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Abstract
In this paper, we introduce two kinds of iterative methods for finding the
minimum-norm solution to the standard monotone variational inequality problems
in a real Hilbert space. We then prove that the proposed iterative methods converge
strongly to the minimum-norm solution of the variational inequality. Finally, we apply
our results to the constrained minimization problem and the split feasibility problem
as well as the minimum-norm fixed point problem for pseudocontractive mappings.
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1 Introduction
Let C be a nonempty, closed, and convex subset of a real Hilbert space H with the inner
product〈·, ·〉 and induced norm ‖ · ‖. A mapping F is said to be monotone if

〈Fx – Fy, x – y〉 ≥  (.)

for all x, y ∈ C.
The variational inequality problem (VIP) with respect to F and C is to find a point x∗ ∈ C

such that

〈
Fx∗, x – x∗〉 ≥  for all x ∈ C. (.)

Variational inequalities were initially investigated by Kinderlehrer and Stampacchia in [],
and have been widely studied by many authors ever since, due to the fact that they cover as
diverse disciplines as partial differential equations, optimization, optimal control, mathe-
matical programming, mechanics and finance (see [–]).

It is well known that if F is a k-Lipschitz continuous and η-strongly monotone mapping,
i.e., the following inequalities hold:

‖Fx – Fy‖ ≤ k‖x – y‖ and 〈Fx – Fy, x – y〉 ≥ η‖x – y‖
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for all x, y ∈ C, where k and η are fixed positive numbers, then (.) has a unique solu-
tion.

A mapping F is said to be hemicontinuous if for any sequence {xn} converging to x ∈ H
along a line implies Txn ⇀ Tx, i.e., Txn = T(x + tnx) ⇀ Tx as tn →  for all x ∈ H .

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a real Hilbert
space H . Let F be a monotone and hemicontinuous mapping of C into H . Then there exists
x ∈ C such that

〈x – x, Fx〉 ≥  for all x ∈ C.

It is also well known that (.) is equivalent to the fixed point equation

x∗ = PC
[
x∗ – μFx∗], (.)

where PC stands for the metric projection from H onto C and μ is an arbitrarily pos-
itive number. Consequently, the well-known iterative procedure, the projected gradient
method (PGM), can be used to solve (.). PGM generates an iterative sequence by the
recursion

x ∈ C and xn+ = PC
[
(I – μF)xn

]
. (.)

When F is a k-Lipschitz continuous and η-strongly monotone mapping, as μ ∈ (, η

k ), the
sequence {xn} generated by (.) converges strongly to a unique solution of (.).

However, if F fails to be Lipschitz continuous or strongly monotone, then the result
above is false in general. We will assume that F is a hemicontinuous and general monotone
mapping. Thus, VIP (.) is ill-posed and regularization is needed; moreover, a solution is
often sought through iteration methods.

In , Korpelevich [] introduced the following so-called extragradient method:

⎧
⎪⎨

⎪⎩

x ∈ C,
yn = PC[xn – λFxn],
xn+ = PC[xn – λFyn]

(EM)

for all n ≥ , where λ ∈ (, 
k ), C is a nonempty, closed, and convex subset of Rn and F is

a monotone k-Lipschitz mapping of C into Rn. He proved that if VI(C, F) is nonempty,
then the sequences {xn} and {yn}, generated by (EM), converge weakly to the same point
p ∈ VI(C, F), which is a solution of (.).

Recently Chen et al. [] introduced the following iterative method:

xn+ = PC
(
( – γ )xn + γ

(
( – tn)fxn + tnTxn

))
,

where γ ∈ (, η

k ) is fixed, T is a nonexpansive mapping and I – f is a Lipschitz ( – ρ)-
strongly monotone mapping. Then the iterative sequence xn converges strongly to the
unique solution x∗ of (VI) below:

x∗ ∈ S,
〈
(I – f )x∗, x – x∗〉 ≥ , x ∈ S.



