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1 Introduction and preliminaries
Throughout this paper, let H be a real Hilbert space with zero vector θ , whose inner prod-
uct and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. The symbols N and R are used to
denote the sets of positive integers and real numbers, respectively. Let K be a nonempty
closed convex subset of a Banach space E and T be a mapping from K into itself. In this
paper, the set of fixed points of T is denoted by F(T). The symbols → and ⇀ denote strong
and weak convergence, respectively.

Let T : K → K be a mapping and K a subset of a Banach space E. T is called a nonex-
pansive mapping if, for all x, y ∈ K , ‖Tx – Ty‖ ≤ ‖x – y‖. T is called quasi-nonexpansive,
if F(T) �= ∅ and for all x ∈ K , p ∈ F(T), ‖Tx – Tp‖ ≤ ‖x – p‖. For examples of quasi-
nonexpansive mappings, see [].

Let H and H be two real Hilbert spaces. T : H → H, T : H → H are two nonlinear
operators with F(T) �= ∅ and F(T) �= ∅. A : H → H is a bounded linear operator. The
split fixed point problem for T and T is to

find an element x ∈ F(T) such that Ax ∈ F(T). (.)

Let � = {x ∈ F(T) : Ax ∈ F(T)} denote the solution set of the problem (.). The problem
was proposed by Censor and Segal [] in a finite-dimensional space firstly. Next, Moudafi
[] studied the problem (.) in real Hilbert spaces; this generalized the problem (.) from
a finite-dimensional space to infinite-dimensional Hilbert spaces. More precisely, the fol-
lowing result was obtained.

Theorem M (see []) Let H and H be two real Hilbert spaces. Given a bounded linear
operator A : H → H, let U : H → H and T : H → H be two quasi-nonexpansive oper-
ators with F(U) �= ∅ and F(T) �= ∅. Assume that U – I and T – I are demiclosed at θ . Let
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{xn} be generated by

⎧
⎪⎨

⎪⎩

x ∈ H,
un = xn + γβA∗(T – I)Axn,
xn+ = ( – αn)un + αnU(un), ∀n ∈N,

(.)

where β ∈ (, ), {αn} ⊂ (δ,  – δ) for a small enough δ > , γ ∈ (, 
λβ

), and λ is the spectral
radius of the operator A∗A. Then {xn} weakly converges to a split common fixed point x∗ ∈
{x∗ ∈ F(U) : Ax∗ ∈ F(T)}.

It is well known that the split feasibility problem and the convex feasibility problem are
useful to some areas of applied mathematics such as image recovery, convex optimization,
and so on. According to [], the split common fixed point problem (.) is a generalization
of both these; also see []. This shows the split common fixed point problem (.) is im-
portant. Recently, some convergence theorems for the split common solution problems
were given in [–]. We notice that Theorem M is a weak convergence theorem, and it is
well known that a strong convergence theorem is always more convenient to use. Hence,
the purpose of this paper is to give some algorithms for the problem (.), and establishes
some strong convergence theorems. At the same time, we generalize the problem (.) to
two countable families of quasi-nonexpansive mappings.

A mapping T is said to be demiclosed if, for any sequence {xn} which weakly converges
to y, and if the sequence {Txn} strongly converges to z, we have T(y) = z; see [].

Definition . (see [, ]) Let K be a nonempty closed convex subset of a real Hilbert
space and T a mapping from K into K . The mapping T is called zero-demiclosed if {xn} in
K satisfying ‖xn – Txn‖ →  and xn ⇀ z ∈ K implies Tz = z.

Proposition . (see [, ]) Let K be a nonempty closed convex subset of a real Hilbert
space with zero vector θ and T a mapping from K into K . Then the following statements
hold.

(a) T is zero-demiclosed if and only if I – T is demiclosed at θ .
(b) If T is a nonexpansive mapping and there is a bounded sequence {xn} ⊂ H such that

‖xn – Txn‖ →  as n → , then T is zero-demiclosed.

Example . (see []) Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈
R and the standard norm | · |. Let C := [, +∞) and Tx = x+

+x for all x ∈ C. Then T is a
continuous zero-demiclosed quasi-nonexpansive mapping but not nonexpansive.

Example . (see []) Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈
R and the standard norm | · |. Let C := [, +∞). Let T be a mapping from C into C defined
by

Tx =

{
x

x+ , x ∈ (, +∞),
, x ∈ [, ].

