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Abstract
We study the nonlinear matrix equations X +

∑m
i=1 A

∗
i X

–niAi = I and
X –

∑m
i=1 A

∗
i X

–niAi = I, where ni are positive integers for i = 1, 2, . . . ,m. The iterative
algorithms for obtaining positive definite solutions for these equations are proposed.
The necessary and sufficient conditions for the existence of positive definite solutions
of these equations are derived. Moreover, the rate of convergence of the sequences
generated from the algorithms is studied. The efficiency of proposed algorithms is
illustrated by numerical examples.
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1 Introduction
Consider the nonlinear matrix equations:

X +
m∑

i=

A∗
i X–ni Ai = I (.)

and

X –
m∑

i=

A∗
i X–ni Ai = I, (.)

where X is an unknown square matrix, I is the identity matrix, Ai are square complex
matrices and ni are positive integers for i = , , . . . , m.

Nonlinear matrix equations of type (.) and (.) have many applications in engineer-
ing, control theory, dynamic programming, stochastic filtering, ladder networks, statis-
tics, etc.; see [–] and the references therein. When m =  and n = , (.) arises in the
analysis of stationary Gaussian reciprocal processes over a finite interval []. When m > 
and ni =  for i = , , . . . , m, (.) arises in solving a large-scale system of linear equations
in many physical calculations [] and (.) is recognized as playing an important role in
modeling certain optimal interpolation problems [, ].

In the last few years, many authors have been greatly interested in developing the theory
and numerical approaches for positive definite solutions to the nonlinear matrix equations
of the form (.) and (.). Similar types of (.) and (.) have been investigated [–]. The
matrix equations X ± A∗X–A = Q have been studied by several authors [–, , ] and
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different iterative algorithms for computing the positive definite solutions with linear and
quadratic rate of convergence are proposed. Ivanov et al. [] derived sufficient conditions
for the existence of positive definite solutions for the matrix equations X ±A∗X–A = I and
they proposed iterative algorithms for obtaining positive definite solutions of these equa-
tions. El-Sayed [] presented two iterative methods for calculating the positive definite
solutions of the matrix equation X – A∗X–nA = Q, for the integer n ≥ , the first method is
derived for a normal matrix A and for the second method a sufficient condition for con-
vergence is given for n = k . El-Sayed and Ran [] studied the general matrix equation
X + A∗F(X)A = Q where F maps positive definite matrices either into positive definite ma-
trices or into negative definite matrices and satisfies some monotonicity property. Hasanov
and Ivanov [] considered the matrix equations X ± A∗X–nA = Q, they studied the solu-
tions and perturbation analysis of these solutions. They also derived a sufficient condition
for the existence of a unique positive definite solution of the equation X – A∗X–nA = Q.
Hasanov [] established and proved theorems for the necessary and sufficient conditions
of the existence of positive definite solutions for the matrix equations X ± A∗X–qA = Q
with  < q ≤ , he showed that the equation X – A∗X–qA = Q has a unique positive definite
solution by using the properties of matrix sequence in Banach space. Also, in [] some con-
ditions for the existence of positive definite solution of the equation X +

∑m
i= A∗

i X–Ai = I
have been obtained and two iterative algorithms to find the maximal positive definite solu-
tion of this equation have been presented. Duan et al. [] gave two perturbation estimates
for the positive definite solution of the equation X –

∑m
i= A∗

i Xδi Ai = Q with  < |δi| < .
Duan et al. [] studied the equation X –

∑m
i= N∗

i X–Ni = I , they used the Thompson met-
ric to prove that the matrix equation always has a unique positive definite solution and
they derived a precise perturbation bound for the unique positive definite solution. In ad-
dition, other nonlinear matrix equations such as Xs ± AT X–tA = In [], AX + BX + C = 
[], and X = Q + AH (I ⊗ X – C)–δA∗ [] have been investigated.

In this paper, we study the positive definite solutions of (.) and (.). We derive the nec-
essary and sufficient conditions for the existence of positive definite solutions. We suggest
iterative algorithms for obtaining positive definite solutions of these equations. Moreover,
under some conditions we obtain the rates of convergence of the iterative sequences of ap-
proximate solutions and the stopping criterions. Finally, we give some numerical examples
to ensure the performance and the effectiveness of the suggested iterative algorithms.

The following notations will be used in this paper. A� denotes the complex conjugate
transpose of A. We write A >  (A ≥ ), if matrix A is positive definite (positive semidef-
inite). If A – B is positive definite (positive semidefinite), then we write A > B (A ≥ B).
Moreover, we denote ρ(A) by the spectral radius of A. We use λmax(A) and λmin(A) to de-
note the maximal and minimal eigenvalues of A. ‖ · ‖ and ‖ · ‖∞ denote the spectral and
infinity norm, respectively.

Lemma . [] If A ≥ B > , then A– ≤ B–.