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:135 Page 3 of 15

Very recently Yao et al. [] constructed the minimum-norm fixed points of pseudocon-
tractions in Hilbert spaces by the following iterative algorithm:

xn+ = PC
[
( – αn – βn)xn + Txn

]
, n ≥ ,

where T is a L-Lipschitzian and pseudocontractive with Fix(T) 
= ∅.

Questions
. Can one modify extragradient method for general monotone operator variational

inequality so that strong convergence of the modified algorithm is desirable?
. If F is a hemicontinuous and strongly monotone mapping, the solution of VIP (.) is

unique or not?

The purpose of this paper is to solve the questions above. We introduce implicit and
explicit iterative methods for construction of the solution of the monotone variational in-
equality problem and prove that our algorithms converge strongly to the minimum-norm
solution of variational inequality problem (.). Finally, we apply our results to the con-
strained minimization problem and the split feasibility problem as well as the minimum-
norm fixed point problem for pseudocontractive mappings.

2 Preliminaries
For our main results, we shall make use of the following lemmas.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let A : C → H be a hemicontinuous monotone operator. Then, for a fixed element x∗ ∈ C,
the following variational inequalities are equivalent:

(i) 〈Ax, x – x∗〉 ≥ , ∀x ∈ C;
(ii) 〈Ax∗, x – x∗〉 ≥ , ∀x ∈ C.

Lemma . (see []) Let X be a reflexive Banach space and K is a unbounded closed convex
subset of X with θ ∈ K . Let A : K → X∗ be a hemicontinuous monotone coercively operator,
i.e., ∀u ∈ K ,

〈Au, u〉
‖u‖ → +∞ as ‖u‖ → +∞.

Then ∀w∗ ∈ X∗, there exists a u ∈ K such that

〈
Au – w∗, v – u

〉 ≥ , ∀v ∈ K . (.)

In Lemma ., θ ∈ K is needed. Indeed, if A : K → X∗ is a hemicontinuous η-strongly
monotone operator, then the restriction that θ ∈ K can be omitted. To prove this, we give
the following lemma.

Lemma . Let K be a unbounded, closed, and convex subset of reflexive Banach space X.
Let A : K → H be a hemicontinuous η-strongly monotone operator. Then ∀w∗ ∈ X∗, there
exists a u∗

 ∈ K such that the VI (.) holds.
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Proof Let K̃ = K – x, where x is a fixed element of K . Define Ãx = A(x + x). Then we see
that Ã is hemicontinuous η-strongly monotone. For any x, y ∈ K̃ we have

〈Ãx – Ãy, x – y〉 =
〈
A(x + x) – A(y + x), x – y

〉

≥ η‖x – y‖.

Since 〈Ãx – Ax, x〉 ≥ η‖x‖, we have

〈Ãx, x〉 ≥ η‖x‖ – ‖Ax‖‖x‖.

Then we get

〈Ãx, x〉
‖x‖ ≥ η‖x‖ – ‖Ax‖ → +∞ as ‖x‖ → ∞.

By Lemma ., ∀w∗ ∈ X∗, there exists a u ∈ K̃ such that

〈
Ãu – w∗, v – u

〉 ≥ , ∀v ∈ K̃ .

Putting u
∗ = u + x, then we have

〈
Au

∗ – w∗, v – u
∗〉 ≥ , ∀v ∈ K .

Therefore, u
∗ is a solution of VIP (.). �

Lemma . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
A : C → H be a hemicontinuous η-strongly monotone operator. Then variational inequality

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ K , (.)

has a unique solution.

Proof Let VI(C, A) be the solution set of VI (.). From Lemma ., we know that VI(C, A)
is nonempty. Next, we show that VI(C, A) has a unique element. Assume that x∗, y∗ ∈
VI(C, A). Then we have

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C (.)

and

〈
Ay∗, x – y∗〉 ≥ , ∀x ∈ C. (.)

Combining (.) and (.), we get

〈
Ax∗ – Ay∗, y∗ – x∗〉 ≥ . (.)
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Since A is η-strongly monotone, from (.) it follows that

η
∥∥x∗ – y∗∥∥ ≤ 〈

Ax∗ – Ay∗, x∗ – y∗〉 ≤ .