Then T is a discontinuous quasi-nonexpansive mapping but not zero-demiclosed.
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The following results are important in this paper.
Let C be a closed convex subset of a real Hilbert space H . PC denotes a metric projection

of H onto C, it is well known that PC(x) has the properties: for x ∈ H , and z ∈ C,

z = PC(x) ⇔ 〈x – z, z – y〉 ≥ , ∀y ∈ C (.)

and

∥
∥y – PC(x)

∥
∥ +

∥
∥x – PC(x)

∥
∥ ≤ ‖x – y‖, ∀y ∈ C,∀x ∈ H . (.)

In a real Hilbert space H , it is also well known that

∥
∥λx + ( – λ)y

∥
∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, ∀x, y ∈ H ,∀λ ∈R (.)

and

〈x, y〉 = ‖x‖ + ‖y‖ – ‖x – y‖, ∀x, y ∈ H . (.)

2 Strong convergence theorems
In this section, we construct some algorithms to solve the split common fixed point prob-
lem (.) for quasi-nonexpansive mappings.

Theorem . Let H and H be two real Hilbert spaces. C is a nonempty closed convex
subset of H and K a nonempty closed convex subset of H. T : C → H and T : H → H

are two quasi-nonexpansive mappings with F(T) �= ∅ and F(T) �= ∅. A : H → H is a
bounded linear operator. Assume that T – I and T – I are demiclosed at θ . Let x ∈ C,
C = C, and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tzn,
zn = PC(xn + λA∗(T – I)Axn),
Cn+ = {x ∈ Cn : ‖yn – x‖ ≤ ‖zn – x‖ ≤ ‖xn – x‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

(.)

where P is a projection operator and A∗ denotes the adjoint of A. {αn} ⊂ (,η] ⊂ (, ),
λ ∈ (, 

‖A∗‖ ). Assume that � = {p ∈ F(T) : Ap ∈ F(T)} �= ∅, then xn → x∗ ∈ � and Axn →
Ax∗ ∈ F(T).

Proof It is easy to verify that Cn is closed for n ∈ N ∪ {}. We verify Cn is convex for
n ∈N∪ {}. In fact, let v, v ∈ Cn+, for each λ ∈ (, ), we have

∥
∥yn –

(
λv + ( – λ)v

)∥
∥ =

∥
∥λ(yn – v) – ( – λ)(yn – v)

∥
∥

= λ‖yn – v‖ + ( – λ)‖yn – v‖ – λ( – λ)‖v – v‖

≤ λ‖zn – v‖ + ( – λ)‖zn – v‖ – λ( – λ)‖v – v‖

=
∥
∥zn –

(
λv + ( – λ)v

)∥
∥,



Li and He Journal of Inequalities and Applications  (2015) 2015:131 Page 4 of 12

namely, ‖yn – (λv + ( – λ)v)‖ ≤ ‖zn – (λv + ( – λ)v)‖. Similarly, we have ‖zn – (λv +
( – λ)v)‖ ≤ ‖xn – (λv + ( – λ)v)‖; this shows λv + ( – λ)v ∈ Cn+ and Cn+ is a convex
set for n ∈N∪ {}. Now we prove � ⊂ Cn for n ∈N∪ {}. Let p ∈ �, then

λ
〈
xn – p, A∗(TAxn – Axn)

〉

= λ
〈
A(xn – p) + (TAxn – Axn) – (TAxn – Axn), TAxn – Axn

〉

= λ
(〈

TAxn – Ap, (TAxn – Axn)
〉
– ‖TAxn – Axn‖)

= λ

(


‖TAxn – Ap‖ +



‖TAxn – Axn‖

–


‖Axn – Ap‖ – ‖TAxn – Axn‖

)

by (.)

≤ λ

(


‖TAxn – Axn‖ – ‖TAxn – Axn‖

)

= –λ‖TAxn – Axn‖. (.)

From (.) and (.) we have

‖zn – p‖ =
∥
∥PC

(
xn + λA∗(TAxn – Axn)

)
– PC(p)

∥
∥

≤ ∥
∥xn + λA∗(TAxn – Axn) – p

∥
∥

= ‖xn – p‖ +
∥
∥λA∗(TAxn – Axn)

∥
∥ + λ

〈
xn – p, A∗(TAxn – Axn)

〉

≤ ‖xn – p‖ + λ∥∥A∗∥∥‖TAxn – Axn‖ – λ‖TAxn – Axn‖

= ‖xn – p‖ – λ
(
 – λ

∥
∥A∗∥∥)‖TAxn – Axn‖. (.)