Lemma . [] If A and B are positive definite matrices for which A – B >  and AB = BA
are satisfied, then An – Bn > .

Lemma . [] If A > B >  (or A ≥ B > ), then Aα > Bα >  (or Aα ≥ Bα > ), for all
α ∈ (, ], and  < Aα < Bα (or  < Aα ≤ Bα), for all α ∈ [–, ).
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2 The matrix equation X +
∑m

i=1 A∗
i X–ni Ai = I

In this section, we give some necessary and sufficient conditions for the existence of posi-
tive definite solutions of (.). We present the following iterative algorithm to compute the
positive definite solution of (.).

Algorithm .

{
X = I,
Xs+ = I –

∑m
i= A∗

i X–ni
s Ai, for s = , , , . . . .

Remark . Letting m =  in Algorithm ., we get Algorithm (.) in [] which is pro-
posed for obtaining the positive definite solutions of the matrix equation X + A∗X–nA = I .
Also, letting ni = , ∀i = , , . . . , m, in Algorithm ., we get Algorithm . in [], which
is proposed for obtaining the positive definite solutions of the matrix equation X +
∑m

i= A∗
i X–Ai = I .

The following theorem provides the necessary condition for the existence of positive
definite solutions of (.).

Theorem . If (.) has a positive definite solution X, then

(
AiA∗

i
) 

ni < X ≤ I –
m∑

i=

A∗
i Ai, i = , , . . . , m. (.)

Proof Since X is a positive definite solution of (.), then X ≤ I and
∑m

i= A∗
i X–ni Ai < I .

Using the inequality X ≤ I and Lemmas ., ., we have

X = I –
m∑

i=

A∗
i X–ni Ai ≤ I –

m∑

i=

A∗
i Ai.

Also, from the inequality
∑m

i= A∗
i X–ni Ai < I , we have A∗

i X–ni Ai < I . Then

A∗
i X–ni/X–ni/Ai < I,

which implies that

X–ni/AiA∗
i X–ni/ < I.

Using Lemma ., we obtain

(
AiA∗

i
)/ni < X.

This completes the proof. �

Remark . Letting ni = , ∀i = , , . . . , m, in (.) we get the condition AiA∗
i < X ≤ I –

∑m
i= A∗

i Ai, which is necessary for the existence of positive definite solutions of the matrix
equation X +

∑m
i= A∗

i X–Ai = I ([], Theorem .).
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Lemma . If Ai, i = , , . . . , m, are hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m, then

AjXs = XsAj, j = , , , . . . , m, (.)

where the sequence {Xs}, s = , , , . . . , is determined by Algorithm ..

Proof Since X = I , AjX = XAj. By using the condition AiAj = AjAi, we have

AjX = Aj

(

I –
m∑

i=

A
i

)

= Aj –
m∑

i=

AjA
i = Aj –

m∑

i=

A
i Aj =

(

I –
m∑

i=

A
i

)

Aj = XAj.

We suppose that AjXs = XsAj. Then for Xs+, we have

AjXs+ = Aj

(

I –
m∑

i=

AiX–ni
s Ai

)

= Aj –
m∑

i=

AjAiX–ni
s Ai

= Aj –
m∑

i=

AiAjX–ni
s Ai

= Aj –
m∑

i=

AiX–ni
s AjAi

= Aj –
m∑

i=

AiX–ni
s AiAj

=

(

I –
m∑

i=

AiX–ni
s Ai

)

Aj

= Xs+Aj.

Hence, the equalities (.) are true, for all s = , , , . . . . �

Lemma . If Ai, i = , , . . . , m, are hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m, then

XsXr = XrXs. (.)

Here the sequences {Xs}, {Xr}, s, r = , , , . . . , are determined by Algorithm ..

Proof Since X = I , XXr = XrX, ∀r = , , , . . . . According to Lemma ., we have

XXr =

(

I –
m∑

i=

A
i

)(

I –
m∑

i=

AiX
–ni
r– Ai

)

= I –
m∑

i=

A
i –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

A
j AiX

–ni
r– Ai
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= I –
m∑

i=

A
i –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

AiX
–ni
r– AiA

j

= I –
m∑

i=

A
i –

m∑

i=

AiX
–ni
r– Ai +

m∑

i=

m∑

j=

AiX
–ni
r– AiA

j

=

(

I –
m∑

i=

AiX
–ni
r– Ai

)(

I –
m∑

i=

A
i

)

= XrX.