Therefore, x∗ = y∗. This completes the proof. �

Lemma . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let A : C → H be a hemicontinuous monotone operator and γn >  be a sequence of real
numbers. Then γnI + A are γn-strongly monotone.

Proof ∀x, y ∈ C, we have

〈
(γnI + A)x – (γnI + A)y, x – y

〉

≥ γn‖x – y‖ + 〈Ax – Ay, x – y〉
≥ γn‖x – y‖.

So, γnI + A are γn-strongly monotone. �

Lemma . (see []) Let {αn} be a sequence of nonnegative real numbers satisfying

an+ ≤ ( – γn)an + γnσn, n ≥ ,

where {γn} ⊂ (, ) and {σn} satisfy
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞σn ≤  or
∑∞

n= |γnσn| < ∞.
Then limn→∞ αn = .

Lemma . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
T : C → H be a mapping and write A := I – T . Then VI(C, A) = Fix(PCT). In particular, if
T : C → C is a self-mapping, then VI(C, A) = Fix(T).

Proof Indeed,

x∗ ∈ VI(C, A) ⇔ x∗ = PC(I – A)x∗ ⇔ x∗ = PCTx∗ ⇔ x∗ ∈ Fix(PCT).

If T : C → C is a self-mapping, then we have

x∗ ∈ Fix(PCT) ⇔ x∗ = Tx∗.

This completes the proof. �

Now we are in a proposition to state and prove the main results in this paper.

3 Main results
In this section we will introduce two iterative methods (one implicit and the other ex-
plicit). First, we introduce the implicit one. In what follows, we assume that A : C → H is
hemicontinuous and monotone.
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For given γn > , we consider the sequences of operators {An} which are defined by

Anx = γnx + Ax, ∀x ∈ C (.)

for all n ≥ .
From Lemma ., we know that An : C → H are hemicontinuous and γn-strongly mono-

tone for all n ≥ . It follows from Lemma . that the variational inequality

〈Anyn, x – yn〉 ≥ , ∀x ∈ C, (.)

has a unique solution yn ∈ C for every fixed n ≥ .
Substitute (.) into (.) to obtain

〈γnyn + Ayn, x – yn〉 ≥ , ∀x ∈ C. (.)

Take γn = αn
βn

. Then (.) yields

〈αnyn + βnAyn, x – yn〉 ≥ , ∀x ∈ C, (.)

and hence

〈yn – yn – αnyn – βnAyn, x – yn〉 ≤ , ∀x ∈ C. (.)

It turns out that

〈
( – αn)yn – βnAyn – yn, x – yn

〉 ≤ , ∀x ∈ C. (.)

By virtue of the property of PC , we conclude

yn = PC
[
( – αn)yn – βnAyn

]
, n ≥ . (.)

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let A be a hemicontinuous monotone operator. Let {αn} and {βn} be two sequences in [, ]
that satisfy the following condition:

αn

βn
→  as n → ∞.

Assume that VI(C, A) 
= ∅. Then the sequence {yn} generated by (.) converges in norm
to x∗ = PVI(C,A)θ which is the minimum-norm solution of VIP (.).

Proof Put zn = ( – αn)yn – βnAyn. ∀p ∈ VI(C, A), we have

‖yn – p‖ = 〈yn – p, yn – p〉 = 〈yn – zn, yn – p〉 + 〈zn – p, yn – p〉. (.)

By using (.) and (.), we get

〈yn – zn, yn – p〉 = 〈PCzn – zn, PCzn – p〉.
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It follows from the property of PC that

〈PCzn – zn, PCzn – p〉 ≤ . (.)

By (.) and (.), we have

‖yn – p‖ ≤ 〈zn – p, yn – p〉
=

〈
( – αn)yn – βnAyn – p, yn – p

〉

= 〈yn – p, yn – p〉 + 〈–αnyn – βnAyn, yn – p〉
= ‖yn – p‖ – 〈αnyn + βnAyn, yn – p〉,

which simplifies to

〈αnyn + βnAyn, yn – p〉 ≤ , (.)

and then
〈
αn

βn
yn + Ayn, yn – p

〉
≤ . (.)