Again from p ∈ �, (.), and (.), it follows that

‖yn – p‖ ≤ ‖zn – p‖ ≤ ‖xn – p‖. (.)

Hence, p ∈ Cn and � ⊂ Cn for n ∈N∪ {}.
Notice that � ⊂ Cn+ ⊂ Cn and xn+ = PCn+ (x) ⊂ Cn, then

‖xn+ – x‖ ≤ ‖p – x‖ for n ∈ N and p ∈ �. (.)

By (.), {xn} is bounded. For n ∈N, by (.), we have

‖xn+ – xn‖ + ‖x – xn‖ =
∥
∥xn+ – PCn (x)

∥
∥ +

∥
∥x – PCn (x)

∥
∥ ≤ ‖xn+ – x‖,

which implies that  ≤ ‖xn – xn+‖ ≤ ‖xn+ – x‖ – ‖x – xn‖. Thus {‖xn – x‖} is non-
decreasing. Therefore, by the boundedness of {xn}, limn→∞ ‖xn – x‖ exists. For m, n ∈ N

with m > n, from xm = PCm (x) ⊂ Cn and (.), we have

‖xm – xn‖ + ‖x – xn‖ =
∥
∥xm – PCn (x)

∥
∥ +

∥
∥x – PCn (x)

∥
∥ ≤ ‖xm – x‖. (.)

By (.) and (.), limn→∞ ‖xn – xm‖ = . So, {xn} is a Cauchy sequence.
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Let xn → x∗. Since xn+ = PCn+ (x) ∈ Cn+ ⊂ Cn, we have

‖zn – xn‖ ≤ ‖zn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖ → ,

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖ → , (.)

‖yn – zn‖ ≤ ‖yn – xn‖ + ‖xn – zn‖ → .

Notice that λ( – λ‖A∗‖) > , from (.) and (.),

‖TAxn – Axn‖ ≤ ‖xn – p‖ – ‖zn – p‖

λ( – λ‖A∗‖)

≤ 
λ( – λ‖A∗‖)

‖xn – zn‖
{‖xn – p‖ + ‖zn – p‖} → . (.)

Again from (.) and (.), we have

‖Tzn – zn‖ =
∥
∥(T – I)zn

∥
∥ → . (.)

Since xn → x∗, from (.) we have zn → x∗, which implies that zn ⇀ x∗. By Proposition .,
we obtain x∗ ∈ F(T).

Next, we want to show Ax∗ ∈ F(T). Since A is a bounded linear operator, we know
that ‖Axn – Ax∗‖ →  by xn → x∗. Together with ‖TAxn – Axn‖ →  and T – I being
demiclosed at θ , we have Ax∗ ∈ F(T). Thus, x∗ ∈ � and {xn} converges strongly to x∗ ∈ �.
The proof is completed. �

Remark . If the quasi-nonexpansive mappings T and T are continuous, then the
demiclosed property can be removed for the quasi-nonexpansive mappings T and T in
Theorem ..

Now, we consider the split fixed point problem for a finite family of quasi-nonexpansive
mappings.

Lemma . (see []) Let T : H → H be a quasi-nonexpansive mapping, and set Tα := ( –
α)I + αT for α ∈ (, ]. Then ‖Tαx – p‖ ≤ ‖x – p‖ – α( – α)‖Tx – x‖, p ∈ F(T) and x ∈ H .
Moreover, F(Tα) = F(T).

Lemma . Let T, T : H → H be two quasi-nonexpansive mappings and set Sξ := ( –
ξ)I + ξT and Sξ := ( – ξ)I + ξT for ξ, ξ ∈ (, ). Again let S = τSξ + ( – τ )Sξ for
τ ∈ (, ). Then S is a quasi-nonexpansive mapping, and F(S) =

⋂
i= F(Sξi ) =

⋂
i= F(Ti).