That is, XXr = XrX, ∀r = , , , . . . . We suppose that XsXr = XrXs, ∀r = , , , . . . . Then
for Xs+, we have

Xs+Xr =

(

I –
m∑

i=

AiX–ni
s Ai

)(

I –
m∑

i=

AiX
–ni
r– Ai

)

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

AjX
–nj
s Aj

m∑

i=

AiX
–ni
r– Ai

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

AjX
–nj
s AjAiX

–ni
r– Ai

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

AiX
–nj
s AiAjX

–ni
r– Aj

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

AiAiX
–nj
s X–ni

r– AjAj

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

AiAiX
–ni
r– X–nj

s AjAj

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

j=

m∑

i=

AiX
–ni
r– AiAjX

–nj
s Aj

= I –
m∑

i=

AiX–ni
s Ai –

m∑

i=

AiX
–ni
r– Ai +

m∑

i=

AiX
–ni
r– Ai

m∑

j=

AjX
–nj
s Aj

=

(

I –
m∑

i=

AiX
–ni
r– Ai

)(

I –
m∑

i=

AiX–ni
s Ai

)

= XrXs+.

Therefore, the equality (.) is true, for all s, r = , , , . . . . �

Remark . When we compare Lemmas . and . by Lemmas  and  in [], we note
that the sequence {Xs}, s = , , , . . . (which is defined by Algorithm .) satisfies the same
properties of the sequence {Xs}, s = , , , . . . (which is defined by Algorithm (.) in []).

The following theorem provides the sufficient condition for the existence of positive
definite solutions of (.).



Al-Dubiban Journal of Inequalities and Applications  (2015) 2015:147 Page 6 of 18

Theorem . Let Ai, i = , , . . . , m, be hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m. If A

i ≤ (α–)
nmα(ni+) I , where α >  and n = max≤i≤m{ni}, then (.) has a positive

definite solution.

Proof We consider the sequence {Xs} generated from Algorithm .. For X, we have X =
I > 

α
I . For X, we have

X = I –
m∑

i=

A
i ≥ I –

m∑

i=

(α – )
nmα(ni+) I > I –

m∑

i=

(α – )
nmα

I ≥ I –
(α – )

α
I =


α

I,

X = I –
m∑

i=

A
i ≤ I = X.

That is,

X ≥ X >

α

I.

We suppose that

Xs– ≥ Xs >

α

I. (.)

Using the inequalities (.) and Lemmas ., ., and ., we obtain

Xs+ = I –
m∑

i=

AiX–ni
s Ai

≤ I –
m∑

i=

AiX
–ni
s– Ai

= Xs.

Also

Xs+ = I –
m∑

i=

AiX–ni
s Ai

> I –
m∑

i=

αni A
i

≥ I –
m∑

i=

αni
(α – )

nmα(ni+) I

= I –
m∑

i=


m

(α – )
nα(ni+) I

> I –
(α – )

α
I

=

α

I.
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Therefore the inequalities (.) are true, for all s = , , . . . . That is, the sequence {Xs} is
monotonically decreasing and bounded below by 

α
I . Hence, the sequence {Xs} converges

to a positive definite solution X of (.). �

Theorem . Let Ai, i = , , . . . , m, be hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m. If A

i ≤ (α–)
nmα(ni+) I , then (.) has a positive definite solution X which satisfies

‖Xs+ – X‖ <
(

α – 
α

)

‖Xs – X‖, (.)

where α > , n = max≤i≤m{ni}, and {Xs}, s = , , , . . . , is the sequence determined by Algo-
rithm ..

Proof By Theorem ., we know that the sequence {Xs}, s = , , , . . . , is convergent to a
positive definite solution X of (.). We consider the spectral norm of the matrix Xs+ – X.
We have

‖Xs+ – X‖ =

∥
∥
∥
∥
∥

I –
m∑

i=

AiX–ni
s Ai – I +

m∑

i=

AiX–ni Ai

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

m∑

i=

Ai
(
X–ni – X–ni

s
)
Ai

∥
∥
∥
∥
∥

≤
m∑

i=

∥
∥Ai

(
X–ni – X–ni

s
)
Ai

∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
(
Xni

s – Xni
)
X–ni

s
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
∥
∥
∥
∥X–ni

s
∥
∥
∥
∥Xni

s – Xni
∥
∥

=
m∑

i=

‖Ai‖∥∥X–ni
∥
∥
∥
∥X–ni

s
∥
∥

∥
∥
∥
∥
∥

(Xs – X)
ni∑

r=

Xni–r
s Xr–

∥
∥
∥
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
∥
∥
∥
∥X–ni

s
∥
∥‖Xs – X‖

( ni∑

r=

‖Xs‖ni–r‖X‖r–

)

.