Setting γn = αn
βn

, then we have

 ≥ 〈γnyn + Ayn, yn – p〉
= 〈γnyn + Ayn + Ap – Ap, yn – p〉
= γn〈yn, yn – p〉 + 〈Ayn – Ap, yn – p〉 + 〈Ap, yn – p〉. (.)

Since A is a monotone operator and p ∈ VI(C, A), we know

〈Ayn – Ap, yn – p〉 ≥  (.)

and

〈Ap, yn – p〉 ≥ . (.)

Substitute (.) and (.) into (.) to obtain

〈yn, yn – p〉 = 〈yn – p + p, yn – p〉 ≤ . (.)

Then we have

‖yn – p‖ ≤ 〈–p, yn – p〉 ≤ ‖p‖‖yn – p‖, (.)

from which it turns out that

‖yn – p‖ ≤ ‖p‖.

Therefore, {yn} is bounded. Then we know that {yn} has a subsequence {ynj} such that
ynj ⇀ x∗ as j → ∞.
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Furthermore, without loss of generality, we may assume that {yn} converges weakly to a
point x∗ ∈ C.

We show that x∗ is a solution to VIP (.). For any x ∈ C, by Lemma . we have

〈γnx + Ax, x – yn〉 – 〈γnyn + Ayn, x – yn〉
=

〈
(γnI + A)x – (γnI + A)yn, x – yn

〉

≥ γn‖x – yn‖. (.)

Combining (.) and (.), we get

〈γnx + Ax, x – yn〉 ≥ 〈γnyn + Ayn, x – yn〉 ≥ , ∀x ∈ C. (.)

Taking the limit as n → ∞ in (.) yields

〈
Ax, x – x∗〉 ≥ , ∀x ∈ C.

By Lemma ., we get

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C,

that is, x∗ ∈ VI(C, A).
Therefore, we can substitute p by x∗ in (.) to obtain

∥∥yn – x∗∥∥ ≤ 〈
x∗, x∗ – yn

〉
. (.)

Since yn ⇀ x∗ as n → ∞, by (.) we get yn → x∗ as n → ∞.
Moreover, from (.) we get

〈
x∗, x∗ – p

〉 ≤ , ∀p ∈ VI(C, A). (.)

By virtue of the property of the projection, we claim

x∗ = PVI(C,A)θ . (.)

So, the sequence {yn} generated by (.) converges in norm to x∗ = PVI(C,A)θ as n → ∞.
Furthermore, it follows from (.) that

∥∥x∗∥∥ ≤ 〈
x∗, p

〉 ≤ ∥∥x∗∥∥‖p‖, ∀p ∈ VI(C, A), (.)

from which we know that x∗ is the minimum-norm solution of VIP (.). This completes
the proof. �

Now, we introduce an explicit method and establish its strongly convergence analysis.
From the implicit method, it is natural to consider the following iteration method that

generates a sequence {xn} according to the recursion

xn+ = PC
[
( – αn)xn – βnAxn

]
, n ≥ , (.)
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where the initial guess x ∈ C is selected arbitrarily and {αn} and {βn} are two sequences
of positive numbers in (, ).

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let A be a hemicontinuous monotone operator. Let {αn} and {βn} be two sequences in [, ]
that satisfy the following conditions:

(i) αn
βn

→ , β
n

αn
→  as n → ∞;

(ii) αn →  as n → ∞,
∑∞

n= αn = ∞;
(iii) |αn–αn–|+|βn–βn–|

α
n

→  as n → ∞.
Assume that both {Axn} and {Ayn} are bounded and that VI(C, A) 
= ∅. Then the iter-

ative sequence {xn} generated by (.) converges in norm to x∗ = PVI(C,A)θ , which is the
minimum-norm solution to VIP (.).