Proof () It is easy to verify that
⋂

i= F(Sξi ) =
⋂

i= F(Ti). We only need to prove F(S) =
⋂

i= F(Sξi ). Clearly,
⋂

i= F(Sξi ) ⊂ F(S). On the other hand, for p ∈ F(S) and p ∈ ⋂
i= F(Sξi ),

we have

‖p – p‖ =
∥
∥τSξ p + ( – τ )Sξ p – p

∥
∥ =

∥
∥τ (Sξ p – p) + ( – τ )(Sξ p – p)

∥
∥

= τ‖Sξ p – p‖ + ( – τ )‖Sξ p – p‖ – τ ( – τ )‖Sξ p – Sξ p‖

≤ τ‖p – p‖ – τξ( – ξ)‖Tp – p‖ + ( – τ )‖p – p‖
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– ( – τ )ξ( – ξ)‖Tp – p‖ (by Lemma .)

= ‖p – p‖ – τξ( – ξ)‖Tp – p‖ – ( – τ )ξ( – ξ)‖Tp – p‖,

which yields ‖Tp – p‖ = ‖Tp – p‖ = , namely, p ∈ ⋂
i= F(Ti) =

⋂
i= F(Sξi ). So, F(S) =

⋂
i= F(Sξi ).
() Let x ∈ H and p ∈ F(S). Then

‖Sx – p‖ =
∥
∥τSξ x + ( – τ )Sξ x – p

∥
∥ =

∥
∥τ (Sξ x – p) + ( – τ )(Sξ x – p)

∥
∥

≤ τ‖x – p‖ + ( – τ )‖x – p‖ = ‖x – p‖ (by Lemma .).

So, S is a quasi-nonexpansive mapping. The proof is completed. �

Lemma . Let T, T, . . . , Tk : H → H be k quasi-nonexpansive mappings and set S =
∑k

i= τiSξi , where τi ∈ (, ) satisfies
∑k

i= τi = , Sξi := ( – ξi)I + ξiTi for ξi ∈ (, ), i =
, , . . . , k. Then S is a quasi-nonexpansive mapping, and F(S) =

⋂k
i= F(Sξi ) =

⋂k
i= F(Ti).

Proof Using mathematical induction, Lemma . is obtained by Lemma .. �

Theorem . Let H and H be two real Hilbert spaces. C is a nonempty closed con-
vex subset of H and K a nonempty closed convex subset of H. T, . . . , Tk : C → H are
k quasi-nonexpansive mappings with

⋂k
i= F(Ti) �= ∅. G, . . . , Gl : H → H are l quasi-

nonexpansive mappings with
⋂l

j= F(Gj) �= ∅. A : H → H is a bounded linear operator.
Assume that Ti – I (i = , , . . . , k) and Gj – I (j = , , . . . , l) are demiclosed at θ . Let x ∈ C,
C = C, and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)
∑k

i= τiTξi zn,
zn = PC(xn + λA∗(

∑l
i= εjGθj – I)Axn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

(.)

where P is a projection operator and A∗ denotes the adjoint of A, {αn} ⊂ (,η] ⊂ (, ),
λ ∈ (, 

‖A∗‖ ). τi ∈ (, ) and εj ∈ (, ) satisfy
∑k

i= τi =  and
∑l

j= εj = , Tξi := (–ξi)I +ξiTi

for ξi ∈ (, ), i = , , . . . , k, Gθj := ( – θj)I + θjGj for θj ∈ (, ), j = , , . . . , l. Assume that
� = {p ∈ ⋂k

i= F(Ti) : Ap ∈ ⋂l
j= F(Gj)} �= ∅, then the sequence {xn} converges strongly to an

element q ∈ �.

Proof Let T =
∑k

i= τiTξi , S =
∑l

i= εjGθj , by Lemma ., F(T) =
⋂k

i= F(Ti) �= ∅, and F(S) =
⋂l

j= F(Gj) �= ∅. Moreover, T and S are quasi-nonexpansive mappings.
Next, we want to prove T – I and S – I are demiclosed at θ . By the hypothesis, Ti – I

(i = , , . . . , k) and Gj – I (j = , , . . . , l) are demiclosed at θ . So, Tξi – I = ξi(Ti – I) and Gθj –
I = θj(Gj – I) are demiclosed at θ , and that T – I =

∑k
i= τi(Tξi – I) and S – I =

∑l
i= εj(Gθj – I)

are demiclosed at θ .
Thus, by Theorem ., we obtain the desired result. The proof is completed. �

If C = H in Theorem . and Theorem ., then we have the following corollaries.
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Corollary . Let H and H be two real Hilbert spaces. T : H → H and T : H → H

are two quasi-nonexpansive mappings with F(T) �= ∅ and F(T) �= ∅. A : H → H is a
bounded linear operator. Assume that T – I and T – I are demiclosed at θ . Let x ∈ H,
C = H, and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tzn,
zn = xn + λA∗(TAxn – Axn),
Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

where P is a projection operator and A∗ denotes the adjoint of A, {αn} ⊂ (,η] ⊂ (, ), λ ∈
(, 

‖A∗‖ ). Assume that � = {p ∈ F(T) : Ap ∈ F(T)} �= ∅, then the sequence {xn} converges
strongly to an element x∗ ∈ �.