From the proof of Theorem ., we obtain X–ni
s < αni I , X–ni ≤ αni I , and X ≤ Xs ≤ I . Then

we have

‖Xs+ – X‖ ≤
m∑

i=

‖Ai‖∥∥X–ni
∥
∥
∥
∥X–ni

s
∥
∥‖Xs – X‖

( ni∑

r=

‖Xs‖ni–r‖X‖r–

)

<
m∑

i=

niα
ni‖Ai‖‖Xs – X‖

≤
m∑

i=

niα
ni

(α – )
nmα(ni+) ‖Xs – X‖
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≤
m∑

i=

n
(α – )
nmα

‖Xs – X‖

=
(α – )

α
‖Xs – X‖. �

Theorem . Let Ai, i = , , . . . , m, be hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m. If A

i ≤ (α–)
nmα(ni+) I , where α > , n = max≤i≤m{ni}, and after s iterative steps of

Algorithm ., we have ‖I – Xni
s X–ni

s– ‖ < ε, then
∥
∥
∥
∥
∥

Xs +
m∑

i=

AiX–ni
s Ai – I

∥
∥
∥
∥
∥

<
(α – )

α
ε. (.)

Proof From Algorithm ., we have

Xs +
m∑

i=

AiX–ni
s Ai – I = Xs +

m∑

i=

AiX–ni
s Ai – Xs –

m∑

i=

AiX
–ni
s– Ai

=
m∑

i=

Ai
(
X–ni

s – X–ni
s–

)
Ai.

By taking the norm on both sides of the above equation, we have
∥
∥
∥
∥
∥

Xs +
m∑

i=

AiX–ni
s Ai – I

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

m∑

i=

Ai
(
X–ni

s – X–ni
s–

)
Ai

∥
∥
∥
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s – X–ni

s–
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s

∥
∥
∥
∥I – Xni

s X–ni
s–

∥
∥.

From the proof of Theorem ., we have X–ni
s < αni I , then

∥
∥
∥
∥
∥

Xs +
m∑

i=

AiX–ni
s Ai – I

∥
∥
∥
∥
∥

<
m∑

i=

(α – )
nmα(ni+) α

ni
∥
∥I – Xni

s X–ni
s–

∥
∥

<
m∑

i=

(α – )
mα

∥
∥I – Xni

s X–ni
s–

∥
∥

<
(α – )

α
ε. �

3 The matrix equation X –
∑m

i=1 A∗
i X–ni Ai = I

In this section, we give some necessary and sufficient conditions for the existence of pos-
itive definite solutions of (.). We present the following iterative algorithm to compute
the positive definite solution of (.).

Algorithm .
{

X = I,
Xs+ = I +

∑m
i= A∗

i X–ni
s Ai, for s = , , , . . . .
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Remark . Letting m =  in Algorithm ., we get Algorithm (.) in [] which is pro-
posed for obtaining the positive definite solutions of the matrix equation X – A∗X–nA = I .
Also, letting ni = , ∀i = , , . . . , m, in Algorithm ., we get Algorithm (.) in []
which is proposed for obtaining the positive definite solutions of the matrix equation
X –

∑m
i= A∗

i X–Ai = I .

The following theorem provides the necessary condition for the existence of positive
definite solutions of (.).

Theorem . If (.) has a positive definite solution X, then

I ≤ X ≤ I +
m∑

i=

A∗
i Ai. (.)

Proof Since X is a positive definite solution of (.), then
∑m

i= A∗
i X–ni Ai ≥ . Thus we get

X = I +
m∑

i=

A∗
i X–ni Ai ≥ I.

Also, from the inequality X ≥ I and Lemmas . and ., we have

X = I +
m∑

i=

A∗
i X–ni Ai ≤ I +

m∑

i=

A∗
i Ai.

This completes the proof. �

Remark . The condition (.) is the same necessary condition for the existence of pos-
itive definite solutions of the matrix equation X –

∑m
i= A∗

i X–Ai = I ([], Remark .).
Also, if A is an invertible matrix and m =  in condition (.), then we get the condition
I < X < I + A∗A, which is necessary for the existence of positive definite solutions of the
matrix equation X – A∗X–nA = I ([], Corollary .).

Lemma . If Ai, i = , , . . . , m, are hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m, then

AjXs = XsAj, j = , , , . . . , m, (.)

where the sequence {Xs}, s = , , , . . . , is determined by Algorithm ..

Proof The proof is similar to the proof of Lemma .. �

Lemma . If Ai, i = , , . . . , m, are hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m, then

XsXr = XrXs. (.)

Here the sequences {Xs}, {Xr}, s, r = , , , . . . , are determined by Algorithm ..
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Proof The proof is similar to the proof of Lemma .. �

Remark . When we compare Lemmas . and . by Lemmas . and . in [], we
note that the sequence {Xs}, s = , , , . . . (which is defined by Algorithm .) satisfies the
same properties of the sequence {Xs}, s = , , , . . . (which is defined by Algorithm (.) in
[]).

Theorem . Let Ai, i = , , . . . , m, be hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m. If q =

∑m
i= ni‖Ai‖( +

∑m
i= ‖Ai‖)ni– < , then (.) has a positive definite solu-

tion X which satisfies

Xs ≤ X ≤ Xs+ (.)

and

‖Xs+ – Xs‖ ≤ qs
m∑

i=

‖Ai‖, (.)

where the sequence {Xs}, s = , , , . . . , is determined by Algorithm ..