Proof By using Theorem ., we know that {yn} converges in norm to x∗ = PVI(C,A)θ .
For any p ∈ VI(C, A), from the property of PC we know

‖xn+ – p‖ =
∥∥PC

[
( – αn)xn – βnAxn

]
– p

∥∥

≤ ∥∥( – αn)xn – βnAxn – p
∥∥

=
∥∥( – αn)(xn – p) – βnAxn – αnp

∥∥

=
∥∥( – αn)(xn – p) + αn(–p)

∥∥ + β
n‖Axn‖

– βn( – αn)〈xn – p, Axn〉 + αnβn〈p, Axn〉. (.)

By Lemma . we know

〈xn – p, Axn〉 ≥ , n ≥ . (.)

Substitute (.) into (.) to get

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖ + αn‖p‖ + αnβn‖p‖‖Axn‖ + β
n‖Axn‖

≤ ( – αn)‖xn – p‖ + αn

(
‖p‖ + βn‖p‖‖Axn‖ +

β
n

αn
‖Axn‖

)
. (.)

Since {Axn} is bounded, by condition (i), we see that there exists some positive constant
M = max{‖x – p‖,‖p‖ + βn‖p‖‖Axn‖ + β

n
αn

‖Axn‖, n ≥ } such that

‖xn – p‖ ≤ M

for all n ≥ , which implies that {xn} is bounded.
By using (.) and (.), we get

‖xn+ – yn‖ ≤ ∥∥( – αn)(xn – yn) – βn(Axn – Ayn)
∥∥

≤ ( – αn)‖xn – yn‖ + β
n‖Axn – Ayn‖

– ( – αn)βn〈Axn – Ayn, xn – yn〉
≤ ( – αn)‖xn – yn‖ + β

n‖Axn – Ayn‖
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≤ ( – αn)(‖xn – yn–‖ + ‖xn – yn–‖‖yn – yn–‖
+ ‖yn – yn–‖) + β

n‖Axn – Ayn‖. (.)

Since both {yn} and {Ayn} are bounded, we get

‖yn – yn–‖ ≤ 〈
yn – yn–,

[
( – αn)yn – βnAyn

]

–
[
( – αn–)yn– – βn–Ayn–

]〉

= 〈yn – yn–, yn – yn– – αnyn + αnyn– – αnyn– + αn–yn–

– βnAyn + βnAyn––βnAyn– + βn–Ayn–〉
= ( – αn)‖yn – yn–‖ + |αn – αn–|〈yn – yn–, yn–〉

+ |βn – βn–|〈yn – yn–, Ayn–〉 – βn〈yn – yn–, Ayn – Ayn–〉
≤ ( – αn)‖yn – yn–‖ + |αn – αn–|‖yn – yn–‖‖yn–‖

+ |βn – βn–|‖yn – yn–‖‖Ayn–‖. (.)

Write M = max{‖yn–‖,‖Ayn–‖}, n ≥ . Then we have

‖yn – yn–‖ ≤ |αn – αn–| + |βn – βn–|
αn

M. (.)

From conditions (i) and (iii) we know that |αn–αn–|+|βn–βn–|
αn

= o(αn) and β
n = o(αn).

Putting M = max{M, ‖xn – yn–‖,‖Axn – Ayn‖,‖yn – yn–|}, then (.) turns out to be

‖xn+ – yn‖ ≤ ( – αn)‖xn – yn–‖ + αn

(

|αn – αn–| + |βn – βn–|

α
n

+
β

n
αn

)
M

= ( – αn)‖xn – yn–‖ + o(αn).

By Lemma . and condition (ii), we have ‖xn+ – yn‖ → , as n → ∞. It follows that
{xn} converges strongly to x∗ = PVI(C,A)θ . This completes the proof. �

If A : C → H is a k-Lipschitz continuous and monotone, we have the following conver-
gence result.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let A be a k-Lipschitz continuous and monotone operator. Let {αn}, {βn} be two sequences
in [, ] that satisfy the following conditions:

(i) αn
βn

→ , β
n

αn
→  as n → ∞;

(ii) αn →  as n → ∞,
∑∞

n= αn = ∞;
(iii) |αn–αn–|+|βn–βn–|

α
n

→  as n → ∞.
Assume that VI(C, A) 
= ∅. Then the iterative sequence {xn} generated by (.) converges

in norm to x∗ = PVI(C,A)θ , which is the minimum-norm solution of VIP (.).