Corollary . Let H and H be two real Hilbert spaces. T, . . . , Tk : H → H are k
quasi-nonexpansive mappings with

⋂k
i= F(Ti) �= ∅. G, . . . , Gl : H → H are l quasi-

nonexpansive mappings with
⋂l

j= F(Gj) �= ∅. A : H → H is a bounded linear operator.
Assume that Ti – I (i = , , . . . , k) and Gj – I (j = , , . . . , l) are demiclosed at θ . Let x ∈ H,
C = H, and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)
∑k

i= τiTξi zn,
zn = xn + λA∗(

∑k
i= τiGθj Axn – Axn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

where P is a projection operator and A∗ denotes the adjoint of A, {αn} ⊂ (,η] ⊂ (, ),
λ ∈ (, 

‖A∗‖ ). Here τi ∈ (, ) and εj ∈ (, ) satisfy
∑k

i= τi =  and
∑l

j= εj = , Tξi := ( –
ξi)I +ξiTi for ξi ∈ (, ), i = , , . . . , k, Gθj := ( –θj)I +θjGj for θj ∈ (, ), j = , , . . . , l. Assume
that � = {p ∈ ⋂k

i= F(Ti) : Ap ∈ ⋂l
j= F(Gj)} �= ∅, then the sequence {xn} converges strongly to

an element q ∈ �.

If H = H := H and A is an identity operator, then we have the following results by
Theorems . and ., respectively.

Corollary . Let H be a real Hilbert space. C is a nonempty closed convex subset of H . T :
C → H and T : H → H are two quasi-nonexpansive mappings with � := F(T)∩F(T) �= ∅.
Assume that T –I and T –I are demiclosed at θ . Let x ∈ C, C = C, and {xn} be a sequence
generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tzn,
zn = PC(( – λ)xn + λTxn),
Cn+ = {x ∈ Cn : ‖yn – x‖ ≤ ‖zn – x‖ ≤ ‖xn – x‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

where P is a projection operator. {αn} ⊂ (,η] ⊂ (, ), λ ∈ (, ). Then xn → x∗ ∈ �.

Corollary . Let H be a real Hilbert space. C is a nonempty closed convex subset of H .
T, . . . , Tk : C → H are k quasi-nonexpansive mappings with

⋂k
i= F(Ti) �= ∅. G, . . . , Gl :
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H → H are l quasi-nonexpansive mappings with
⋂l

j= F(Gj) �= ∅. Assume that Ti – I (i =
, , . . . , k) and Gj – I (j = , , . . . , l) are demiclosed at θ . Let x ∈ C, C = C, and {xn} be a
sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)
∑k

i= τiTξi zn,
zn = PC(( – λ)xn + λ

∑l
i= εjGθj xn),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

where P is a projection operator. {αn} ⊂ (,η] ⊂ (, ), λ ∈ (, ). τi ∈ (, ) and εj ∈ (, )
satisfy

∑k
i= τi =  and

∑l
j= εj = , Tξi := ( – ξi)I + ξiTi for ξi ∈ (, ), i = , , . . . , k, Gθj :=

( – θj)I + θjGj for θj ∈ (, ), j = , , . . . , l. Assume that � := (
⋂k

i= F(Ti)) ∩ (
⋂l

j= F(Gj)) �= ∅,
then the sequence {xn} converges strongly to an element q ∈ �.

If C = H := H = H and A is an identity operator, then we have the following results by
Corollaries . and ., respectively.