Proof We consider the matrix sequence {Xs} generated from Algorithm . and using
Lemmas ., . and .. Since A

i ≥ , then

X = I +
m∑

i=

A
i ≥ I = X

and

X = I +
m∑

i=

AiX
–ni
 Ai ≤ I +

m∑

i=

A
i = X.

Consequently

X ≤ X ≤ X.

We find the relation between X, X, X, X. Using X ≤ X ≤ X, we obtain

X = I +
m∑

i=

AiX
–ni
 Ai ≤ I +

m∑

i=

A
i = X

and

X = I +
m∑

i=

AiX
–ni
 Ai ≥ I +

m∑

i=

AiX
–ni
 Ai = X.

Hence X ≤ X ≤ X. In the same way we can prove that

X ≤ X ≤ X ≤ X ≤ X ≤ X.



Al-Dubiban Journal of Inequalities and Applications  (2015) 2015:147 Page 11 of 18

We suppose that

X ≤ Xs ≤ Xs+ ≤ Xs+ ≤ Xs+ ≤ X. (.)

Using the inequalities (.), we have

Xs+ = I +
m∑

i=

AiX
–ni
s+Ai ≤ I +

m∑

i=

AiX
–ni
s+Ai = Xs+,

Xs+ = I +
m∑

i=

AiX
–ni
s+Ai ≥ I +

m∑

i=

AiX
–ni
s+Ai = Xs+.

Similarly

Xs+ = I +
m∑

i=

AiX
–ni
s+Ai ≤ I +

m∑

i=

AiX
–ni
s+Ai = Xs+,

Xs+ = I +
m∑

i=

AiX
–ni
s+Ai ≥ I +

m∑

i=

AiX
–ni
s+Ai = Xs+.

Therefore, the inequalities (.) are true, for all s = , , , . . . . Consequently the subse-
quences {Xs} and {Xs+} are convergent to positive definite matrices. To prove that these
sequences have a common limit, we consider

‖Xs+ – Xs‖ =

∥
∥
∥
∥
∥

m∑

i=

Ai
(
X–ni

s – X–ni
s–

)
Ai

∥
∥
∥
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s – X–ni

s–
∥
∥

=
m∑

i=

‖Ai‖∥∥X–ni
s

(
Xni

s– – Xni
s

)
X–ni

s–
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s

∥
∥
∥
∥X–ni

s–
∥
∥
∥
∥Xni

s– – Xni
s

∥
∥

=
m∑

i=

‖Ai‖∥∥X–ni
s

∥
∥
∥
∥X–ni

s–
∥
∥

∥
∥
∥
∥
∥

(Xs– – Xs)
ni∑

r=

Xni–r
s–Xr–

s

∥
∥
∥
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s

∥
∥
∥
∥X–ni

s–
∥
∥‖Xs– – Xs‖

×
( ni∑

r=

‖Xs–‖ni–r‖Xs‖r–

)

.

From the inequalities (.), we have Xs, Xs– ≥ I , and Xs, Xs– ≤ I +
∑m

i= A
i , for all s =

, , , . . . . Then we have

‖Xs+ – Xs‖ ≤
m∑

i=

ni‖Ai‖‖Xs– – Xs‖
(

 +
m∑

i=

‖Ai‖

)ni–

.
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Hence

‖Xs+ – Xs‖ ≤ q‖Xs – Xs–‖ ≤ · · · ≤ qs
m∑

i=

‖Ai‖,

that is,

‖Xs+ – Xs‖ → , as s → ∞.

Hence, the two subsequences {Xs} and {Xs+} have the same limit X, which is a positive
definite solution of (.). �

From Theorem ., we can deduce the following corollary.

Corollary . From inequality (.), we have the following upper bound:

max
(‖Xs+ – X‖,‖X – Xs‖

) ≤ qs
m∑

i=

‖Ai‖. (.)

Remark . Theorem . provides the sufficient condition q =
∑m

i= ni‖Ai‖( +
∑m

i= ‖Ai‖)ni– <  for the existence of positive definite solutions of (.), we note that when
m =  we have the condition ‖A‖( + ‖A‖)n– < 

n , which is sufficient for the existence of
positive definite solutions of the matrix equation X – A∗X–nA = I ([], Theorem .).

Theorem . Let Ai, i = , , . . . , m, be hermitian matrices and AiAj = AjAi, for all i, j =
, , . . . , m. If q =

∑m
i= ni‖Ai‖( +

∑m
i= ‖Ai‖)ni– < , and after s iterative steps of Algo-

rithm ., we have ‖I – Xni
s–X–ni

s ‖ < ε, then

∥
∥
∥
∥
∥

Xs –
m∑

i=

AiX–ni
s Ai – I

∥
∥
∥
∥
∥

< ε

m∑

i=

‖Ai‖. (.)