Proof From Theorem ., we know that {yn} converges in norm to x∗ = PVI(C,A)θ . There-
fore, it is sufficient to show that xn+ – yn →  as n → ∞.
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In view of condition (i), without loss of generality, we may assume that

α
n + kβ

n ≤ αn (.)

for all n ≥ . By using (.), (.), and (.), we get

‖xn+ – yn‖ ≤ ∥∥( – αn)(xn – yn) – βn(Axn – Ayn)
∥∥

≤ ( – αn)‖xn – yn‖ + β
n‖Axn – Ayn‖

– ( – αn)βn〈Axn – Ayn, xn – yn〉
≤ ( – αn)‖xn – yn‖ + β

n‖Axn – Ayn‖

≤ [
( – αn) + kβ

n
]‖xn – yn‖

≤ ( – αn)‖xn – yn‖. (.)

From (.), (.), and condition (iii), we obtain

‖xn+ – yn‖ ≤
(

 –


αn

)
‖xn – yn‖

≤
(

 –


αn

)(‖xn – yn–‖ + ‖yn – yn–‖
)

≤
(

 –


αn

)
‖xn – yn–‖ + o(αn). (.)

By condition (ii) and Lemma ., we deduce that xn+ – yn →  as n → ∞. This completes
the proof. �

Remark . Comparing our algorithm (.) with (EM), we find that algorithm (.)
enjoys the following merits:

() The recursion (.) is simpler than (EM).
() The recursion (.) has the strong convergence property; while (EM) has only the

weak convergence property in general.
() The choice of the iterative parametric sequences {αn} and {βn} in (.) does not

depend on the Lipschitz constant of A, thus, (.) is also efficient even in the case
where the Lipschitz constant of A is unknown.

Remark . Choose the sequences {αn} and {βn} such that

αn =


na and βn =


nb , n ≥ ,

where a < b+
 ,  < b < a and a < b or b > 

 . Then it is clear that conditions (i)-(iii) of
Theorems . and . are satisfied.

4 Applications
In this section, we give some applications of our results.
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Problem . Let B be a bounded linear operator on a real Hilbert space H and b ∈ H be
a fixed vector. Find the least square solutions with the minimum norm for the following
class of operator equation:

Bx = b. (.)

It is well known that the above problem is equivalent to the following minimization prob-
lem:

min
x∈C



‖Bx – b‖. (.)

We denote by SB the solution set of Problem .. We consider the functional f (x) =

‖Bx – b‖. Then ∇f (x) = B∗(Bx – b). It is easy to verify that SB = VI(C,∇f ) and x∗ solves
Problem . if and only if x∗ = PSBθ . Let {xn} be generated by the following recursion:

∀x ∈ H , xn+ = PC
[
( – αn)xn – βn∇f (xn)

]
, (.)

where {αn} and {βn} are two sequences in [, ] that satisfy conditions (i)-(iii) in Theo-
rem ..

By virtue of Theorem ., we can deduce the following convergence result.

Theorem . Assume that SB 
= ∅ and {xn} is generated by (.), then {xn} converges in
norm to x∗.

Proof Notice that

∥∥∇f (x) – ∇f (y)
∥∥ ≤ ‖B‖‖x – y‖

and

〈∇f (x) – ∇f (y), x – y
〉

=
〈
B∗(Bx – b) – B∗(By – b), x – y

〉

= 〈Bx – By, Bx – By〉
= ‖Bx – By‖ ≥ ,

we see that ∇f is ‖B‖-Lipschitz continuous and monotone. By Theorem . we conclude
that {xn} converges in norm to x∗ = PVI(C,∇f )θ . This completes the proof. �

Next, we turn to consider the split feasibility problem (SFP).

Problem . Let C and Q be nonempty, closed, and convex subsets in Hilbert spaces H

and H, respectively. The SFP is formulated as finding a point x ∈ C with the property:

x∗ ∈ C, Bx∗ ∈ Q, (.)

where B : C ⊂ H → H is a bounded linear operator.



