Example 3.1 from [5]:

0.010 -0.150 -0.259
A;=10.015 0212 -0.064],
0.025 -0.069 0.138

0.160 -0.025 0.020
Ay =1]-0.025 -0.288 -0.060
0.004 -0.016 -0.120

We use Algorithm 2.1 to solve (4.3). After 78 iterations, we get the positive definite solution

0.970376 -0.0101782 -0.00533509
X~X;3=| -0.0101782 0.733948 —-0.0493223
—-0.00533509 -0.0493223 0.869915

and Rl(X78) =1.11022 x 10_16, )Lmin(Y7g) =0.001965, )‘min(Zl,78) =0.479668, )‘min(Z2,78) =

0.427158.
The other results are listed in Table 3.

Example 4.4 Consider the matrix equation
X —AIX2A - AGXCAy — ASX A3 - ASX AL = 1, (4.4)

where A;, Ay, Az, and Ay are given by

01 -01 04 02 -04 05
A=]-01 02 05/, Ay=109 02 0|,
04 02 01 01 -04 03
-02 02 01 0 03 01
Az3=|-08 01 05|, Ay=105 03 05
08 -02 -04 02 -02 -07

We use Algorithm 3.1 to solve (4.4). After 133 iterations, we get the positive definite solu-
tion

1.85505 0.204339 -0.139713
X~X;33=| 0204339 121553  0.144921
-0.139713  0.144921 1.6854

and Ry(Xy33) = 2.22045 x 107, Apin(I + Y1, A*A; — X133) = 0.490411, Apin(Xy33 — ) =
0.100459.

The other results are listed in Table 4.
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Table 3 Error analysis for Example 4.3

A =

Az =

s G(Xs) R1 (Xs) )vmin(ys) )vmin(st) )vmin(zz,s)
0 266052x 107" 156030 x 107" -1.74299 x 107" 0900634  0.910937
4 195763 x 1072 754210 x 1073 1.94201 x 1073 0508120 0455158
8 299945 x 107 1.09180 x 1073 196189 x 103 0483981 0431403
12 496010 107* 178894 x 1074 1.96449 x 1073 0480380 0427859
16 830170 x 107° 298954 x 107 196492 x 103 0479787 0427276
20 139223 x 10 501230 x 107° 1.96499 x 1073 0479688 0427178
24 233562 x 10° 840831 x 107/ 196500 x 103 0479671 0427162
28 391847 x 107 141065 x 107/ 196500 x 103 0479669 0427159
32 657408 x 108 236667 x 1078 196500 x 103 0479668 0427158
Table 4 Error analysis for Example 4.4
s elXs) Ra(X;) Amin(l+ Yy AFA = X)  Amin(Xs=1)
0 855046 x 107" 265 0.715946 0
10 183959 x 107" 326477 x 107" 0544118 0.076489
20 1.06950 x 1072 1.87085 x 1072 0493691 0.098958
30 594976 x 10°*  1.04066 x 107 0.490594 0.100375
40 330916 x 107 578794 x 107 0490422 0.100455
50 1.84048 x 10 321913 x 100 0490412 0.100459
60 102364 x 107 179042 x 107 0490411 0.100459
70 569327 x 109 995792 x 1079 0490411 0.100459
Example 4.5 Consider the matrix equation
X—AJXA - ASX Ay - ASXMA3 =1,
where A;, Ay, and Az are given by
0.01 0 -0.01 0.04 0 -0.14 0.05 0.03
0.11 0 0.12 0.05 0.03 0.12 0 0.01
5=
0.06 0.05 012 0.01| 0.01 -0.04 0.09 0.03
0.04 -0.09 0.02 0.03 0.05 0.03 0 0.32
-0.05 0.01 029 0.01
-0.52 0 0.11 -0.05
0 -0.02 0 -0.14
0.04 -0.04 0.37 0.01
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(4.5)

We use Algorithm 3.1 to solve (4.5). After 78 iterations, we get the positive definite solution

X7g =

1.21033 0.0022825 -0.00724383  0.036655
0.0022825 1.02578 —-0.00516744  0.00742036
-0.00724383 -0.00516744 1.07848 0.00429966
0.036655 0.00742036  0.00429966 1.069

and Ry(X7g) = 2.22045 x 1071, Apin(I + Y0, A*A; — X7g) = 0.0223096, Amin(X7s — 1) =
0.0237773.
The other results are listed in Table 5.
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Table 5 Error analysis for Example 4.5

s e(X) R2(X;s) Amin(l+ Y2, A%Ai =X  Amin(Xs=1)
0 210332x 107" 295400 x 107" 0.047059 0
3 311244 x 1072 452684 x 1072 0017503 0028153
6 517330 1073 836352x 107 0.023078 0.023109
9  1.10730x 107 175717 x 107 0.022155 0.023907
12 228175 x 10°% 363481 x 107*  0.022341 0.023751
15 473953 x 107> 754424 %107 0022303 0023783
18 983002 x 10° 156497 x 10 0.022311 0.023776
21 203950 x 10°  3.24685 x 10°  0.022309 0.023778
24 423122 x 107 673607 x 107 0.022310 0.023777
27 877834 x10% 139750 x 1077 0.022310 0.023777
30 1.82120 x 108 289934 x 108 0.022310 0.023777
Table 6 Error analysis for Example 4.6
s €(Xs) Ra(X;) Aminll+ Y21 A*Ai - Xs)  AminXs=1)
0 894901 x 107" 372279 0.501528 0
40 872900 x 1072 179569 x 107" 0.195273 0.120468
80 170413 x 1072 336946 x 102 0.185914 0.131596
120 326922 x 103 641673 x 107 0.184203 0.133762
160 623654 x 1074 122239x 1073 0.183879 0.134178
200 118834 x wo 232858 x 10%  0.183817 0.134257
240 226383 x 10 443579 x 107°  0.183805 0.134272
280 431248 x 1070 844986 x 10°  0.183803 0.134275
320 821498 x 107 160964 x 10°°  0.183803 0.134276
360 156490 x 1077 3.06625 x 10~/ 0.183803 0.134276
400 298101 x 108 584098 x 108 0.183803 0.134276

Example 4.6 Consider the matrix equation

X —ATX72A - A3X A, = 1,

where A; and A are given as in Example 4.1 from [6]:

0.3060 0.6894

Ar=1]02514 0.4285

0.0222 0.0987

0.9529 0.6450

Ay =1]0.4410 0.1993

0.9712 0.0052

0.6093
0.7642 |,
0.8519

0.4801
0.9823
0.9200
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(4.6)

We use Algorithm 3.1 to solve (4.6). After 792 iterations, we get the positive definite so-

lution

X~ X797 =

1.49147
0.310408

0.310408 0.378343
144441 0.208234
0.378343 0.208234

1.8949

and Ry(X792) = 7.99361 x 107, Apin(l + 37, A*A; — X795) = 0.183803, Amin(X702 — I) =

0.134276.

The other results are listed in Table 6.
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5 Conclusion

In this paper, we investigate the nonlinear matrix equations X + Y ") A*X " A; = I, where
n;,i=1,2,...,m,are positive integers. Necessary and sufficient conditions for the existence
of positive definite solutions are derived. Iterative algorithms are proposed to compute
the positive definite solutions of these equations. Moreover, some numerical examples
are given to illustrate the effectiveness and rapidly convergence rate (small run time) of
the proposed iterative algorithms (see values of €(X;), R;(X;), and R,(X;)). Also, the values
of Amin show that the solutions of the matrix equations satisfy the necessary conditions.
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