Proof From Algorithm ., we have

Xs –
m∑

i=

AiX–ni
s Ai – I = Xs –

m∑

i=

AiX–ni
s Ai – Xs +

m∑

i=

AiX
–ni
s– Ai

=
m∑

i=

Ai
(
X–ni

s– – X–ni
s

)
Ai.

By taking the norm on both sides of the above equation, we have

∥
∥
∥
∥
∥

Xs –
m∑

i=

AiX–ni
s Ai – I

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

m∑

i=

Ai
(
X–ni

s– – X–ni
s

)
Ai

∥
∥
∥
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s– – X–ni

s
∥
∥

≤
m∑

i=

‖Ai‖∥∥X–ni
s–

∥
∥
∥
∥I – Xni

s–X–ni
s

∥
∥.
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From the proof of Theorem ., we have X–ni
s– ≤ I , then

∥
∥
∥
∥
∥

Xs –
m∑

i=

AiX–ni
s Ai – I

∥
∥
∥
∥
∥

≤
m∑

i=

‖Ai‖∥∥I – Xni
s–X–ni

s
∥
∥

< ε

m∑

i=

‖Ai‖. �

4 Numerical examples
In this section, we use the iterative Algorithms . and . to compute the positive def-
inite solutions of (.) and (.), respectively. The solutions are computed for different
matrices Ai, i = , , . . . , m, with different orders. We denote X, the solution obtained
by Algorithms . and . and ε(Xs) = ‖X – Xs‖∞, R(Xs) = ‖Xs +

∑m
i= A∗

i X–ni
s Ai – I‖∞,

Ys = I –
∑m

i= A∗
i Ai –Xs, Zi,s = Xni

s –AiA∗
i (i = , , . . . , m), R(Xs) = ‖Xs –

∑m
i= A∗

i X–ni
s Ai –I‖∞.

Example . Consider the matrix equation

X + A∗
 X–A + A∗

X–A + A∗
X–A = I, (.)

where A, A, and A are given by

A =

⎛

⎜
⎝

. . .
. . .

–. . .

⎞

⎟
⎠ , A =

⎛

⎜
⎝

. . .
. . .
. . –.

⎞

⎟
⎠ ,

A =

⎛

⎜
⎝

. –. .
. –. .
. –. .

⎞

⎟
⎠ .

We use Algorithm . to solve (.). After  iterations, we get the positive definite solution

X ≈ X =

⎛

⎜
⎝

. . –.
. . –.

–. –. .

⎞

⎟
⎠

and R(X) = . × –, λmin(Y) = ., λmin(Z,) = .,
λmin(Z,) = ., λmin(Z,) = ..

The other results are listed in Table .

Table 1 Error analysis for Example 4.1

s ε(Xs) R1(Xs) λmin(Ys) λmin(Z1,s) λmin(Z2,s) λmin(Z3,s)

0 3.90209× 10–2 3.33430× 10–2 –3.82258× 10–2 0.989301 0.980411 0.985409
1 5.67787× 10–3 4.70245× 10–3 1.11022× 10–16 0.849272 0.807341 0.879195
2 9.75412× 10–4 8.02922× 10–4 4.48982× 10–4 0.829614 0.783528 0.863646
3 1.72490× 10–4 1.41756× 10–4 4.83255× 10–4 0.826170 0.779373 0.860915
4 3.07337× 10–5 2.52483× 10–5 4.87548× 10–4 0.825560 0.778638 0.860431
5 5.48539× 10–6 4.50591× 10–6 4.88236× 10–4 0.825451 0.778506 0.860345
6 9.79481× 10–7 8.04563× 10–7 4.88356× 10–4 0.825431 0.778483 0.860329
7 1.74918× 10–7 1.43680× 10–7 4.88377× 10–4 0.825428 0.778479 0.860327
8 3.12382× 10–8 2.56594× 10–8 4.88381× 10–4 0.825427 0.778478 0.860326
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Example . Consider the matrix equation

X + A∗
 X–A + A∗

X–A + A∗
X–A + A∗

X–A = I, (.)

where A, A, A, and A are given by

A =

⎛

⎜
⎜
⎜
⎝

. . . .
. . . .
. –. . .
. –. . .

⎞

⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎝

. . . –.
. . . .
. . . –.
. . –. .

⎞

⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎝

. . . .
. . . .

–. . –. .
–. –. . .

⎞

⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎝

. . –. .
–. . . .

. . –. .
. –. . .

⎞

⎟
⎟
⎟
⎠

.

We use Algorithm . to solve (.). After  iterations, we get the positive definite solution

X ≈ X =

⎛

⎜
⎜
⎜
⎝

. –. –. –.
–. . . –.
–. . . –.
–. –. –. .