Corollary . Let H be a real Hilbert space. T, T : H → H are two quasi-nonexpansive
mappings with � := F(T) ∩ F(T) �= ∅. Assume that T – I and T – I are demiclosed at θ .
Let x ∈ C, C = C, and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tzn,
zn = ( – λ)xn + λTxn,
Cn+ = {x ∈ Cn : ‖yn – x‖ ≤ ‖zn – x‖ ≤ ‖xn – x‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

where P is a projection operator. {αn} ⊂ (,η] ⊂ (, ), λ ∈ (, ). Then xn → x∗ ∈ �.

Corollary . Let H be a real Hilbert space. T, . . . , Tk : H → H are k quasi-nonexpansive
mappings with

⋂k
i= F(Ti) �= ∅. G, . . . , Gl : H → H are l quasi-nonexpansive mappings

with
⋂l

j= F(Gj) �= ∅. Assume that Ti – I (i = , , . . . , k) and Gj – I (j = , , . . . , l) are demi-
closed at θ . Let x ∈ C, C = C, and {xn} be a sequence generated in the following man-
ner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)
∑k

i= τiTξi zn,
zn = ( – λ)xn + λ

∑l
i= εjGθj xn,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

where P is a projection operator. {αn} ⊂ (,η] ⊂ (, ), λ ∈ (, ). τi ∈ (, ) and εj ∈ (, )
satisfy

∑k
i= τi =  and

∑l
j= εj = , Tξi := ( – ξi)I + ξiTi for ξi ∈ (, ), i = , , . . . , k, Gθj :=

( – θj)I + θjGj for θj ∈ (, ), j = , , . . . , l. Assume that � := (
⋂k

i= F(Ti)) ∩ (
⋂l

j= F(Gj)) �= ∅,
then the sequence {xn} converges strongly to an element q ∈ �.

Remark . The coefficient condition that {αn} ⊂ (δ,  – δ) for a small enough δ >  in
Theorem M is replaced with {αn} ⊂ (,η] ⊂ (, ). This shows we can let αn = 

n+ in this
paper, which is a natural choice.
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3 Further generalization of the problem (1.1)
In Section , we gave a strong convergence algorithm for the problem (.). By the al-
gorithm, we also considered the split solution problem for two finite families of quasi-
nonexpansive mappings; see the algorithm (.). However, the algorithm (.) has an
obvious drawback, in that the algorithm (.) will be invalid for two countable families
of quasi-nonexpansive mappings. So, in this section, we introduce an algorithm for the
split solution problem of two countable families of quasi-nonexpansive mappings. The
following lemma can be found in [].

Lemma The unique solutions to the positive integer equation

n = i +
(m – )m


, m ≥ i, n = , , , . . . (.)

are

i = n –
(m – )m


, m = –

[



–
√

n +



]

≥ i, n = , , , . . . , (.)

where [x] denotes the maximal integer that is not larger than x.

Theorem . Let H and H be two real Hilbert spaces. C is a nonempty closed convex
subset of H. A : H → H is a bounded linear operator. {Ti}∞i= : C → H and {Gi}∞i= : H →
H are two countable families of quasi-nonexpansive mappings with � = {p ∈ ⋂∞

i= F(Ti) :
Ap ∈ ⋂∞

j= F(Gj)} �= ∅. Assume that Ti – I (i = , , . . .) and Gj – I (j = , , . . .) are demiclosed
at θ . Let x ∈ C, C = C, and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tin zn,
zn = PC(xn + λA∗(Gin – I)Axn),
Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

(.)

where P is a projection operator and A∗ denotes the adjoint of A, {αn} ⊂ (,η] ⊂ (, ), λ ∈
(, 

‖A∗‖ ). in satisfies (.), i.e. in = n – (m–)m
 and m ≥ in for n = , , . . . . Then the sequence

{xn} converges strongly to an element q ∈ �.

Proof Just like the proof in Theorem ., we can obtain the following facts (I)-(IV):
(I) For p ∈ �,

λ
〈
xn – p, A∗(Gin – I)Axn

〉 ≤ –λ
∥
∥(Gin – I)Axn

∥
∥, (.)

‖zn – p‖ ≤ ‖xn – p‖ – λ
(
 – λ

∥
∥A∗∥∥)∥∥(Gin – I)Axn

∥
∥ (.)

and

‖yn – p‖ ≤ ‖zn – p‖ ≤ ‖xn – p‖. (.)

(II) We have � ⊂ Cn for n ∈N∪ {}. Cn is also closed and convex for n ∈ N∪ {}.
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(III) {xn} is a Cauchy sequence and

lim
n→∞‖zn – xn‖ = lim

n→∞‖yn – xn‖ = lim
n→∞‖yn – zn‖ = . (.)