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:135 Page 13 of 15

We denote by � the solution set of Problem .. Consider the functional

g(x) =


∥∥(I – PQ)Bx

∥∥.

It is well known that if Problem . is consistent, i.e., � 
= ∅, then Problem . is equivalent
to the following minimization problem:

min
x∈C

g(x). (.)

We know that x∗ is a solution of the minimization problem (.) if and only if x∗ is a
solution of the following variational inequality:

〈∇g
(
x∗), x – x∗〉 ≥ , ∀x ∈ C. (.)

Therefore, we have � = VI(C,∇g) provided that � 
= ∅. Let {xn} be generated by the fol-
lowing recursion:

∀x ∈ H , xn+ = PC
[
( – αn)xn – βn∇g(xn)

]
, (.)

where {αn} and {βn} are two sequences in [, ] that satisfy conditions (i)-(iii) in Theo-
rem .. By using Theorem ., we have the following convergence result.

Theorem . Assume � 
= ∅ and {xn} is generated by (.), then {xn} converges in norm to
x∗ = PVI(C,∇g)θ .

Proof Note that ∇g(x) = B∗(I – PQ)Bx. It is clear that ∇g is ‖B‖-Lipschitz continuous and
monotone, by Theorem . we conclude that {xn} converges in norm to x∗ = PVI(C,∇g)θ =
P�θ . This completes the proof. �

Finally, we apply our results to the minimum-norm fixed point problem for pseudocon-
tractive mappings.

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a real Hilbert
space H . Let T : C → C be a hemicontinuous pseudocontractive mapping with Fix(T) 
= ∅.
Assume that {αn} and {βn} are two sequences in [, ] that satisfy the following conditions:

(i) αn
βn

→ , β
n

αn
→  as n → ∞;

(ii) αn →  as n → ∞,
∑∞

n= αn = ∞;
(iii) |αn–αn–|+|βn–βn–|

α
n

→  as n → ∞.
Then the sequence {xn} generated by

x ∈ C, xn+ = PC
[(

 – (αn + βn)
)
xn + βnTxn

]
, n ≥ , (.)

converges in norm to x∗ = PFix(T)θ .

Proof Put A = I – T . Since T : C → C is a hemicontinuous pseudocontractive map-
ping, then A is a hemicontinuous monotone operator. It follows from Theorem . that
VI(C, A) 
= ∅. From the boundedness of C, we know that {Axn} and {Ayn} are bounded.
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By Theorem ., the iterative sequence {xn} converges strongly to x∗ = PVI(C,A)θ . By
Lemma . and noting that T is a self-mapping, we know that VI(C, A) = Fix(T). This
completes the proof. �

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be a k-Lipschitz continuous pseudocontractive mapping with Fix(T) 
= ∅.
Assume that {αn} and {βn} are two sequences in [, ] that satisfy the following conditions:

(i) αn
βn

→ , β
n

αn
→  as n → ∞;

(ii) αn →  as n → ∞,
∑∞

n= αn = ∞;
(iii) |αn–αn–|+|βn–βn–|

α
n

→  as n → ∞.
Then the sequence {xn} generated by

x ∈ C, xn+ = PC
[(

 – (αn + βn)
)
xn + βnTxn

]
, n ≥ , (.)

converges in norm to x∗ = PFix(T)θ .

Proof Put A = I – T . Since T : C → C is a k-Lipschitz continuous pseudocontractive
mapping, A is a (k + )-Lipschitz continuous monotone operator. By Lemma . and our
assumption, we see that VI(C, A) = Fix(T) 
= ∅. By Theorem ., the iterative sequence
{xn} generated by (.) converges strongly to x∗ = PVI(C,A)θ = PFix(T)θ . This completes the
proof. �

Remark . Theorem . improves some related results of [] and [] in the sense that
the iterative parametric sequences do not depend on the norm of operator A. Theorem .
seems to be a new result. Theorem . is similar to Theorem . of [] with a different
condition (iii) and different arguments.
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