⎞

⎟
⎟
⎟
⎠

and R(X) = . × –, λmin(Y) = ., λmin(Z,) = .,
λmin(Z,) = ., λmin(Z,) = ., λmin(Z,) = ..

The other results are listed in Table .

Table 2 Error analysis for Example 4.2

s ε(Xs) R1(Xs) λmin(Ys) λmin(Z1,s) λmin(Z2,s) λmin(Z3,s) λmin(Z4,s)

0 4.81432× 10–2 3.79180× 10–2 –4.33175× 10–2 0.984520 0.982228 0.984476 0.987805
1 1.02252× 10–2 7.49107× 10–3 –1.78032× 10–18 0.719649 0.902084 0.604645 0.831201
2 2.73413× 10–3 2.08835× 10–3 1.05313× 10–3 0.664911 0.883407 0.535912 0.795502
3 6.45772× 10–4 5.05650× 10–4 1.33072× 10–3 0.652517 0.879228 0.521034 0.787317
4 1.40122× 10–4 1.08374× 10–4 1.41687× 10–3 0.650050 0.878406 0.518114 0.785684
5 3.17484× 10–5 2.37848× 10–5 1.43915× 10–3 0.649533 0.878227 0.517495 0.785339
6 7.96360× 10–6 5.93391× 10–6 1.44386× 10–3 0.649401 0.878180 0.517334 0.785250
7 2.02969× 10–6 1.53853× 10–6 1.44486× 10–3 0.649366 0.878167 0.517291 0.785226
8 4.91154× 10–7 3.76520× 10–7 1.44510× 10–3 0.649357 0.878164 0.517280 0.785220
9 1.14634× 10–7 8.75007× 10–8 1.44517× 10–3 0.649355 0.878164 0.517278 0.785219
10 2.71333× 10–8 2.05092× 10–8 1.44518× 10–3 0.649354 0.878164 0.517277 0.785219
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Example . Consider the matrix equation

X + A∗
 X–A + A∗

X–A = I, (.)

where A and A are given as in Example . from []:

A =

⎛

⎜
⎝

. –. –.
. . –.
. –. .

⎞

⎟
⎠ ,

A =

⎛

⎜
⎝

. –. .
–. –. –.
. –. –.

⎞

⎟
⎠ .

We use Algorithm . to solve (.). After  iterations, we get the positive definite solution

X ≈ X =

⎛

⎜
⎝

. –. –.
–. . –.

–. –. .

⎞

⎟
⎠

and R(X) = . × –, λmin(Y) = ., λmin(Z,) = ., λmin(Z,) =
..

The other results are listed in Table .

Example . Consider the matrix equation

X – A∗
 X–A – A∗

X–A – A∗
X–A – A∗

X–A = I, (.)

where A, A, A, and A are given by

A =

⎛

⎜
⎝

. –. .
–. . .
. . .

⎞

⎟
⎠ , A =

⎛

⎜
⎝

. –. .
. . 
. –. .

⎞

⎟
⎠ ,

A =

⎛

⎜
⎝

–. . .
–. . .
. –. –.

⎞

⎟
⎠ , A =

⎛

⎜
⎝

 . .
. . .
. –. –.

⎞

⎟
⎠ .

We use Algorithm . to solve (.). After  iterations, we get the positive definite solu-
tion

X ≈ X =

⎛

⎜
⎝

. . –.
. . .
–. . .

⎞

⎟
⎠

and R(X) = . × –, λmin(I +
∑

i= A∗
i Ai – X) = ., λmin(X – I) =

..
The other results are listed in Table .
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Table 3 Error analysis for Example 4.3

s ε(Xs) R1(Xs) λmin(Ys) λmin(Z1,s) λmin(Z2,s)

0 2.66052× 10–1 1.56030× 10–1 –1.74299× 10–1 0.900634 0.910937
4 1.95763× 10–2 7.54210× 10–3 1.94201× 10–3 0.508120 0.455158
8 2.99945× 10–3 1.09180× 10–3 1.96189× 10–3 0.483981 0.431403
12 4.96010× 10–4 1.78894× 10–4 1.96449× 10–3 0.480380 0.427859
16 8.30170× 10–5 2.98954× 10–5 1.96492× 10–3 0.479787 0.427276
20 1.39223× 10–5 5.01230× 10–6 1.96499× 10–3 0.479688 0.427178
24 2.33562× 10–6 8.40831× 10–7 1.96500× 10–3 0.479671 0.427162
28 3.91847× 10–7 1.41065× 10–7 1.96500× 10–3 0.479669 0.427159
32 6.57408× 10–8 2.36667× 10–8 1.96500× 10–3 0.479668 0.427158

Table 4 Error analysis for Example 4.4

s ε(Xs) R2(Xs) λmin(I +
∑4

i=1 A∗
i Ai – Xs) λmin(Xs – I)