(IV)

lim
n→∞

∥
∥(Tin – I)zn

∥
∥ = , lim

n→∞
∥
∥(Gin – I)Axn

∥
∥ = . (.)

Now, for each i ∈ N, set Ki = {k ≥  : k = i + (m–)m
 , m ≥ i, m ∈ N}. Since n = in + (m–)m

 ,
m ≥ in, and m ∈ N for n = , , . . . , and the definition of Ki, we have ik ≡ i for k ∈ Ki.
Obviously, {k} is a subsequence of {n}. Thus, for k ∈ Ki and i ∈ N, it follows from (.)
that

lim
k→∞

∥
∥(Ti – I)zk

∥
∥ = lim

k→∞
∥
∥(Tik – I)zk

∥
∥ = ,

lim
k→∞

∥
∥(Gi – I)Axk

∥
∥ = lim

k→∞
∥
∥(Gik – I)Axk

∥
∥ = .

(.)

Let xn → x∗. From (.) we have zn → x∗. By (.), we obtain x∗ ∈ F(Ti).
Next, we want to prove Ax∗ ∈ F(Gi). Since A is a bounded linear operator, ‖Axn –

Ax∗‖ →  by xn → x∗. Together with ‖(Gi – I)Axk‖ → , we have Axn → Ax∗ ∈ F(Gi).
Thus, x∗ ∈ � and {xn} converges strongly to x∗ ∈ �. The proof is completed. �

If C = H, then we have the following result by Theorem ..

Corollary . Let H and H be two real Hilbert spaces. A : H → H is a bounded lin-
ear operator. {Ti}∞i= : H → H and {Gi}∞i= : H → H are two countable families of quasi-
nonexpansive mappings with � = {p ∈ ⋂∞

i= F(Ti) : Ap ∈ ⋂∞
j= F(Gj)} �= ∅. Assume that Ti – I

(i = , , . . .) and Gj – I (j = , , . . .) are demiclosed at θ . Let x ∈ C, C = H, and {xn} be a
sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tin zn,
zn = xn + λA∗(Gin – I)Axn,
Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

(.)

where P is a projection operator and A∗ denotes the adjoint of A, {αn} ⊂ (,η] ⊂ (, ), λ ∈
(, 

‖A∗‖ ). in satisfies (.), i.e. in = n – (m–)m
 and m ≥ in for n = , , . . . . Then the sequence

{xn} converges strongly to an element q ∈ �.

If H = H := H and A is an identity operator, then we have the following results by
Theorem . and Corollary ., respectively.

Corollary . Let H be a real Hilbert space. C is a nonempty closed convex subset of H .
{Ti}∞i= : C → H and {Gi}∞i= : H → H are two countable families of quasi-nonexpansive
mappings with � := (

⋂∞
i= F(Ti)) ∩ (

⋂∞
j= F(Gj)) �= ∅. Assume that Ti – I (i = , , . . .) and

Gj – I (j = , , . . .) are demiclosed at θ . Let x ∈ C, C = C, and {xn} be a sequence generated
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in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tin zn,
zn = PC(( – λ)xn + λGin xn),
Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

(.)

where P is a projection operator. {αn} ⊂ (,η] ⊂ (, ), λ ∈ (, ). in satisfies (.), i.e. in = n –
(m–)m

 and m ≥ in for n = , , . . . . Then the sequence {xn} converges strongly to an element
q ∈ �.

Corollary . Let H be a real Hilbert space. {Ti}∞i= : H → H and {Gi}∞i= : H → H
are two countable families of quasi-nonexpansive mappings with � = {p ∈ (

⋂∞
i= F(Ti)) ∩

(
⋂∞

j= F(Gj))} �= ∅. Assume that Ti – I (i = , , . . .) and Gj – I (j = , , . . .) are demiclosed at θ .
Let x ∈ H , C = H , and {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = αnzn + ( – αn)Tin zn,
zn = ( – λ)xn + λGin xn,
Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), ∀n ∈N∪ {},

(.)

where P is a projection operator. {αn} ⊂ (,η] ⊂ (, ), λ ∈ (, ). in satisfies (.), i.e. in = n –
(m–)m

 and m ≥ in for n = , , . . . . Then the sequence {xn} converges strongly to an element
q ∈ �.