0 8.55046× 10–1 2.65 0.715946 0
10 1.83959× 10–1 3.26477× 10–1 0.544118 0.076489
20 1.06950× 10–2 1.87085× 10–2 0.493691 0.098958
30 5.94976× 10–4 1.04066× 10–3 0.490594 0.100375
40 3.30916× 10–5 5.78794× 10–5 0.490422 0.100455
50 1.84048× 10–6 3.21913× 10–6 0.490412 0.100459
60 1.02364× 10–7 1.79042× 10–7 0.490411 0.100459
70 5.69327× 10–9 9.95792× 10–9 0.490411 0.100459

Example . Consider the matrix equation

X – A∗
 X–A – A∗

X–A – A∗
X–A = I, (.)

where A, A, and A are given by

A =

⎛

⎜
⎜
⎜
⎝

.  –. .
.  . .
. . . .
. –. . .

⎞

⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎝

 –. . .
. .  .
. –. . .
. .  .

⎞

⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎝

–. . . .
–.  . –.

 –.  –.
. –. . .

⎞

⎟
⎟
⎟
⎠

.

We use Algorithm . to solve (.). After  iterations, we get the positive definite solution

X ≈ X =

⎛

⎜
⎜
⎜
⎝

. . –. .
. . –. .

–. –. . .
. . . .

⎞

⎟
⎟
⎟
⎠

and R(X) = . × –, λmin(I +
∑

i= A∗
i Ai – X) = ., λmin(X – I) =

..
The other results are listed in Table .
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Table 5 Error analysis for Example 4.5

s ε(Xs) R2(Xs) λmin(I +
∑3

i=1 A∗
i Ai – Xs) λmin(Xs – I)

0 2.10332× 10–1 2.95400× 10–1 0.047059 0
3 3.11244× 10–2 4.52684× 10–2 0.017503 0.028153
6 5.17330× 10–3 8.36352× 10–3 0.023078 0.023109
9 1.10730× 10–3 1.75717× 10–3 0.022155 0.023907
12 2.28175× 10–4 3.63481× 10–4 0.022341 0.023751
15 4.73953× 10–5 7.54424× 10–5 0.022303 0.023783
18 9.83002× 10–6 1.56497× 10–5 0.022311 0.023776
21 2.03950× 10–6 3.24685× 10–6 0.022309 0.023778
24 4.23122× 10–7 6.73607× 10–7 0.022310 0.023777
27 8.77834× 10–8 1.39750× 10–7 0.022310 0.023777
30 1.82120× 10–8 2.89934× 10–8 0.022310 0.023777

Table 6 Error analysis for Example 4.6

s ε(Xs) R2(Xs) λmin(I +
∑2

i=1 A∗
i Ai – Xs) λmin(Xs – I)

0 8.94901× 10–1 3.72279 0.501528 0
40 8.72900× 10–2 1.79569× 10–1 0.195273 0.120468
80 1.70413× 10–2 3.36946× 10–2 0.185914 0.131596
120 3.26922× 10–3 6.41673× 10–3 0.184203 0.133762
160 6.23654× 10–4 1.22239× 10–3 0.183879 0.134178
200 1.18834× 10–4 2.32858× 10–4 0.183817 0.134257
240 2.26383× 10–5 4.43579× 10–5 0.183805 0.134272
280 4.31248× 10–6 8.44986× 10–6 0.183803 0.134275
320 8.21498× 10–7 1.60964× 10–6 0.183803 0.134276
360 1.56490× 10–7 3.06625× 10–7 0.183803 0.134276
400 2.98101× 10–8 5.84098× 10–8 0.183803 0.134276

Example . Consider the matrix equation

X – A∗
 X–A – A∗

X–A = I, (.)

where A and A are given as in Example . from []:

A =

⎛

⎜
⎝

. . .
. . .
. . .

⎞

⎟
⎠ ,

A =

⎛

⎜
⎝

. . .
. . .
. . .

⎞

⎟
⎠ .

We use Algorithm . to solve (.). After  iterations, we get the positive definite so-
lution

X ≈ X =

⎛

⎜
⎝

. . .
. . .
. . .

⎞

⎟
⎠

and R(X) = . × –, λmin(I +
∑

i= A∗
i Ai – X) = ., λmin(X – I) =

..
The other results are listed in Table .
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5 Conclusion
In this paper, we investigate the nonlinear matrix equations X ±∑m

i= A∗
i X–ni Ai = I , where

ni, i = , , . . . , m, are positive integers. Necessary and sufficient conditions for the existence
of positive definite solutions are derived. Iterative algorithms are proposed to compute
the positive definite solutions of these equations. Moreover, some numerical examples
are given to illustrate the effectiveness and rapidly convergence rate (small run time) of
the proposed iterative algorithms (see values of ε(Xs), R(Xs), and R(Xs)). Also, the values
of λmin show that the solutions of the matrix equations satisfy the necessary conditions.
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