4 Conclusion
() We give strong convergence algorithms for the split common fixed point problem of

quasi-nonexpansive mappings. Our results improve and generalize some
well-known results in [, ] and so on.

() Although Theorem . gives a strong convergence algorithm for two countable
families of quasi-nonexpansive mappings, the condition that each mapping must be
demiclosed at θ is very strong. In addition, we guess the speed of convergence is not
too fast for the algorithm (.). Therefore, the algorithm (.) should be improved
further in the future.

() The split common solution problem is a very interesting topic. It has received
attention by many scholars. Many research articles have been published, for
example, [–] and references therein.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and Computer Science, Yunnan University of Nationalities, Kunming, Yunnan 650500,
China. 2Department of Mathematics, Honghe University, Mengzi, Yunnan 661199, China.

Acknowledgements
The Candidate Foundation of Youth Academic Experts at Honghe University (2014HB0206) is acknowledged.

Received: 2 October 2014 Accepted: 31 March 2015



Li and He Journal of Inequalities and Applications  (2015) 2015:131 Page 12 of 12

References
1. Lin, L-J, Chuang, C-S, Yu, Z-T: Fixed point theorems for some new nonlinear mappings in Hilbert spaces. Fixed Point

Theory Appl. 2011, 51 (2011)
2. Censor, Y, Segal, A: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587-600 (2009)
3. Moudafi, A: A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. 74,

4083-4087 (2011)
4. He, Z, Du, W-S: Nonlinear algorithms approach to split common solution problems. Fixed Point Theory Appl. 2012,

130 (2012)
5. Du, W-S, He, Z: Feasible iterative algorithms for split common solution problems. J. Nonlinear Convex Anal. (in press)
6. He, Z: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012, 162 (2012)
7. He, Z, Du, W-S: Viscosity iterative schemes for finding split common solutions of variational inequalities and fixed

point problems. Abstr. Appl. Anal. 2012, Article ID 470354 (2012)
8. He, Z, Du, W-S: On hybrid split problem and its nonlinear algorithms. Fixed Point Theory Appl. 2013, 47 (2013)
9. Byrne, C, Censor, Y, Gibali, A, Reich, S: The split common null point problem. J. Nonlinear Convex Anal. 13, 759-775

(2012)
10. Deng, W-Q: A new approach to the approximation of common fixed points of an infinite family of relatively

quasinonexpansive mappings with applications. Abstr. Appl. Anal. 2012, Article ID 437430 (2012)
11. Zhao, J, He, S: Strong convergence of the viscosity approximation process for the split common fixed-point problem

of quasi-nonexpansive mappings. J. Appl. Math. 2012, Article ID 438023 (2012)
12. Lin, L-J, Chen, Y-D, Chuang, C-S: Solutions for a variational inclusion problem with applications to multiple sets split

feasibility problems. Fixed Point Theory Appl. 2013, 333 (2013)
13. Ansari, QH, Rehan, A: Split feasibility and fixed point problems. In: Nonlinear Analysis: Approximation Theory,

Optimization and Applications, pp. 281-322. Birkhäuser, New Delhi (2014)
14. Yang, Q: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261-1266 (2004)
15. Yu, X, Shahzad, N, Yao, Y: Implicit and explicit algorithms for solving the split feasibility problem. Optim. Lett. 6,

1447-1462 (2012)
16. López, G, Martín-Márquez, V, Wang, F, Xu, H: Solving the split feasibility problem without prior knowledge of matrix

norms. Inverse Probl. 28(8), 085004 (2012)
17. Tseng, P: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim.

38, 431-446 (2000)
18. Bauschke, HH: A note on the paper by Eckstein and Svaiteron on ‘General projective splitting methods for sums of

maximal monotone operators’. SIAM J. Control Optim. 48, 2513-2515 (2009)
19. Qin, X, Cho, SY, Wang, L: Convergence of splitting algorithms for the sum of two accretive operators with

applications. Fixed Point Theory Appl. 2014, 166 (2014)
20. Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26,

105018 (2010)
21. Wirojana, N, Jitpeera, T, Kumam, P: The hybrid steepest descent method for solving variational inequality over triple

hierarchical problems. J. Inequal. Appl. 2012, 280 (2012)


	A new iterative algorithm for split solution problems of quasi-nonexpansive mappings
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Strong convergence theorems
	Further generalization of the problem (1.1)
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


